2.1.22. Let $X=\bigcup_{i \in I} U_{i}$ be an open cover of $X$. For each $i \in I$, let $\mathcal{F}_{i}$ be a sheaf on $U_{i}$, with $\rho_{i}$ being the restriction maps for $\mathcal{F}_{i}$. For each $i, j \in I$, let $\phi_{i j}:\left.\left.\mathcal{F}_{i}\right|_{U_{i} \cap U_{j}} \rightarrow \mathcal{F}_{j}\right|_{U_{i} \cap U_{j}}$ be an isomorphism such that $\phi_{i i}=\mathrm{id}$, and $\phi_{i k}=\phi_{j k} \circ \phi_{i j}$ on $U_{i} \cap U_{j} \cap U_{k}$.

We want to create a sheaf $\mathcal{F}$ on $X$, with isomorphisms $\psi_{i}:\left.\mathcal{F}\right|_{U_{i}} \rightarrow \mathcal{F}_{i}$ such that for each $i, j \in I$, $\psi_{j}=\phi_{i j} \circ \psi_{i}$ on $U_{i} \cap U_{j}$, and show that $\mathcal{F}$ is unique up to isomorphism.

Definition of $\mathcal{F}(U)$. For any open $U \subseteq X$, we define

$$
\mathcal{F}(U)=\left\{\left(s_{i}\right)_{i \in I} \in \prod_{i \in I} \mathcal{F}_{i}\left(U \cap U_{i}\right) \mid \phi_{i j}\left(U \cap U_{i} \cap U_{j}\right)\left(\rho_{i}^{U \cap U_{i} \cap U_{j}} \underset{U \cap U_{i}}{U}\left(s_{i}\right)\right)=\rho_{j U \cap U_{i} \cap U_{j}}^{U \cap U_{j}}\left(s_{j}\right) \text { for all } i, j \in I\right\}
$$

Note that the definition of $\mathcal{F}(U)$ is consistent with our assumptions about the $\phi_{i j}$ - we are requiring each $\left(s_{i}\right)_{i \in I} \in \mathcal{F}(U)$ to have the property that, for all $i, j \in I$,

$$
\phi_{i j}\left(U \cap U_{i} \cap U_{j}\right)\left(\rho_{i}^{U \cap \cap_{i} \cap U_{j}} \underset{U \cap U_{i}}{U \cap_{i}}\left(s_{i}\right)\right)=\rho_{j \cap U_{i} \cap U_{j}}^{U \cap U_{j}}\left(s_{j}\right)
$$

and therefore, after applying $\rho_{j}^{U \cap U_{i} \cap U_{j}} \overbrace{j} \cap U_{j} \cap U_{k}$. the property that, for all $i, j \in I$,

$$
\begin{aligned}
& \left.\underset{\rho_{U \cap U_{i} \cap U_{j} \cap U_{k}}^{U \cap U_{i} \cap U_{j}}}{U}\left(\phi_{i j}\left(U \cap U_{i} \cap U_{j}\right)\left(\rho_{i}^{U \cap U_{i} \cap U_{i} \cap U_{j}}\left(s_{i}\right)\right)\right)=\phi_{i j}\left(U \cap U_{i} \cap U_{j} \cap U_{k}\right)\left(\rho_{i U \cap U_{i} \cap U_{j} \cap U_{k}}^{U \cap U_{i} \cap U_{j}}\left(\rho_{i}^{U \cap U_{i} \cap U_{j}}\right)\left(s_{i}\right)\right)\right)=
\end{aligned}
$$

Thus, for any open $U \subseteq X,\left(s_{i}\right)_{i \in I} \in \mathcal{F}(U)$, and $i, j, k \in I$, we have that

$$
\begin{aligned}
& \phi_{j k}\left(U \cap U_{i} \cap U_{j} \cap U_{k}\right)\left(\phi_{i j}\left(U \cap U_{i} \cap U_{j} \cap U_{k}\right)\left(\rho_{i}^{U \cap U_{i} \cap U_{j} \cap U_{k}}\left(s_{i}\right)\right)\right)=\phi_{j k}\left(U \cap U_{i} \cap U_{j} \cap U_{k}\right)\left(\rho_{j}^{U \cap \cap U_{i} \cap U_{j} \cap U_{k}}{ }_{U}^{U}\left(s_{j}\right)\right)= \\
& \rho_{k}^{U \cap U_{k} \cap U_{j} \cap U_{k}}\left(s_{k}\right)=\phi_{i k}\left(U \cap U_{i} \cap U_{j} \cap U_{k}\right)\left(\rho_{k}^{U \cap U_{k}} \underset{U \cap U_{i} \cap U_{j} \cap U_{k}}{U V_{k}}\left(s_{k}\right)\right)
\end{aligned}
$$

which agrees with our assumption that $\phi_{i k}=\phi_{j k} \circ \phi_{i j}$ on $U_{i} \cap U_{j} \cap U_{k}$.

Definition of restriction maps. For any open $V \subseteq U \subseteq X$, we define $\rho_{V}^{U}: \mathcal{F}(U) \rightarrow \mathcal{F}(V)$ by

$$
\rho_{V}^{U}\left(\left(s_{i}\right)_{i \in I}\right)=\left(\rho_{i}{ }_{V \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)\right)_{i \in I} \in \mathcal{F}(V)
$$

Note that we have $\left(\rho_{i}{ }_{V \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)\right)_{i \in I} \in \mathcal{F}(V)$ because for each $i \in I$, we have that $s_{i} \in \mathcal{F}_{i}\left(U \cap U_{i}\right)$ and hence $\rho_{i V \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right) \in \mathcal{F}_{i}\left(V \cap U_{i}\right)$, and because the $\phi_{i j}$ are morphisms, we have that

$$
\begin{gathered}
\phi_{i j}\left(\rho_{i V \cap U_{i} \cap U_{j}}^{V \cap U_{i}}\left(\rho_{i V \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)\right)\right)=\phi_{i j}\left(\rho_{i V \cap U_{i} \cap U_{j}}^{U \cap U_{i}}\left(s_{i}\right)\right)=\rho_{j V \cap U_{i} \cap U_{j}}^{U \cap U_{i}}\left(\phi_{i j}\left(s_{i}\right)\right)= \\
\rho_{j \cap \cap U_{i} \cap U_{j}}^{U \cap U_{i}}\left(s_{j}\right)=\rho_{j \vee \cap U_{i} \cap U_{j}}^{V \cap U_{j}}\left(\rho_{j V \cap U_{j}}^{U \cap U_{j}}\left(s_{j}\right)\right)
\end{gathered}
$$

Checking that they form a presheaf. For any open $U \subseteq X$ and $\left(s_{i}\right)_{i \in I} \in \mathcal{F}(U)$, we have that

$$
\rho_{U}^{U}\left(\left(s_{i}\right)_{i \in I}\right)=\left(\rho_{i U \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)\right)_{i \in I}=\left(s_{i}\right)_{i \in I}
$$

Thus, $\rho_{U}^{U}=\operatorname{id}_{\mathcal{F}(U)}$. For any open $W \subseteq V \subseteq U \subseteq X$, we have that

$$
\rho_{W}^{V}\left(\rho_{V}^{U}\left(\left(s_{i}\right)_{i \in I}\right)\right)=\rho_{W}^{V}\left(\left(\rho_{i}^{V}{ }_{V \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)\right)_{i \in I}\right)=\left(\rho_{i}^{V \cap U_{i}}{ }_{i}^{V \cap U_{i}}\left(\rho_{i}^{U \cap U_{i}}{ }_{V}^{U \cap U_{i}}\left(s_{i}\right)\right)\right)_{i \in I}=\left(\rho_{i}^{U \cap U_{i}}{ }_{i}^{U \cap U_{i}}\left(s_{i}\right)\right)_{i \in I}=\rho_{W}^{U}\left(\left(s_{i}\right)_{i \in I}\right)
$$

Thus, $\rho_{W}^{U}=\rho_{W}^{V} \circ \rho_{V}^{U}$. Therefore $\mathcal{F}$, together with the restriction maps $\rho$, form a presheaf.

Checking axiom (3) for sheaves. Let $U \subseteq X$ be open, and let $U=\bigcup_{a \in A} V_{a}$ be an open cover. Suppose that $s=\left(s_{i}\right)_{i \in I} \in \mathcal{F}(U)$ has the property that, for all $a \in A$,

$$
\rho_{V_{a}}^{U}(s)=\left(\rho_{i}^{U} \stackrel{U \cap V_{a} \cap U_{i}}{U}\left(s_{i}\right)\right)_{i \in I}=(0)_{i \in I}=0 \in \mathcal{F}\left(V_{a}\right)
$$

Note that for each $i \in I, U \cap U_{i}=\bigcup_{a \in A}\left(V_{a} \cap U_{i}\right)$ is an open cover and $\rho_{i} V_{V_{a} \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)=0$ for all $a \in A$, so because $\mathcal{F}_{i}$ is a sheaf, we have that $s_{i}=0 \in \mathcal{F}_{i}\left(U \cap U_{i}\right)$, and thus $s=\left(s_{i}\right)_{i \in I}=(0)_{i \in I}=0 \in \mathcal{F}(U)$.

Checking the gluing axiom for sheaves. Let $U \subseteq X$ be open, and let $U=\bigcup_{a \in A} V_{a}$ be an open cover. Suppose that a collection of $s^{a}=\left(s_{i}^{a}\right)_{i \in I} \in \mathcal{F}\left(V_{a}\right)$, for $a \in A$, have the property that

$$
\rho_{V_{a} \cap V_{b}}^{V_{a}}\left(s^{a}\right)=\left(\rho_{i} \stackrel{V_{a} \cap U_{i} \cap V_{b} \cap U_{i}}{ }\left(s_{i}^{a}\right)\right)_{i \in I}=\left(\rho_{i} V_{V_{a} \cap V_{b} \cap U_{i}}^{V_{b} \cap U_{i}}\left(s_{i}^{b}\right)\right)_{i \in I}=\rho_{V_{a} \cap V_{b}}^{V_{b}}\left(s^{b}\right) \text { for all } a, b \in A
$$

For each $i \in I$, we have that $U \cap U_{i}=\bigcup_{a \in A}\left(V_{a} \cap U_{i}\right)$ is an open cover for $U \cap U_{i}$. By the above equation, we have that for each $i \in I$ the collection of $s_{i}^{a} \in \mathcal{F}_{i}\left(V_{a} \cap U_{i}\right)$ have the property that

$$
\rho_{i} \underset{V_{a} \cap V_{b} \cap U_{i}}{V_{a} \cap U_{i}}\left(s_{i}^{a}\right)=\rho_{i} V_{V_{a} \cap V_{b} \cap U_{i}}^{V_{b} \cap U_{i}}\left(s_{i}^{b}\right)
$$

so because $\mathcal{F}_{i}$ is a sheaf, there is a unique $s_{i} \in \mathcal{F}_{i}\left(U \cap U_{i}\right)$ such that $\rho_{i}{ }_{V_{a} \cap U_{i}}^{U \cap U_{i}}\left(s_{i}\right)=s_{i}^{a}$ for all $a \in A$. Thus, $s=\left(s_{i}\right)_{i \in I}$ will be a gluing of the $s^{a}$ if we can show that in fact $s=\left(s_{i}\right)_{i \in I} \in \mathcal{F}(U)$, i.e. for all $i, j \in I$,

$$
\phi_{i j}\left(U \cap U_{i} \cap U_{j}\right)\left(\rho_{i}^{U \cap U_{i} \cap U_{j}} \underset{U \cap U_{i}}{U}\left(s_{i}\right)\right)=\rho_{j U \cap U_{i} \cap U_{j}}^{U \cap U_{j}}\left(s_{j}\right)
$$

Because $s^{a}=\left(s_{i}^{a}\right)_{i \in I} \in \mathcal{F}\left(V_{a}\right)$ for each $a \in A$, we have that for all $i, j \in I$,

$$
\phi_{i j}\left(V_{a} \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \stackrel{V_{a} \cap U_{i} \cap U_{i} \cap U_{j}}{V}\left(s_{i}^{a}\right)\right)=\rho_{j} \stackrel{V_{a} \cap U_{j} \cap U_{i} \cap U_{j}}{V_{j}}\left(s_{j}^{a}\right)
$$

Thus, we have that for all $i, j \in I$ and $a \in A$,

$$
\begin{aligned}
& \phi_{i j}\left(V_{a} \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \underset{V_{a} \cap U_{i} \cap U_{j}}{U \cap U_{i}}\left(s_{i}\right)\right)=\phi_{i j}\left(V_{a} \cap U_{i} \cap U_{j}\right)\left(\rho_{i}^{V} V_{a} \cap U_{i} \cap U_{j}\left(\rho_{i} \cap U_{i} V_{a} \cap U_{i}\left(s_{i}\right)\right)\right)= \\
& \phi_{i j}\left(V_{a} \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \stackrel{V_{a} \cap \cap_{i} \cap U_{j}}{V_{a} \cap U_{i}}\left(s_{i}^{a}\right)\right)=\rho_{j} \stackrel{V_{a} \cap U_{i} \cap U_{j}}{V}\left(s_{j}^{a}\right)
\end{aligned}
$$

Now let $t_{i, j}=\rho_{j U \cap U_{i} \cap U_{j}}^{U \cap U_{j}}\left(s_{j}\right)$. We have that


Thus, for all $i, j \in I$, we have that

$$
\rho_{j V_{a} \cap U_{i} \cap U_{j}}^{U \cap U_{i} \cap U_{j}}\left(\phi_{i j}\left(U \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \stackrel{U \cap U_{i} \cap U_{i} \cap U_{j}}{U}\left(s_{i}\right)\right)\right)=\rho_{j V_{a} \cap U_{i} \cap U_{j}}^{U \cap U_{i} \cap U_{j}}\left(t_{i, j}\right) \text { for all } a \in A
$$

Note that for each $i, j \in I$, we have that $U \cap U_{i} \cap U_{j}=\bigcup_{a \in A}\left(V_{a} \cap U_{i} \cap U_{j}\right)$ is an open cover of $U \cap U_{i} \cap U_{j}$. Because $\mathcal{F}_{j}$ is a sheaf, we have by the lemma below that for all $i, j \in I$,

$$
\phi_{i j}\left(U \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \underset{U \cap U_{i} \cap U_{j}}{U \cap U_{i}}\left(s_{i}\right)\right)=t_{i, j}=\rho_{j U \cap U_{i} \cap U_{j}}^{U \cap U_{j}}\left(s_{j}\right)
$$

Thus, we have shown that $s=\left(s_{i}\right)_{i \in I} \in \mathcal{F}(U)$, and thus $s$ is a gluing of the $s_{a}$.
Lemma. Let $\mathcal{H}$ be a sheaf on a topological space $Y$, with restriction maps $\hat{\rho}$. Let $E \subseteq Y$ be open, and let $E=\bigcup_{r \in R} E_{r}$ be an open cover. If $t_{1}, t_{2} \in \mathcal{H}(E)$ have $\hat{\rho}_{E_{r}}^{E}\left(t_{1}\right)=\hat{\rho}_{E_{r}}^{E}\left(t_{2}\right)$ for all $r \in R$, then because the restriction maps are homomorphisms, we have

$$
\hat{\rho}_{E_{r}}^{E}\left(t_{1}-t_{2}\right)=0 \in \mathcal{H}\left(E_{r}\right) \text { for all } r \in R
$$

and hence $t_{1}-t_{2}=0 \in \mathcal{H}(E)$, i.e. $t_{1}=t_{2}$.
Thus, we have shown that $\mathcal{F}$ together with the restriction maps $\rho$ form a sheaf.

Defining the isomorphisms $\psi_{h}$. Note that for any $h \in I$ and open $V \subseteq U_{h}$, we have that
$\left.\mathcal{F}\right|_{U_{h}}(V)=\mathcal{F}(V)=\left\{\left(s_{i}\right)_{i \in I} \in \prod_{i \in I} \mathcal{F}_{i}\left(V \cap U_{i}\right) \mid \phi_{i j}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \cap \cap U_{i} \cap U_{j}\right)\left(s_{i}\right)\right)=\rho_{j V \cap U_{i} \cap U_{j}}^{V \cap U_{j}}\left(s_{j}\right)$ for all $\left.i, j \in I\right\}$
For any $h \in I$ and open $V \subseteq U_{h}$, define $\psi_{h}(V):\left.\mathcal{F}\right|_{U_{h}}(V) \rightarrow \mathcal{F}_{h}(V)$ by

$$
\psi_{h}(V)\left(\left(s_{i}\right)_{i \in I}\right)=s_{h} \in \mathcal{F}_{h}\left(V \cap U_{h}\right)=\mathcal{F}_{h}(V)
$$

This defines a morphism $\psi_{h}:\left.\mathcal{F}\right|_{U_{h}} \rightarrow \mathcal{F}_{h}$ because, for any open $W \subseteq V \subseteq U_{h}$, we have that

$$
\psi_{h}(W)\left(\rho_{W}^{V}\left(\left(s_{i}\right)_{i \in I}\right)\right)=\psi_{h}(W)\left(\left(\rho_{i}{ }_{W \cap U_{i}}^{V \cap U_{i}}\left(s_{i}\right)\right)_{i \in I}\right)=\rho_{h W \cap U_{h}}^{V \cap U_{h}}\left(s_{h}\right)=\rho_{h}{ }_{W}^{V}\left(s_{h}\right)=\rho_{h}{ }_{W}^{V}\left(\psi_{h}(V)\left(\left(s_{i}\right)_{i \in I}\right)\right)
$$

Checking that the $\psi_{h}$ are isomorphisms. For any $h \in I$ and open $V \subseteq U_{h}$, define $\beta_{h}(V):\left.\mathcal{F}_{h}(V) \rightarrow \mathcal{F}\right|_{U_{h}}(V)$ by

$$
\beta_{h}(V)(t)=\left.\left(\phi_{h i}\left(V \cap U_{i}\right)\left(\rho_{h} V \cap U_{i}(t)\right)\right)_{i \in I} \in \mathcal{F}\right|_{U_{h}}(V)=\mathcal{F}(V)
$$

Note that we do in fact have that $\beta_{h}(V)(t) \in \mathcal{F}(V)$, because
$\phi_{i j}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{i}{ }_{V \cap U_{i} \cap U_{j}}^{V \cap U_{i}}\left(\phi_{h i}\left(V \cap U_{i}\right)\left(\rho_{h V \cap U_{i}}^{V}(t)\right)\right)\right)=\phi_{i j}\left(V \cap U_{i} \cap U_{j}\right)\left(\phi_{h i}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{h} \underset{V \cap U_{i} \cap U_{j}}{V \cap U_{j}}\left(\rho_{h} V \cap U_{i}(t)\right)\right)\right)=$
$\phi_{h j}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{h V \cap U_{i} \cap U_{j}}^{V}(t)\right)=\phi_{h j}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{h V \cap U_{i} \cap U_{j}}^{V \cap U_{j}}\left(\rho_{h V \cap U_{j}}^{V}(t)\right)\right)=\rho_{j V \cap U_{i} \cap U_{j}}^{V \cap U_{j}}\left(\phi_{h j}\left(V \cap U_{j}\right)\left(\rho_{h} V \cap U_{j}(t)\right)\right)$
Furthermore, this defines a morphism $\beta_{h}:\left.\mathcal{F}_{h} \rightarrow \mathcal{F}\right|_{U_{h}}$ because, for any open $W \subseteq V \subseteq U_{h}$, we have that

$$
\begin{gathered}
\beta_{h}(W)\left(\rho_{h}{ }_{W}^{V}(t)\right)=\left(\phi_{h i}\left(W \cap U_{i}\right)\left(\rho_{h} W_{W \cap U_{i}}^{W}\left(\rho_{h}^{V}(t)\right)\right)\right)_{i \in I}=\left(\phi_{h i}\left(W \cap U_{i}\right)\left(\rho_{h}{ }_{W \cap U_{i}}^{V}(t)\right)\right)_{i \in I}= \\
\left(\phi_{h i}\left(W \cap U_{i}\right)\left(\rho_{h W \cap U_{i}}^{V \cap U_{i}}\left(\rho_{h V \cap U_{i}}^{V}(t)\right)\right)\right)_{i \in I}=\left(\rho_{i}^{V \cap \cap U_{i}}\left(\phi_{h i}\left(V \cap U_{i}\right)\left(\rho_{h V \cap U_{i}}^{V}(t)\right)\right)\right)_{i \in I}=\rho_{W}^{V}\left(\beta_{h}(V)(t)\right)
\end{gathered}
$$

Note that for any $h, i, j \in I$, any open $V \subseteq U_{h}$, and any $\left.\left(s_{i}\right)_{i \in I} \in \mathcal{F}\right|_{U_{h}}(V)=\mathcal{F}(V)$, we have that

$$
\phi_{i j}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{i} \underset{V \cap U_{i} \cap U_{j}}{V U_{i}}\left(s_{i}\right)\right)=\rho_{j}^{V \cap \cap U_{j} \cap U_{j}} \underset{j}{V \cap U_{j}}\left(s_{j}\right)
$$

and thus in particular

$$
\phi_{h i}\left(V \cap U_{i}\right)\left(\rho_{h} V \cap U_{i}\left(s_{h}\right)\right)=s_{i}
$$

Thus, for any $h \in I$ and open $V \subseteq U_{h}$, and any $\left.\left(s_{i}\right)_{i \in I} \in \mathcal{F}\right|_{U_{h}}(V)=\mathcal{F}(V)$, we have that

$$
\beta_{h}(V)\left(\psi_{h}(V)\left(\left(s_{i}\right)_{i \in I}\right)\right)=\beta_{h}(V)\left(s_{h}\right)=\left(\phi_{h i}\left(V \cap U_{i}\right)\left(\rho_{h}{ }_{V \cap U_{i}}\left(s_{h}\right)\right)\right)_{i \in I}=\left(s_{i}\right)_{i \in I}
$$

Furthermore, for any $h \in I$, any open $V \subseteq U_{h}$, and any $t \in \mathcal{F}_{h}(V)$, we have that

$$
\psi_{h}(V)\left(\beta_{h}(V)(t)\right)=\psi_{h}(V)\left(\left(\phi_{h i}\left(V \cap U_{i}\right)\left(\rho_{h V \cap U_{i}}^{V}(t)\right)\right)_{i \in I}\right)=\phi_{h h}\left(V \cap U_{h}\right)\left(\rho_{h} V \cap U_{h}(t)\right)=\operatorname{id}_{V}\left(\rho_{h} V(t)\right)=t
$$

Thus we have shown that for any $h \in I, \psi_{h}:\left.\mathcal{F}\right|_{U_{h}} \rightarrow \mathcal{F}_{h}$ and $\beta_{h}:\left.\mathcal{F}_{h} \rightarrow \mathcal{F}\right|_{U_{h}}$ are morphisms and are inverse to each other. Thus, for any $h \in I, \psi_{h}$ is an isomorphism.

Checking that the $\psi_{h}$ satisfy the relation. For any $h, k \in I$ and any open $V \subseteq U_{h} \cap U_{k}$, we have that
$\left.\mathcal{F}\right|_{U_{h} \cap U_{k}}(V)=\mathcal{F}(V)=\left\{\left(s_{i}\right)_{i \in I} \in \prod_{i \in I} \mathcal{F}_{i}\left(V \cap U_{i}\right) \mid \phi_{i j}\left(V \cap U_{i} \cap U_{j}\right)\left(\rho_{i V \cap U_{i} \cap U_{j}}^{V \cap U_{i}}\left(s_{i}\right)\right)=\rho_{j V \cap U_{i} \cap U_{j}}^{V \cap U_{j}}\left(s_{j}\right)\right.$ for all $\left.i, j \in I\right\}$
In particular, for any $h, k \in I$, any open $V \subseteq U_{h} \cap U_{k}$, and any $\left(s_{i}\right)_{i \in I} \in \mathcal{F}(V)$, we have that

$$
\phi_{h k}\left(V \cap U_{h} \cap U_{k}\right)\left(\rho_{h}{ }_{V \cap \cap U_{h} \cap U_{k}}^{V \cap U_{h}}\left(s_{h}\right)\right)=\phi_{h k}(V)\left(s_{h}\right)=s_{k}=\rho_{k V \cap U_{h} \cap U_{k}}^{V \cap U_{k}}\left(s_{k}\right)
$$

Thus, for any $h, k \in I$, any open $V \subseteq U_{h} \cap U_{k}$, and any $\left(s_{i}\right)_{i \in I} \in \mathcal{F}(V)$, we have that

$$
\psi_{k}(V)\left(\left(s_{i}\right)_{i \in I}\right)=s_{k}=\phi_{h k}(V)\left(s_{h}\right)=\phi_{h k}(V)\left(\psi_{h}(V)\left(\left(s_{i}\right)_{i \in I}\right)\right)
$$

and therefore

$$
\psi_{k}(V)=\phi_{h k}(V) \circ \psi_{h}(V)
$$

Thus, for any $h, k \in I$, we have that $\left.\psi_{k}\right|_{U_{h} \cap U_{k}}=\left.\phi_{h k} \circ \psi_{h}\right|_{U_{h} \cap U_{k}}$.
Thus, $\mathcal{F}$ is a sheaf on $X$, with isomorphisms $\psi_{i}:\left.\mathcal{F}\right|_{U_{i}} \rightarrow \mathcal{F}_{i}$ for each $i \in I$ such that $\psi_{j}=\phi_{i j} \circ \psi_{i}$ on $U_{i} \cap U_{j}$.
Uniqueness of $\mathcal{F}$ up to isomorphism. Suppose that $\mathcal{G}$ is a sheaf on $X$, with isomorphisms $\tau_{i}:\left.\mathcal{G}\right|_{U_{i}} \rightarrow \mathcal{F}_{i}$ such that $\tau_{j}=\phi_{i j} \circ \tau_{i}$ on $U_{i} \cap U_{j}$. Let $\mathscr{H} \operatorname{om}(\mathcal{F}, \mathcal{G})$ and $\mathscr{H} O m(\mathcal{G}, \mathcal{F})$ be the sheaves of local morphisms.

For each $i \in I$, let $f_{i} \in \mathscr{H} \operatorname{om}(\mathcal{F}, \mathcal{G})\left(U_{i}\right)$ be $f_{i}=\tau_{i}^{-1} \circ \psi_{i}:\left.\left.\mathcal{F}\right|_{U_{i}} \rightarrow \mathcal{G}\right|_{U_{i}}$, which is an isomorphism because $\psi_{i}$ and $\tau_{i}$ are isomorphisms. Note that for any $i, j \in I$,

$$
\begin{gathered}
\left.f_{i}\right|_{U_{i} \cap U_{j}}=\left.\left.\tau_{i}^{-1}\right|_{U_{i} \cap U_{j}} \circ \psi_{i}\right|_{U_{i} \cap U_{j}}=\left.\left(\left.\phi_{j i} \circ \tau_{j}\right|_{U_{i} \cap U_{j}}\right)^{-1} \circ \phi_{j i} \circ \psi_{j}\right|_{U_{i} \cap U_{j}}= \\
\left.\left.\tau_{j}\right|_{U_{i} \cap U_{j}} ^{-1} \circ \phi_{j i}^{-1} \circ \phi_{j i} \circ \psi_{j}\right|_{U_{i} \cap U_{j}}=\left.\left.\tau_{j}\right|_{U_{i} \cap U_{j}} ^{-1} \circ \psi_{j}\right|_{U_{i} \cap U_{j}}=\left.f_{j}\right|_{U_{i} \cap U_{j}}
\end{gathered}
$$

Recall that $X=\bigcup_{i \in I} U_{i}$ is an open cover. The $f_{i} \in \mathscr{H} o m(\mathcal{F}, \mathcal{G})\left(U_{i}\right)$ have the property that $\left.f_{i}\right|_{U_{i} \cap U_{j}}=$ $\left.f_{j}\right|_{U_{i} \cap U_{j}}$ for all $i, j \in I$, so because $\mathscr{H} \operatorname{om}(\mathcal{F}, \mathcal{G})$ is a sheaf (proven in Problem 2.1.15), there is a unique $f \in \mathscr{H} \operatorname{om}(\mathcal{F}, \mathcal{G})(X)$ such that $\left.f\right|_{U_{i}}=f_{i}$ for all $i \in I$.

For each $i \in I$, let $g_{i} \in \mathscr{H} \operatorname{om}(\mathcal{G}, \mathcal{F})\left(U_{i}\right)$ be $g_{i}=\psi_{i}^{-1} \circ \tau_{i}:\left.\left.\mathcal{G}\right|_{U_{i}} \rightarrow \mathcal{F}\right|_{U_{i}}$. By the same reasoning, there is a unique $g \in \mathscr{H}$ om $(\mathcal{G}, \mathcal{F})(X)$ such that $\left.g\right|_{U_{i}}=g_{i}$ for all $i \in I$.

Thus $g \circ f \in \mathscr{H} o m(\mathcal{F}, \mathcal{F})$ and $f \circ g \in \mathscr{H}$ om $(\mathcal{G}, \mathcal{G})$. For all $i \in I$, we have

$$
\begin{aligned}
& \left.(g \circ f)\right|_{U_{i}}=g_{i} \circ f_{i}=\operatorname{id}_{\mathcal{F}}^{\left.\right|_{U_{i}}}{ }=\left.\operatorname{id}_{\mathcal{F}}\right|_{U_{i}} \in \mathscr{H} \operatorname{Om}(\mathcal{F}, \mathcal{F})\left(U_{i}\right) \\
& \left.(f \circ g)\right|_{U_{i}}=f_{i} \circ g_{i}=\operatorname{id}_{\left.\mathcal{G}\right|_{U_{i}}}=\left.\operatorname{id}_{\mathcal{G}}\right|_{U_{i}} \in \mathscr{H} \text { om }(\mathcal{G}, \mathcal{G})\left(U_{i}\right)
\end{aligned}
$$

Because $\mathscr{H} o m(\mathcal{F}, \mathcal{F})$ and $\mathscr{H} \circ m(\mathcal{G}, \mathcal{G})$ are sheaves, we therefore have that $g \circ f=\mathrm{id}_{\mathcal{F}}$ and $f \circ g=\left.\mathrm{id}\right|_{\mathcal{G}}$. Thus $\mathcal{F}$ and $\mathcal{G}$ are isomorphic.

