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“Category theory starts with the observation that many proper-
ties of mathematical systems can be unified and simplified by a
presentation with diagrams of arrows.”

- Saunders Mac Lane, one of the two creators of category theory

Categories

Category theory is a means of capturing entire mathematical theories in sin-
gle objects, such that their common patterns may be studied alike and their
relationships described. A category is essentially a directed graph with a com-
position law for edges; for many categories, the vertices would represent various
mathematical objects, and the directed edges would represent the structure-
preserving maps between them—for instance, appropriate homomorphisms, con-
tinuous maps, linear maps . . .

In category theory, then, we make no reference to the actual elements of sets;
we instead characterize certain features of each theory through various universal
properties that they satisfy, characterized by various existence and uniqueness
conditions for diagrams of arrows. Such characterizations translate much more
naturally to less familiar parts of mathematics.

A category C consists of
e a set ObC of objects;

e for all z,y € Ob(C, a set Hom(z,y) of morphisms;

e a composition law assigning to any pair of morphisms f € Hom(a,b)
and g € Hom(b, ¢) a composite (g o f) € Hom(a, ¢),

such that

e forall z € ObC there exists a two-sided identity morphism id, € Hom(x,x);

e composition is associative: if f € Hom(a, b), g € Hom(b, ¢), h € Hom(e, d),
then ho (go f) = (hog)o f.



So every category is a graph, but categories have also the algebraic structure of
composition; this cross between combinatorial and algebraic structure is power-
ful. We could explicitly write down some finite categories, but we’ll be mostly
interested in categories so infinite that set theory begins to look inadequate.

Examples:
Set: Ob Set is all sets, Hom(a,b) all functions from a to b;
Grp: groups, group homomorphisms
Rng: rings, ring homomorphisms
Vectp: vector spaces over F, F-linear maps
R—Mod: modules over R, R-linear maps
Top: topological spaces, continuous maps
Matrp: natural numbers, a X b matrices over F'
Set,: sets with a chosen element, functions respecting that choice
Graph: graphs, graph homomorphisms.

Of course, the set of all sets does not exist in most conceptions of set theory; we
can work around this in various ways, for instance letting Set be the category
of “small” sets, where Ob Set is a “large” set. Most category theorists feel that
a new foundation of mathematics based around categories would be much more
adequate to express these ideas than set theory, and so we will gloss over such
matters.

We say that a diagram of objects and morphisms commutes if the compositions
of morphisms along any two paths between two objects yield the same result.

Functors

What are the structure-preserving maps between categories? If categories are
graphs with some algebraic structure of composition, then functors are graph
homomorphisms that respect the composition law.

A functor F from a category A to a category B consists of:

e a function (written F') from Ob.A to Ob B, and

e for all z,y € ObA, a function from Hom(z,y) to Hom(Fz, Fy), also
written F,

such that if a,b,c € Ob. A and f € Hom(a,b) and g € Hom(b, ¢) then F(go f) =
F(g) OF(f)a and F(Zda) = idF(a)-

Examples:

e Free : Set — Vectp. Any set a is sent to the vector space of all formal
F—linear combinations of elements of a. Any function f : a — b extends
to a linear map Free f : Free a — Free b. Similarly there is a free functor
from Set to Grp, Rng, R—Mod, ...

e Forget : Grp — Set. Any group is taken to its underlying set and any
group homomorphism to itself as a mere function: it “forgets” the group



structure. Similarly we have a forgetful functor to Set from Rng, Ab, Top,
Vectp, R—Mod, ...

e P : Set — Set. Any set is sent to its power set, and any function induces
a function on subsets acting elementwise.

e (In)disc : Set — Top. A set is equipped with the (in)discrete topology,
and functions automatically become continuous.

e idc : C — C, the identity functor.

e ( )* : Rng — Grp. Any ring is taken to its group of units, and ring
homomorphisms restrict to group homomorphisms.

e [—,—]: Grp — Grp. Any group is taken to its commutator subgroup, and
group homomorphisms restrict.

Note that the center Z is not a functor Grp — Ab, as group homomorphisms
do not preserve the center.

Any group may be encoded in a category as follows: we let our category have
only a single object a, and let it have a morphism for each element of the group;
we then define a composition law on Hom(a,a) by our group law. Then the
identity morphism on a corresponds to the group identity, and all morphisms are
invertible. Indeed, we see then that the notions of “one-object category with all
morphisms invertible” and “group” coincide. This suggests two generalizations
of groups:

Relaxing invertibility, we have monoids, one-object categories; these can easily
be defined more classically by removing the inverse axiom of groups. How-
ever, retaining invertibility but relaxing the one-object condition, we obtain
groupoids, which are then essentially groups with only partial operations; these
have found uses in algebraic topology and other branches of mathematics.

Special types of morphisms

A isomorphism between z,y € Ob.A is a morphism f € Hom(z,y) for which
there exists a ¢ € Hom(y,z) such that go f = id, € Hom(x,2) and fog =
id, € Hom(y,y). This g is unique, and is called the inverse of f.

Remark. It is important to realize that this is the correct definition of iso-
morphism in any category. Often, an isomorphism might be introduced as a
“bijective homomorphism” or some other such definition; this is not the proper
definition. Firstly, if we are working in a category whose objects are not sets
with structure, the concept of “bijective” simply makes no sense. But secondly,
it is, in fact, a theorem about groups that a group homomorphism is an isomor-
phism if and only if it is bijective. There are many mathematical objects for
which the corresponding statement is false: for example, topological spaces (a



continuous bijection need not be a homeomorphism) and smooth manifolds (a
smooth bijection need not be a diffeomorphism).

A monomorphism or monic is a morphism f € Hom(z,y) in a category A
such that fog= foh = g=hforall z€ ObA and all g,h € Hom(z,y).
The monics in a category are usually what we expect: a group homomorphism
is a monic if and only if it is injective. The corresponding statement is true for
most “algebraic” objects: rings, fields, vector spaces, etc. We usually have to
be more careful with “topological” objects: topological spaces, manifolds, etc.

However, there are counterexamples, even among “algebraic”-style objects: let
Div be the category whose objects are divisible abelian groups, and whose mor-
phisms are just group homomorphisms (an abelian group G is said to be divisible
when, for any g € G and n € N, there exists an h € G such that nh = g). The
group of rational numbers Q under addition, is an example of a divisible group;
so is the quotient group Q/Z. The quotient homomorphism ¢ : Q — Q/Z that
sends a € Q to its equivalence class [a] in Q/Z (which is definitely not injective)
is actually still a monic in the category Div.

A epimorphism or epic is a morphism f € Hom(z, y) in a category A such that
gof=hof = g=hforall z€ ObA and all g,h € Hom(y, z). The epics in
a category are also often what we expect: for example, a group homomorphism
is an epic if and only if it is surjective. But even in the category of rings, there
are morphisms that are unexpectedly epic: for example, the inclusion i : Z — Q
is definitely not surjective, yet it is an epic in the category Ring.

A final note of caution: a morphism f € Hom(z,y) that is both a monic and an
epic is not necessarily an isomorphism. An example of this phenomenon occurs
in the category Haus of Hausdorff topological spaces, with continuous maps; for
any Hausdorff topological space X, the inclusion ¢ : D — X of a dense subset
D C X is both monic and epic, but not an isomorphism.

Natural transformations

We’ve defined categories, and their structure-preserving maps, namely functors.
But what are the structure-preserving maps between two functors?

A natural transformation n: F' = G from a functor F': A — B to a functor
G : A — B consists of

e for all z € Ob A, a morphism 71, € Hom(Fz,Gx)

such that, for every z,y € Ob A and every morphism f € Hom(z,y), the fol-



lowing diagram commutes:

FLELGSC

| lcf

Fy—— Gy
Ny

If every 7, is an isomorphism, then we say that 7 is a natural equivalence or
a natural isomorphism.

There are many examples of natural transformations in nature:

o Let A = B = Grp, and let F' = idg,, (the identity functor from Grp
to itself), and G = ( )® (the functor that takes a group to its abelian-
ization, and a group homomorphism to the corresponding induced homo-
morphism). We can define a natural transformation 7 : F' = G by letting
ng : FH — GH (i.e., ng : H — H®) be the quotient homomorphism gz
that takes a group H to its abelianization H* := H/[H, H]:

H&Hab

fl |

K =g K

(admittedly, this is kind of an boring example).

e Let A = CRing, let B = Grp, let F' : A — B be the functor that takes a
ring R to the matrix group GL,(R), and let G : A — B be the functor
that takes a ring R to the unit group R*. Then we can define a natural
transformation 7 : F' = G by letting ng : FR — GR (i.e., ng : GL,(R) —
R*) be the determinant homomorphism det g that takes matrix in GL, (R)
to its determinant (which will be in R*, by the definition of GL,,(R)):

detpr

GL,(R) ——= RX

GLn(f)l lfx

GL,(S) —— g%

detgs

e Let A =B = Vecti, and let F' = idyect,, and G = ( )** (the functor that
takes a K-vector space V to its double dual V** = Hom(Hom(V, K), K)).
Then we can define a natural transformation n : ' = G by letting ny :
FV — GV (ie., ny : V. — V**) be the linear map evy that takes an



element x € V' to the evaluation map ev,(f : V — K) = f(z):

V evy V**
—_—

fL Lf**

WéW**

evw

Limits and colimits

We can characterize a number of important features of a category in terms of
relationships between morphisms, when normally in a given theory they would
be described in terms of elements.

Given a category C, objects a,b,p € Ob(C, and morphisms
fi:p—a, fo:p—0b, wesay (p, f1, f2) is a product of a

and b if for all j e ObCand all g: 5 =+ aand h: j — b, 9 a
there exists a unique [ : j — p such that ¢ = f; ol and ) /7‘1?'
h = fyol, i.e. the above diagram commutes. J =----3p
For instance, if a, b € Ob Set, then (ax b, 74, m) is a product ‘n\d 1f2

where 7, and m, are the projections onto the two factors. b

Similarly in Top we have the product space, and in Vect i
we have the direct sum.

Claim. Products are unique up to isomorphism.

Proof. Suppose that (p1, f1, f2) and (pe, g1, g2) are two products of a and b.
Then there exist unique morphisms l15 : p1 — p2 and ls; : po — p; such that
the diagram commutes. Define l31 = loy 0 l12, los = l12 0 lo1. Then fil17 = fi,
but the product property with p; and p; gives that there is a unique morphism
with those commutativity conditions, and the identity id,, satisfies them. So
l11 = idp,, and similarly ly; = id,,, so that l12 and lg; are mutual inverses, and
hence are isomorphisms between p; and ps. O

Note that we have demonstrated a
slightly stronger condition than claimed:

the isomorphism between two products £ /,.,f'-‘; o Mo 2

is unique within the commutativity con- /,// :‘}/ \. '“\\

ditions. g e f_} Pieeo _ __nfa

More generally, given a subcategory D N T / E
— £ 9, P

of C, we define a cone to D to be an ob- Fa——3b it T,

ject x of C together with a morphism

fy + ® — y for each object y of D Figure 1: Uniqueness of products
such that the f, commute with the mor-

phisms of D, that is, for any morphism k:a — b in D, ko f, = fp.



A limit of D is a cone (¢, f,) such that for all cones (xz,g,) to D, there exists
a unique morphism m : x — ¢ such that all morphisms commute, i.e. for all
y € ObD, g, = fy,om.

Examples:
D cone diagram name
0 Kirinsas wae 7 4 terminal object
ag L)p x { >-L-.h product
\ ~ |,
SR
‘ X
i T Y U
f——> a b
a ““‘—w—j?
y,
(1N
T~y ¢ //’; ey
X =y < pullback
: / \Q_, . /"7

Sometimes we consider infinite limits, for instance in the diagram:
o= LIP3T — T)p°T — T/ pZ

The limit of this subcategory of Rng has limit Z,, the p-adic integers. We
(loosely) write Z,, = lim Z/p"Z.



Similarly we define a cocone of a subcategory D as an object x € ObC together
with morphisms f, : y = « for all y € ObD, such that the f, commute with
the morphisms of D.

A colimit of D is a cocone (¢, f,) such that for all cocones (z, g,) there exists
a unique morphism m : £ — x such that all morphisms commute.

Examples:
D cocone diagram name
0 L-=--~-nx initial object
ﬂ_ ‘:'-— --\-._“\‘N
& L4 - f =X
o b A g coproduct
v
£ A A
- £ H
a ub i ,fj\)(j < coequalizer
.

y 4

Theorem. All limits and colimits are unique up to isomorphism, and this iso-
morphism is unique within the commutativity conditions of the two (co)cones.

The proof is virtually identical to that of the product above.



