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Abstract
We will answer the questions posed by Silverman in [1] about the sum-of-squares-of-digits function

as special cases in our study of analogous functions for other bases and exponents, and propose multiple
avenues for further research.

Notation and Preliminaries

In this paper, all objects will be elements of N unless stated otherwise, though we may explicitly state
an object’s membership in N for emphasis. For conciseness, given any set A and a map f : A → A, and
for an a ∈ A and an m ∈ N, we will write fm(a) to denote f(fm−1(a)), if m > 1, and f(a), if m = 1; it is
also occasionally convenient to say f0(a) = a. In other words, fm(a) denotes f applied to a, m times. We
will use the simple fact that fn(fm(a)) = fn+m(a) without proof. We will also need some definitions:

Definition 1. A cycle of a map f : A→ A is a finite, non-empty subset C ⊂ A with ∀ c1, c2 ∈ C, f(c1) ∈ C
and ∃m ∈ N : fm(c1) = c2.

Definition 2. A fixed point of a map f : A→ A is a cycle with one element. Equivalently, {a} is a fixed
point of f if f(a) = a.

Definition 3. An element a ∈ A reaches a cycle C under the map f : A→ A if ∃m ∈ N : fm(a) ∈ C.

Definition 4. If a ∈ A reaches a cycle C under the map f : A→ A, then the preperiod of a is defined to
be min{m ∈ N ∪ {0} : fm(a) ∈ C}.

Finally, recall the system of base representation for natural numbers; for a b ∈ N, b ≥ 2, the base, we
can examine combinations

∑k
i=0 aib

i of the powers of b, whose coefficients ai are called digits when each
0 ≤ ai < b. We will assume throughout this paper the elementary result that every n ∈ N has a unique
representation in any base b, that is, n =

∑k
i=0 aib

i for a unique collection of digits 0 ≤ ai < b. In such a
representation, k = blogb(n)c.

Introduction to Problem

In [1], the function F is given as F (n) = the sum of the squares of the digits of n, where we are implicitly
using the digits of n in base 10. In more precise terms,

Definition 5. F : N→ N is the map taking n =
∑k

i=0 ai10i to F (n) =
∑k

i=0 a
2
i , where k = blog10(n)c and

each ai is an integer 0 ≤ ai < 10.

The sequence F 0(n), F 1(n), F 2(n), . . . is the subject of our investigation. One initial observation is
that, because F (1) = 1, {1} is a fixed point of F . The specific questions we are charged with are

• Are there infinitely many numbers n which reach {1} under F?
• Are there infinitely many numbers n which don’t reach {1} under F?
• For those n which don’t reach {1} under F , what does the sequence F 0(n), F 1(n), F 2(n), . . . do?

Due to space considerations we will go straight to a more general formulation.

Statement of General Problem

Let b, e ∈ N, with b ≥ 2. We will generalize the above function F to consider bases other than 10, and
exponents for the digits other than 2, as follows:

Definition 6. Fb,e(n) : N→ N is the map taking n =
∑k

i=0 aib
i to

∑k
i=0 a

e
i , where k = blogb(n)c and each

ai is an integer 0 ≤ ai < b.

1The author was supported by a grant from his father.



From this definition, we have that F10,2 = F . We also have that {1} is a fixed point of Fb,e for all b
and e, because the representation of 1 base b is “1” for all bases b, and 1e = 1, so that Fb,e(1) = 1. Some
of the questions about Fb,e we will be approaching are generalizations of the ones posed in [1]; others are
new. Given some b and e,

• Do all n reach a cycle under Fb,e?
• If n reaches a cycle under Fb,e, how long is its preperiod?
• For each cycle of Fb,e - in particular, {1} - are there infinitely many n that reach it?
• How many cycles of Fb,e are there? What lengths can the cycles of Fb,e have?
• How many fixed points of Fb,e are there? How many digits do the fixed points of Fb,e have?
• What else can be said about the action of Fb,e?

Results

We first introduce some basic results that rigorize our intuition about cycles.

Proposition 1. If a ∈ A has a ∈ C for some cycle C, then fm(a) ∈ C for all m ∈ N.

Proof. We proceed by induction. By the definition of a cycle, if a ∈ C, then f(a) = f1(a) ∈ C; this is the
base case. Suppose that if a ∈ C, then f i(a) ∈ C for 1 ≤ i ≤ k. Then apply the base case to fk(a) ∈ C to
see that f(fk(a)) = fk+1(a) ∈ C. Thus, fm(a) ∈ C for all m ∈ N.

Proposition 2. If C1 and C2 are two distinct cycles of f : A→ A, then C1 and C2 are disjoint.

Proof. We prove the contrapositive. Suppose a ∈ C1 and a ∈ C2, but that ∃ c ∈ C1 which c /∈ C2. Because
c ∈ C1, we have c = fm(a) for some m ∈ N by the definition of cycle. But by Proposition 1, fm(a) ∈ C2 as
well because a ∈ C2; contradiction. Thus if two cycles C1 and C2 share one element a, then C1 = C2.

Proposition 3. If a ∈ A reaches a cycle C under f : A→ A, then a reaches no cycle other than C.

Proof. Suppose a ∈ A reached both C1 and C2. Then ∃m1 ∈ N : fm1(a) ∈ C1 and ∃m2 ∈ N : fm2(a) ∈ C2.
Without loss of generality, m1 ≤ m2. If m1 = m2, then fm2(a) ∈ C1 and fm2(a) ∈ C2, and so by
Proposition 2, C1 = C2. If m1 < m2, then fm2−m1(fm1(a)) = fm2(a) ∈ C1 by Proposition 1, so once again
fm2(a) ∈ C1 and fm2(a) ∈ C2, and so by Proposition 2, C1 = C2.

Proposition 4. For each m ∈ N, a ∈ A reaches a cycle C under f : A→ A iff fm(a) reaches C.

Proof. We proceed by induction. If a ∈ A reaches C, then ∃n ∈ N : fn(a) ∈ C. If n > 1, then
fn(a) = fn−1(f(a)) ∈ C, and so f(a) reaches C; if n = 1, then f1(a) = f(a) ∈ C, and by definition of a
cycle, f(f(a)) ∈ C, so that f(a) reaches C. Thus, if a reaches C, then f(a) reaches C. Conversely, if f(a)
reaches C, then ∃n ∈ N : fn(f(a)) ∈ C. Thus fn+1(a) ∈ C, and thus a reaches C. Therefore, we have
a reaches C iff f(a) reaches C. Now, suppose a reaches C iff f i(a) reaches C, for each 1 ≤ i ≤ k. Then
apply the base case to fk(a) to see that a reaches C iff fk(a) reaches C iff f(fk(a)) = fk+1(a) reaches C.
Thus, for each m ∈ N, a reaches C iff fm(a) reaches C.

The ordering of N allows us to draw much stronger conclusions. The following is our key theorem.

Theorem 1. Suppose a map g : N→ N satisfies ∃n0 ∈ N : ∀n ∈ N, n > n0, g(n) < n. Then

1. Every n reaches exactly one cycle of g.

2. There are at most n0 cycles of g.

3. Each cycle is at most M long, where M = max{g(n) : n ≤ n0}.

4. The preperiod of n is at most M + max{0, n− n0}.



Proof. Choose any n ∈ N. First, we will show that ∃m ∈ N ∪ {0} : gm(n) ≤ n0 (that is, either n ≤ n0

or ∃m ∈ N : gm(n) ≤ n0). If n ≤ n0, we are done; so suppose n > n0. Consider the numbers
n = g0(n), g1(n), g2(n), . . . , gn−n0(n). If all of these numbers were greater than n0, then by hypothe-
sis, for each 1 ≤ i ≤ n − n0, gi(n) < gi−1(n), or equivalently, gi(n) ≤ gi−1(n) − 1. Combining these
inequalities, we have gi(n) ≤ g0(n) − i = n − i. But if this were true for each 1 ≤ i ≤ n − n0, then
gn−n0(n) ≤ n− (n− n0) = n0; contradiction. Thus, for any n ∈ N, either n ≤ n0 or ∃m ∈ N : gm(n) ≤ n0,
and we can combine these statements by saying that gm(n) ≤ n0 for some 0 ≤ m ≤ max{0, n− n0}.

Now we will prove that if n ≤ n0, then gm(n) ≤ M for all m ∈ N. We proceed by induction. For
any n ≤ n0, g(n) ≤ M by our choice of M . Suppose that for all n ≤ n0, gi(n) ≤ M for all 1 ≤ i ≤ k.
If gk(n) ≤ n0, then g(gk(n)) = gk+1(n) ≤ M , once again by our choice of M ; if gk(n) > n0, then
gk+1(n) = g(gk(n)) < gk(n) ≤ M by our choice of n0. Thus if n ≤ n0, then gm(n) ≤ M for all m ∈ N.
But this means that, for any n ≤ n0, there is at least one repeat gi(n) = gj(n), i < j among the numbers
g1(n), g2(n), . . . , gM+1(n) because each is an integer between 1 and M . Choose any repeat among these
for which j − i is minimal; it will necessarily have gi(n) 6= gk(n) for i < k < j, by minimality. Then
C = {gi(n), gi+1(n), . . . , gj−1(n)} is a cycle with j − i elements, because for i ≤ k < j − 1, g(gk(n)) =
gk+1(n) ∈ C, and g(gj−1(n)) = gj(n) = gi(n) ∈ C, so that for all gk(n) ∈ C, gk+1(n) ∈ C; and because for
any i ≤ i + a < j and any i ≤ i + b < j, gj−i−a+b(gi+a(n)) = gj+b(n) = gb(gj(n)) = gb(gi(n)) = gi+b(n),
so for any gi+a(n), gi+b(n) ∈ C, ∃m ∈ N: gm(gi+a(n)) = gi+b(n). Thus C satisfies the definition of cycle.
Clearly, n reaches C under g because gi(n) ∈ C, and by Proposition 3, this is the only cycle n goes to.
Thus, we have shown that every n ≤ n0 reaches exactly one cycle. But we have also proven that every
n ∈ N has some 0 ≤ m ≤ max{0, n− n0} for which gm(n) ≤ n0, and by Proposition 4, n reaches whatever
cycle gm(n) does; thus every n ∈ N reaches exactly one cycle of g.

The other parts of the theorem follow easily from our construction above. Because for every n ∈ N
there is an x ≤ n0 which reaches the same cycle as n, the set of cycles which the numbers less than n0

reach necessarily comprises all the cycles any n ∈ N can reach. The “worst case scenario” is if each x ≤ n0

has a distinct cycle, in which case there would be n0 cycles; if some of the numbers ≤ n0 share a cycle,
there are less than n0 cycles. Similarly, because all cycles of g are necessarily subsets of {1, 2, . . . ,M} (by
our construction), the longest one could possibly be is M . Finally, our construction showed that it takes at
most 0 ≤ m ≤ max{0, n− n0} applications of g to n to reach a number ≤ n0; after that point, the “worst
case scenario” would be that the only cycle is a single fixed point c, and that we would have to go through
all M − 1 of the other numbers ≤ M before we reached it. Thus, it takes at most M + max{0, n − n0}
applications of g to n to reach its cycle.

Theorem 2. For all b, e ∈ N, b ≥ 2, ∃n0 ∈ N : ∀n ∈ N, n > n0, Fb,e(n) < n. Thus, Fb,e has all the
properties described in Theorem 1.

Proof. Fix some b, e ∈ N, b ≥ 2. Recall that for n =
∑k

i=0 aib
i, Fb,e(n) =

∑k
i=0 a

e
i , where k = blogb(n)c.

We want to find an n0 such that, for all n > n0, n =
∑k

i=0 aib
i >

∑k
i=0 a

e
i = Fb,e(n). Because each ai has

0 ≤ ai < b, if we find an n0 such that for all n > n0, n =
∑k

i=0 aib
i >

∑k
i=0 b

e, that n0 would certainly
have n > Fb,e(n) for all n > n0. Because k = blogb(n)c, this is equivalent to n > (blogb(n)c + 1)be; we
can drop the b c, because doing so only makes the condition for n0 stronger; thus, we want a point n0 for
which n

logb(n)+1 > be for all n > n0. Because the left side is monotonically increasing and unbounded and
the right side is just a constant, there is obviously such an n0.

Definition 7. Define the function n0(b, e) to be the least m ∈ N for which m
logb(m)+1 > be.

Remark. Note that n0(b, e) is not the least number m with the property that n > Fb,e(n) for all n > m,
because we replaced the digits with b’s and so our answer is larger than necessary. There is also no
elementary expression for n0(b, e) - an analytic solution requires the Lambert W-function - but Mathematica
is able to provide a good numerical approximation.



Thus, to find all cycles of Fb,e, we simply have Mathematica compute the bound n0(b, e), and find which
cycles the numbers less than n0(b, e) reach. I wrote a Mathematica program to do this2, and it determined
for b = 10, e = 2 that n0 = 356 and M = 166. It then found the only cycles reached by numbers less than
356 were {1} and {4, 16, 37, 58, 89, 145, 42, 20} (certainly consistent with Theorem 1’s upper bound of 356
cycles, and upper bound of cycles having 166 elements), and by Theorem 1, these are the only cycles of
F10,2, and every n ∈ N reaches one or the other. Also by Theorem 1, the preperiod of n under F10,2 is
at most 166 + max{0, n − 356}. Given any other choice of b and e, we can do these calculations, though
because this is only an algorithm, there is no “formula” in terms of b and e.

We now present some results on fixed points3 for the case of e = 2.

Proposition 5. If b ∈ N, b ≥ 2 is odd, then Fb,2 has at least 3 fixed points.

Proof. Besides the fixed point 1, which is fixed for any base b, if b = 2r+1 for some r ∈ N, then rb+(r+1)
and (r+1)b+(r+1) are fixed points because r2 +(r+1)2 = 2r2 +2r+1 = r(2r+1)+(r+1) = rb+(r+1)
and (r + 1)2 + (r + 1)2 = 2r2 + 4r + 2 = (r + 1)(2r + 1) + (r + 1) = (r + 1)b+ (r + 1), respectively.

We can actually vastly generalize such an analysis, via the following theorem:

Theorem 3. For all b ∈ N, b ≥ 2, a fixed point n of Fb,2 has either that n = 1, or that n has 2 base-b
digits. There are an odd number of fixed points of Fb,2. There are at most b2 − b+ 1 fixed points of Fb,2.

Proof. First, we check this for b = 2, 3, 4. By following the approach outlined above, Mathematica deter-
mined that the only cycle of F2,2 is {1}; that the only cycles of F3,2 are {1}, {5}, {8}, {2, 4}; and that the
only cycle of F4,2 is {1}. Written in their respective bases, the fixed points of the above are 1 for b = 2;
1, 12, 22 for b = 3; and 1 for b = 4. Thus, we can see that there are an odd number of fixed points of Fb,2

for b = 2, 3, 4, and that other than 1, each fixed point has 2 base-b digits. Now, we assume b > 4. Note that
n0 = b3 works as a bound in Theorem 2, because b3

3+1 > b2 (since b > 4). Thus, any fixed points of Fb,2 will
have to be ≤ b3. b3 itself is not a fixed point, because Fb,2(b3) = 12 +02 +02 +02 = 1; thus any fixed points
of Fb,2 have to be < b3, i.e. have at most 3 base-b digits. Suppose a2b

2 + a1b+ a0 were a fixed point, with
a2 6= 0 and each 0 ≤ ai < b. Then a2b

2 +a1b+a0 = a2
2 +a2

1 +a2
0, so that a2(b2−a2)+a1(b−a1) = a0(a0−1).

The term a2(b2− a2) ≥ (b2− 1) because the derivative of a2(b2− a2) is positive on the interval (0, b) (since
b > 4), so that the minimum value of a2(b2 − a2) is given by the minimum value of a2, which is 1. In
addition, the term a1(b− a1) ≥ 0 by a similar analysis (the difference being that a1 could be 0). However,
the term a0(a0 − 1) is at most (b− 1)(b− 2), because a0(a0 − 1) reaches its maximum value for the max-
imum value of a0, which is b − 1. Thus the left side of the equation is ≥ (b2 − 1), and the right side is
≤ (b − 1)(b − 2); contradiction. Thus, no fixed points of Fb,2 have 3 base-b digits, so fixed points of Fb,2

can only have either 1 or 2 base-b digits. If 0 ≤ a0 < b is a fixed point, then a0 = Fb,e(a0) = a2
0; thus

the only fixed point with 1 base-b digit is 1, and thus all other fixed points of Fb,2 must have 2 base-b digits.

Now, suppose a1b+ a0 is a fixed point of Fb,2 with a1 6= 0 and 0 ≤ a0, a1 < b; then (b− a1)b+ a0 is also
a fixed point, because Fb,2((b− a1)b+ a0) = (b− a1)2 + a2

0 = b2− 2a1b+ a2
1 + a2

0 = b2− 2a1b+ (a1b+ a0) =
(b−a1)b+a0. This suffices to show that there are an even number of fixed points with 2 base-b digits if we
can prove that there are no fixed points with a1 = b− a1, i.e. b = 2a1. If a1(2a1) + a0 were a fixed point,
then a1(2a1)+a0 = a2

1+a2
0, so that a2

1 = a0(a0−1), but a0 and a0−1 cannot both be squares; contradiction.
Thus, we can pair off fixed points having 2 base-b digits (pairing each a1b + a0 with (b − a1)b + a0) and
combined with the fixed point 1, we have shown there are an odd number of fixed points of Fb,2. Finally,
if every number with 2 base-b digits, and 1, were fixed points, we would have (b− 1)b+ 1 = b2− b+ 1 fixed
points (because there are (b− 1)b numbers with 2 base-b digits); thus there are at most that many.

2The code I wrote to investigate this project can be found here: http://zatomics.googlepages.com/projectcode.nb
3For notational convenience, we will identify the fixed point {n} with its element, n.



Theorem 4. Given any b, e ∈ N, b ≥ 2, for all cycles C of Fb,e, ∃ infinitely many m ∈ N : m reaches C.

Proof. We can actually prove something much stronger: for all n, b, e ∈ N, b ≥ 2, ∃ infinitely many
m ∈ N : Fb,e(m) = n (thus, choosing any c ∈ C, there are infinitely many m ∈ N : Fb,e(m) = c and so
infinitely many m ∈ N which reach C in a single application of Fb,e). We simply construct infinitely many.
Let h(b, n, x) =

∑n−1
i=0 b

x+i. Written in base b, this number is a string of n 1’s followed by x 0’s. Thus, we
have Fb,e(h(b, n, x)) = 1e + · · ·+ 1e︸ ︷︷ ︸

n

+ 0e + · · · 0e︸ ︷︷ ︸
x

= n for all x ≥ 0.

In particular, infinitely many numbers reach both {1} and {4, 16, 37, 58, 89, 145, 42, 20} under F10,2.
Using a similar style of clever reasoning, we can prove
Proposition 6. For all n, e ∈ N, ∃ infinitely many b ∈ N, b ≥ 2 : n reaches {1} under Fb,e.

Proof. We construct infinitely many. Let b(n, e, x) = nex
. We have that nei

< b(n, e, x) for all 0 ≤
i < x, so Fb(n,e,x),e(n) = ne because n is represented by a single digit in base b(n, e, x) (namely, itself);
similarly, F 2

b(n,e,x),e(n) = Fb(n,e,x),e(ne) = ne2
because ne is represented by a single digit; we continue until

we get F x
b(n,e,x),e(n) = nex

= b(n, e, x), which is the first point at which we get a number whose base
b(n, e, x) representation isn’t just itself considered as a digit - instead, the base b(n, e, x) representation of
F x

b(n,e,x),e(n) = b(n, e, x) is “10”, so that F x+1
b(n,e,x),e(n) = 1e + 0e = 1. Thus, for any n, e ∈ N, n reaches {1}

under Fb(n,e,x),e for all x ≥ 0.

We have answered all the questions we stated at the beginning; here are some more ideas.

Suggested Topics For Further Exploration

• Asymptotic density of n which reach a given cycle of Fb,e? I ran a Mathematica evaluation of the
numbers less than 1,000,000 under F10,2, which determined that approximately 13.3% went to {1}.
• Mixed-radix representations? Zeckendorf (Fibonacci) representation? These representation systems

can likely be tackled by the analysis in this work. In particular, I hypothesize that in a mixed-radix
system where bi is the least radix used and bj is the greatest, all we need to do to prove an analogous
version of Theorem 2 is to use logbi

(n) as an upper bound of the number of digits and bj as an upper
bound on the size of each digit.

• Balanced base 2b+1 representations? This works similarly to base 2b+1, but it allows digits ai from
−b ≤ ai ≤ b instead of from 0 ≤ ai ≤ 2b. Thus, if e is odd, it may very well happen that the sum
of the eth powers of the digits is negative, in which case we would need to expand the scope of our
function to all of Z.

• Negative exponents e? For example, e = −1 would yield the sum of the reciprocals of the digits. For
negative e, we would need to work in Q∪{∞}, because we would need to have multiplicative inverses
of the digits, and if the sum of their eth powers yielded a non-terminating base-b representation (e.g.
3 maps to 0.1 under F10,−2), the next step would be an infinite sum.

• Other functions of the digits, besides power sums? It would appear from our work that the analytic
properties of the function, such as the existence of a bound like the one described in Theorem 1,
are very important. Thus, it seems unlikely that applying number theoretic functions (ϕ, σ, etc.)
to the digits would yield much insight, while polynomial functions seem more promising. In par-
ticular, I wonder if there might be a distinct difference in the action of symmetric polynomials vs.
non-symmetric polynomials of the digits.

• Any application to Benford’s Law? This concerns the leading digits in naturally occuring data.

References

[1] Joseph H. Silverman, MATH 1560 Research Project, Homework Assignments 1 (Mar 2009), no. 1, 1–2.


