
Set 1.

Please study the following Problems 1-10 by January 18 (Friday).

In Problems 1-10, let X be a compact Hausdorff space and let A be the ring of
all C-valued continuous functions on X. We consider how X is reflected in A and
how A is reflected in X like the relation of a flower and its image in the water.

For a subset S of X, let I(S) be the ideal {f ∈ A | f(p) = 0 for all p ∈ S} of A.
For a subset E of A, let V (E) be the closed subset {p ∈ X | f(p) = 0 for all f ∈ E}
of X.

1. Prove that if S is a subset of X, then V (I(S)) = S̄ where S̄ is the closure of
S.

(You can use the following property of a compact Hausdorff space X. Let C be
a closed subset of X and let p ∈ X, p /∈ C. Then there is f ∈ A such that f(p) = 1
and f has value 0 at any point of S.)

2. Prove that for a subset S of X, S is closed if and only if there is an ideal I of
A such that S = V (I).

3. Prove that if I is an ideal of A such that V (I) = ∅, then I = A.
This is not easy to prove. Here is a suggestion for the proof. Note that

∩ni=1V (fi) = V (f1f̄1 + · · · + fnf̄n) for f1, · · · , fn ∈ A, and use the assumption
∩f∈IV (f) = V (I) = ∅ and the compactness of X. Here V (f) for f ∈ A means
V ({f}) (i.e. V of the subset {f} of A), and f̄ denotes the function on X

p 7→ the complex conjugate of f(p).

4. Prove that the map X → max(A) ; p 7→ {f ∈ A | f(p) = 0} is bijective. Here
max(A) denotes the set of all maximal ideals of A.

Suggestion for the proof. To get the surjectivity of this map, apply Problem 3
to a maximal ideal I of A. For the injectivity, use Problem 1.

5. Let HomC(A,C) be the set of all ring homomorphisms over C. Prove that the
map

X → HomC(A,C)

is bijective.
Here the meaning of ”ring homomorphism over C” is the following. Let k be

a commutative ring. A commutative ring over k is a commutative ring endowed
with a fixed ring homomorphism form k. For commutative rings R1, R2 over k,
a ring homomorphism ϕ : R1 → R2 is called a ring homomorphism over k if the
composition k → R1

ϕ→ R2 of ϕ and the fixed k → R1 coincides with the fixed
k → R2.

Suggestion for the proof for Problem 5. You can use the fact that the map
X → max(A) ; p 7→ {f ∈ A | f(p) = 0} is bijective.
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6. Let Y be another compact Hausdorff space and let B be the ring of all C-
valued continuous functions on Y . Let ϕ : A→ B be a ring homomorphism over C.
Prove that there is a unique continuous map Φ : Y → X such that ϕ(f) = f ◦Φ for

any f ∈ A. Here f ◦ Φ denotes the composition Y
Φ→ X

f→ C.
(Remark: Using the terminology of category theory, this can be said as follows.

The contravariant functor

{Compact Hausdorff spaces} → {Commutative rings over C} ;

X 7→ {continuous C-valued functions on X}

is fully faithful. )

7. In Problem 6, prove that ϕ : A → B is injective if and only if Φ : Y → X is
surjective.

8. In Problem 6, prove that ϕ : A→ B is surjective if and only if Φ : Y → X is
injective. (You can use the property of a compact Hausdorff space X that a C-valued
continuous function on a closed subset C of X extends to a C-valued continuous
function on X.)

9. Prove that X is connected if and only if there is no f ∈ A such that f 2 = f ,
f 6= 0, f 6= 1.

10. Assume X is a finite set. Prove that S 7→ I(S) is a bijection from the set of
all subsets of X to the set of all ideals of A, and that J 7→ V (J) (here J is an ideal
of A) is the inverse map of this bijection.

Suggestion for the proof. You can use the fact that for a product A1 × A2 of
commutative rings (the addition and the multiplication are component-wise), any
ideal of A1 × A2 has the form I1 × I2 where I1 is an ideal of A1 and I2 is an ideal
of A2. As a commutative ring, A in Problem 10 is isomorphic to the product of n
copies of C where n is the order of the finite set X.
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Set 2.

Please study the following Problems 11–20 by January 25 (Friday).
This time, we consider integer solutions of algebraic equations by thinking about

the friends (Z[
√

2], Z[
√
−2], · · · ) of Z.

In Problems 11-16, we consider integer solutions of algebraic equations like x3 =
y2 + 2. Let m be an even integer such that m < 0 and such that m is not divisible
by r2 for any integer r > 1. It is known that the integer ring of Q(

√
m) is Z[

√
m].

11. Prove that if p is a prime number which divides m, then (p,
√
m) is a

maximal ideal of Z[
√
m]. (Hint for the proof. Recall that for an ideal I of a

commutative ring R, I is a maximal ideal if and only if R/I is a field. By using
Z[
√
m] ∼= Z[T ]/(T 2 −m), where T corresponds to

√
m in this isomorphism, prove

that Z[
√
m]/(p,

√
m) is isomorphic to the field Fp = Z/pZ.)

In Problems 12-13, let a be an integer and assume that any prime divisor of a is
a prime divisor of m. We consider integer solutions of x3 = y2 − a2m by using the
method explained in the course.

12. Assume x, y ∈ Z, x3 = y2 − a2m. Prove that (y + a
√
m) = I3 for some

non-zero ideal I of Z[
√
m].

13. Assume x, y ∈ Z, x3 = y2−a2m and assume that the class number of Q(
√
m)

is not divisible by 3. Prove that y + a
√
m = α3 for some α ∈ Z[

√
m]. (You can use

the fact Z[
√
m]× = {±1}.)

14. By using the fact the class number of Q(
√
−2) is 1, prove that all integer

solutions of x3 = y2 + 2 are given by (x, y) = (3,±5).
(Remark. Fermat gave all integer solutions of x3 = y2 + 2, and also all integer

solutions of x3 = y2 + 4 explained in the course.)

15. By using the fact the class number of Q(
√
−6) is 2, prove that all integer

solutions of x3 = y2 + 54 are given by (x, y) = (7,±17).

16. By using the fact the class number of Q(
√
−14) is 4, prove that all integer

solutions of x3 = y2 + 56 are given by (x, y) = (18,±76).

In Problems 17-20, we consider integer solutions of algebraic equations like x2−
2y2 = ±1.

17. Prove that there is a bijection between the two sets Z[
√

2]× and {(x, y) ∈
Z× Z | x2 − 2y2 = ±1} given by x+ y

√
2↔ (x, y) (x, y ∈ Z).

18. For x + y
√

2 ∈ Z[
√

2]× (x, y ∈ Z), prove that x + y
√

2 > 1 if and only if
x > 0 and y > 0. Using the fact (x, y) = (1, 1) is the smallest integer solution of
x2 − y2 = ±1 such that x > 0 and y > 0, prove that 1 +

√
2 is the smallest element

of Z[
√

2]× which is > 1.

19. By using Problems 17 and 18, prove that Z[
√

2]× = {±(1 +
√

2)n | n ∈ Z}.
20. Prove that Z[

√
3]× = {±(2 +

√
3)n | n ∈ Z}.
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Dear first year students,

One of you told me that Problem 12 of Set 2 is hard. I completely agree because I was already
worrying that it was hard when I sent the problem to you. I hope to write a hint. I am sorry if you
solved that problem already without a hint.

It seems that it is necessary to prove the following (1).

(1) If p is a maximal ideal which contains 2a
√
m, p coincides with (p,

√
m) for some prime divisor

p of m.

It seems that (1) is divided into the following (2) and (3).

(2) If p is a prime divisor of m and if p is a maximal ideal which contains p, then p = (p,
√
m).

(3) If p is a maximal ideal which contains
√
m, then p = (p,

√
m) for some prime divisor p of m.

For (2), think about maximal ideals of

Z[
√
m]/(p) = Z[T ]/(T 2 −m, p) = Fp[T ]/(T

2).

For (3), similarly think about maximal ideals of

Z[
√
m]/(

√
m) = Z[T ]/(T 2 −m,T ).

Best regards, Kazuya
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Set 3.

Please study the following Problems 21-30 by February 1 (Friday).
This time, we consider problems related to decompositions of prime numbers in

the integer ring of a quadratic fields.
A maximal ideal of OK for a number field K is nothing but a non-zero prime

ideal of OK . In number theory, people usually call a maximal of OK just a prime
ideal, not putting non-zero. I will follow them.

21. Using the uniqueness of the prime factorization in Z[i], prove that if

tan(α) = 1, tan(β) = 3/2, tan(γ) = 2,

then α, β, γ are linearly independent over Q.

22. Let p be a prime number and assume p 6= 2, 3. Using
(

3
p

)
=

(
p
3

)
· (−1)

p−1
2 (a

special case of the quadratic reciprocity law), prove the following. If p ≡ 1, 11 mod
12, (p) in Z

√
3] decomposes into the product of two different prime ideals. If p ≡

5, 7 mod 12, p is a prime element in Z[
√

3].

23. By using the fact Z[
√

3] is a PID, prove that for a prime number p 6= 2, 3,
p = ±(x2 − 3y2) for some x, y ∈ Z if p ≡ 1, 11 mod 12, and that p can not be
expressed in that way if p ≡ 5, 7 mod 12.

24. Let p be a prime number and assume p 6= 2. Computing
(−2

p

)
and using the

fact Z[
√
−2] is a PID, prove that p = x2 + 2y2 for some x, y ∈ Z if p ≡ 1, 3 mod 8,

and that p can not be expressed in that way if p ≡ 5, 7 mod 8.

25. Let p be a prime number and assume p 6= 2. Computing
(

2
p

)
and using the

fact Z[
√

2] is a PID, prove that p = x2 − 2y2 for some x, y ∈ Z if p ≡ 1, 7 mod 8,
and that p can not be expressed in that way if p ≡ 3, 5 mod 8. (You may think
that p = ±(x2 − 2y2) appears. That is correct, but improve it to p = x2 − 2y2 by
multiplying x+ y

√
2 by the unit 1 +

√
2 if necessary.)

26. (Problems 26 and 27 arise from the fact that the part [improve it ....] in
Problem 25 does not work for Z[

√
3]. It is because (2 +

√
3)(2 −

√
3) = 1 whereas

(1 +
√

2)(1 −
√

2) = −1.) Let p be a prime number, and assume p 6= 2, 3. Prove
that if p = x2 − 3y2 (x, y ∈ Z), then p ≡ 1 mod 12. Prove that if p = −(x2 − 3y2)
(x, y ∈ Z), then p ≡ 11 mod 12.

27. By using 22 and 26, prove that for a prime number p 6= 2, 3, p = x2 − 3y2

for some x, y ∈ Z if and only if p ≡ 1 mod 12.

28. Let p be a prime number and assume p 6= 2, 5. The quadratic reciprocity
law tells that

(−5
p

)
is 1 if p ≡ 1, 3, 7, 9 mod 20 and is −1 if p ≡ 11, 13, 17, 19 mod 20.

One thing which did not appear in Problems 21–27 is that the integer ring Z[
√
−5]

of Q(
√
−5) is not a PID. In Problem 28, assume p ≡ 1, 3, 7, 9 mod 20 and write

(p) = pp̄ for a prime ideal p of Z[
√
−5]. Here p̄ is the complex conjugate of p. In
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this Problem 28, assume further that p is a principal ideal. Prove that p = αᾱ for
some α ∈ Z[

√
−5]. Prove that p ≡ 1, 9 mod 20.

29. As in Problem 28, assume p ≡ 1, 3, 7, 9 mod 20 and write (p) = pp̄, and
assume this time that p is not a principal ideal. Let a = (2, 1 +

√
−5) which is not a

principal ideal. Note that by the fact the class number of Q(
√
−5) is 2, we see that

ap is a principal ideal. By using the fact (2) = aā (= a2), prove that 2p = αᾱ for
some α ∈ Z[

√
−5]. Prove that p ≡ 3, 7 mod 20.

30. By using Problems 28 and 29, prove that for a prime number p 6= 2, 5,
p = x2 + 5y2 for some x, y ∈ Z if and only if p ≡ 1, 9 mod 20.
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Set 4

Please study the following Problems 31-40 by February 8 (Friday).

As in my course on February 1 (Friday), for a finitely generated commutative
ring A over Z, the Hasse zeta function of A is defined by

ζA(s) =
∏
m

(1− ](A/m)−s)−1

where m ranges over all maximal ideals of A.

31. Let Fq be a finite field consisting of q elements. As an analogue of the formula
for Rieman’s zeta function

ζ(s) = ζZ(s) =
∏
p

(1− p−s)−1 =
∞∑
n=1

1

ns

in which p ranges over all prime numbers, prove

ζFq [T ](s) =
∑
f

1

](Fq[T ]/(f))s

where f ranges over all monic polynomials in Fq[T ]. By using it, prove that

ζFq [T ](s) =
1

1− q1−s .

Remark. The analogue of Riemann’s hypothesis for ζFq [T ](s) is not interesting, for
this zeta function has no zero. In homeworks Set 5, you will see that the analogues
of Riemann’s hypothesis for ζA(s) are interesting for some friends A of Fq[T ].

Before I present Problem 32, I write something about ζ(s). For the fact there
exist infinitely many prime numbers, Euler gave the following analytic proof by using
two presentations (the additive presentation and the product presentation) of ζ(s).
We can prove that when s > 1 tends to 1, then

∑∞
n=1 n

−s tends to ∞. If there were
only finite number of prime numbers, when s > 1 tends to 1,

∏
p (1− p−s)−1 should

converge to
∏

p (1−p−1)−1 and would not tend to∞. Thus we have a contradiction
and hence there are infinitely many prime numbers.

32. By using Problem 31 and by using the method of Euler, prove that there are
infinitely many irreducible monic polynomials in Fq[T ].

33. For a commutative ring A which is finitely generated over Z, prove that
ζA[T1,...,Tn](s) = ζA(s− n). Here ζA(s) denotes the Hasse zeta function of A.

(This is a homework in algebra (not in analysis), and so please do not worry
here about the convergence of the infinite product. Precisely speaking, this problem
has sense if we already know that the (usually infinite) product ζA(s) converges
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absolutely when Re(s) is sufficiently large.) Suggestion of the proof. Use induction
on n and the result on ζFq [T ](s) in Problem 31.

34. By using Problem 33, prove that for any commutative ring A which is
finitely generated over Z, ζA(s) (as a product) converges absolutely when Re(s) is
sufficiently large.

Since this is a homework in algebra, it is fine that analytic arguments are not
perfectly precise.

Preparation for Problems 35.
A Dirichlet character is a homomorphism χ : (Z/NZ)× → C× where N is an

integer ≥ 1. For a Dirichlet character χ : (Z/NZ)× → C×, the Dirichlet L-function
L(s, χ) is defined as

L(s, χ) =
∑
n

χ(n)n−s

where n ranges over all integers ≥ 1 which are coprime to N (χ(n) means χ(n mod
N)). This infinite series converges when the real part Re(s) of the complex number s
is > 1. In the case N = 1 and χ is the trivial homomorphism, L(s, χ) is Riemann’s
zeta function ζ(s) =

∑∞
n=1 n

−s and so Dirichlet L-function is a generalization of
Riemann zeta function. Like Riemann zeta function, Dirichlet L-function has the
presentation as a product over prime numbers

L(s, χ) =
∏
p

(1− χ(p)p−s)−1

where p ranges over all prime numbers which do not divideN . L(s, χ) has an analytic
continuation to the whole C as a meromorphic function, and is holomorphic at any
s 6= 1. (In fact, if χ is not the trivial homomorphism, then L(s, χ) is holomorphic
also at s = 1.)

Example. In the case N = 1 and χ : (Z/4Z)× = {1, 3 mod 4} → C× is given by
χ(1) = 1 and χ(3) = −1, we have

L(s, χ) = 1− 1

3s
+

1

5s
− 1

7s
+

1

9s
− . . . .

We consider an analogue of Dirichlet L function for Fq[T ]. Let g ∈ Fq[T ], g 6= 0,
let χ : (Fq[T ]/(g))× → C× be a homomorphism, let c ∈ C×, and consider

(**) Lc(s, χ) =
∑
f

χ(f) · cdeg(f) · ](Fq[T ]/(f))−s

where f ranges over all monic polynomials in Fq[T ] which are coprime to g, and deg
means the degree. In the case c = 1, we will denote Lc(s, χ) just by L(s, χ).

We have the presentation Lc(s, χ) =
∏

h(1 − χ(h) · cdeg(h) · ](Fq[T ]/(h))−s)−1 as
product, where h ranges over all monic irreducible polynomials in Fq[T ] which do
not divide g.
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35. In the above (**), consider the case g = T and χ is not the trivial homo-
morphism. Prove Lc(s, χ) = 1.

Suggestion for the proof. Prove that if d ≥ 1,
∑

a1,...,ad∈Fq
χ(T d + a1T

d−1 + · · ·+
ad) = 0.

The fact there are infinitely many prime numbers p such that p ≡ 3 mod 4 is
proved as follows by using Dirichlet L-function. Consider the Dirichlet L-function
L(s, χ) where χ is as in the above Example before Problem 35. If there were only
finitely many prime numbers p such that p ≡ 3 mod 4, in the product presentation
of L(s, χ), almost all factors (1−χ(p)p−s)−1 (called the Euler factor at p) should be
(1 − p−s)−1, that is, ζ(s) and L(s, χ) would have the same Euler factors at almost
all p. Since ζ(s) diverges to ∞ when s > 1 tends to 1, L(s, χ) should diverge
to ∞ when s > 1 tends to 1. But it can be seen that when s > 1 and s → 1,
L(s, χ) = 1− 1/3s + 1/5s − 1/7s + 1/9s − 1/11s + · · · converges to 1− 1/3 + 1/5−
1/7 + 1/9− 1/11 + · · · = π/4 <∞. Contradiction. Hence there are infinitely many
prime numbers p such that p ≡ 3 mod 4. (The fact there are infinitely many prime
numbers such that p ≡ 1 mod 4 can be also proved by using this L(s, χ).)

36. By using Problem 35, prove that there are infinitely many irreducible monic
polynomials f ∈ F3[T ] whose constant term is 2 ∈ F3.

37. Prove that in the above (**), if g is of degree n and χ is not the trivial
homomorphism, Lc(s, χ) is a polynomial of q−s of degree < n.

38. By using the formula
(−1

p

)
= (−1)(p−1)/2 (p is a prime number 6= 2) which

appears in the story of quadratic reciprocity law and by considering maximal ideals
of Z[i]/(p) = Z[T ]/(T 2 + 1, p) = Fp[T ]/(T 2 + 1) for each prime number p, prove that

ζZ[i](s) = ζ(s)L(s, χ)

where ζ(s) is Riemann zeta function and χ is as in the above Example before Problem
35.

Preparation for Problem 39, 40.
The quadratic reciprocity law has the following analogue for the polynomial ring

Fq[T ] over a finite field Fq of q elements whose characteristic is not 2. This is one
example of the mysterious analogies between numbers and polynomials.

Let f, g ∈ Fq[T ] be irreducible monic polynomials and assume f 6= g. Then

( g
f

)
=
(f
g

)
· (−1)

q−1
2
·deg(f)deg(g).

Here for a ∈ Fq[T ] which is not divisible by f ,
(
a
f

)
is defined to be 1 if the image of

a in the field Fq[T ]/(f) is r2 for some element r of Fq[T ]/(f), and is defined to be
−1 otherwise. (We have

(
ab
f

)
=
(
a
f

)(
b
f

)
for a, b ∈ Fq[T ] which are not divisible by

f .)
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39. By using the above analogue of quadratic reciprocity law, prove that

ζF5[T,
√
T 3+1](s) = ζF5[T ](s)L(s, χ),

where χ is the homomorphism (F5[T ]/(T 3 + 1))× → C× defined by

χ(f mod T 3 + 1) =
( f

T + 1

)( f

T 2 − T + 1

)
.

40. Let Fq be a finite field of characteristic 6= 2 of order q, let g be a monic
polynomial in Fq[T ] of degree n ≥ 1 which is not divisible by h2 for any element
h ∈ Fq[T ] of degree ≥ 1, and let A = Fq[T,

√
g]. By using Problem 37 and the above

analogue of quadratic reciprocity law, prove that the Hasse zeta function of A has
the shape

ζA(s) = ζFq [T ](s)Lc(s, χ)

for some homomorphism (Fq[T ]/(g))× → {±1} ⊂ C× and for some c ∈ {±1}, and
prove that

ζA(s) =
a polynomial of q−s of degree < n

1− q1−s .
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1. Some of you had a difficulty in Problem 37. It is proved as follows. It is
sufficient to prove the following Claim.

Claim. Let g ∈ Fq[T ] be of degree n ≥ 1 and let χ : (Fq[T ]/(g))× → C× be a
non-trivial homomorphism. Then for any m ≥ n, we have∑

a0,...,am−1∈Fq

χ(Tm + am−1T
m−1 + · · ·+ a0) = 0.

Here χ(f) denotes χ(f mod g) if f is coprime to g, and denotes 0 otherwise.

We use the following two Lemmas.

Lemma 1. For any finite group G and for any non-trivial homomorphism χ :
G→ C×, we have

∑
a∈G χ(a) = 0.

Proof of Lemma 1. Take b ∈ G such that χ(b) 6= 1. Then
∑

a∈G χ(a) =∑
a∈G χ(ab) = χ(b)

∑
a∈G χ(a). This shows

∑
a∈G χ(a) = 0.

Lemma 2. For m ≥ n, the homomorphism of additive groups

(Fq)m → Fq[T ]/(g) ; (a0, . . . , am−1) 7→
m−1∑
i=0

aiT
i mod g

is surjective.

Proof of Lemma 2. The case m = n is well known (in that case, the map is
bijective). The general case follows from this case.

Proof of Claim. By applying Lemma 1 to the multiplicative group (Fq[T ]/(g))×,
we have

∑
h∈(Fq [T ]/(g))×

χ(h) = 0. Let k be the order of the kernel of the homomor-
phism of Lemma 2. By Lemma 2, the map

ν : (Fq)m → Fq[T ]/(g) ; (a0, . . . , am−1) 7→ Tm + am−1T
m−1 + · · ·+ a0 mod g

is surjective and for any element h of Fq[T ]/(g), the inverse image of h in (Fq)m
under ν has k elements. Hence∑

a0,...,am−1∈Fq

χ(Tm + am−1T
m−1 + · · ·+ a0) = k ·

∑
h∈(Fq [T ]/(g))×

χ(h) = 0.
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2. I forgot in the class to compare the following (1) and (2). This (2) is a nice
example of Langlands correspondence.

(1) ζZ[i](s) = ζ(s)L(s, χ),

(2) ζZ[ 3
√
2](s) = ζ(s)L(s, f).

(1) appeared in Homeworks: χ in (1) is a Dirichlet character (Z/4Z)× → C× de-
fined by χ(1) = 1, χ(3) = −1. This (1) tells that a prime number p 6= 2 decomposes
into two in Z[i] if and only if p ≡ 1 mod 4.

In (2),

f(z) = η(6z)(18z) = q

∞∏
n=1

(1− q6n)(1− q18n) (q = e2πiz)

and

L(s, f) =
∞∑
n=1

ann
−s

with an determined by

q
∞∏
n=1

(1− q6n)(1− q18n) =
∞∑
n=1

anq
n

= q− q7− q13− q19 + q25 + 2q31− q37 + 2q43− q61− q67− q73− q79 + q91− q97− q103...

(The proof of (2) is very hard and can not be given here.) This (2) tells that for a
prime number p 6= 2, 3, (p) in Z[ 3

√
2] decomposes into a product of three maximal

ideals if and only if ap = 2. (It is not very hard to see that (2) implies this,
but I do not explain it here.) For example, 31 decomposes into three in Z[ 3

√
2] as

31 = (3 + 3
√

2
2
)(3 + 3 3

√
2 + 3
√

2
2
)(3− 3 3

√
2 + 3
√

2
2
).

This f is a modular form and this is an example of Langlands correspondence
between arithmetic and modular forms. Langlands correspondence tells, roughly
speaking, that Hasse zeta functions are expressed by zeta functions of modular
forms. (Dirichlet character is regarded as a special case of a modular form).
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Set 5.

Please study the following Problems 41–50 by February 15 (Friday).
In Problems 41–43, you have examples of analogues of Riemann’s hypothesis for

friends (like F5[T,
√
T 3 + 1]) of Fq[T ].

Problems 44–46 are about analogues of quadratic reciprocity for Fq[T ].
Problems 47–50 are standard problems on commutative ring theory.

41. Let A = F5[T,
√
T 3 + 1]. By using Problem 39, prove that

ζA(s) =
1 + 51−2s

1− 51−s .

Prove Riemann hypothesis for this zeta function.

Comment for the proof. I am afraid that you may waste your precious time just
to compute χ(f) for χ in Problem 39. So I write here the result of my computation.
For a monic polynomial f in F5[T ] of degree < 3 which is coprime to T 3 + 1, χ(f)
is as follows.

χ(1) = 1,

χ(T ) = 1, χ(T + 2) = −1, χ(T + 3) = 1, χ(T + 4) = −1,

χ(T 2) = 1, χ(T 2 + 1) = −1, χ(T 2 + 2) = −1, χ(T 2 + 3) = 1,

χ(T 2 + T + 1) = 1, χ(T 2 + T + 2) = 1, χ(T 2 + T + 3) = 1, χ(T 2 + T + 4) = 1,

χ(T 2+2T ) = −1, χ(T 2+2T+2) = −1, χ(T 2+2T+3) = −1, χ(T 2+2T+4) = 1,

χ(T 2 +3T ) = 1, χ(T 2 +3T +1) = 1, χ(T 2 +3T +3) = −1, χ(T 2 +3T +4) = 1,

χ(T 2 + 4T ) = −1, χ(T 2 + 4T + 2) = 1, χ(T 2 + 4T + 4) = 1.

42. Let A = F3[T,
√
T (T − 1)(T − 2)]. Prove that

ζA(s) = ζFq [T ](s)L−1(s, χ) =
1 + 31−2s

1− 31−s ,

where χ is the homomorphism (F3[T ]/(g))× → C× with g = T (T −1)(T −2) defined
by

χ(f mod T (T − 1)(T − 2)) =
( f
T

)( f

T − 1

)( f

T − 2

)
and L−1(s, χ) is as in (**) before Problem 35.

Prove Riemann hypothesis for this zeta function.

Comment for the proof. I am a little afraid that you waste your precious time
just for the computation of χ(f) for Problem 42. But this time there are only four
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monic polynomials in F3[T ] of degree < 3 which are coprime to T (T − 1)(T − 2), so
the computation should be not so terrible. They are

1, T 2 + 1, T 2 + T + 2, T 2 + 2T + 2.

43. Let A = F5[T,
√
T (T − 1)(T − 2)]. Prove that

ζA(s) =
1 + 2 · 5−s + 51−2s

1− 51−s .

Prove Riemann hypothesis for this zeta function.

Comment for the proof. I am again afraid that you waste your precious time just
for the computation of χ(f) where χ : (F5[T ]/(g)× → C× with g = T (T − 1)(T − 2)
is defined by

χ(f mod T (T − 1)(T + 1)) =
( f
T

)( f

T − 1

)( f

T + 1

)
.

For a monic polynomial f in F5[T ] of degree < 3 which is coprime to T (T−1)(T+1),
χ(f) is as follows.

χ(1) = 1,

χ(T + 2) = 1, χ(T + 3) = 1,

χ(T 2 + 1) = 1, χ(T 2 + 2) = −1, χ(T 2 + 3) = −1,

χ(T 2 + T + 1) = −1, χ(T 2 + T + 2) = 1, χ(T 2 + T + 4) = 1,

χ(T 2 + 2T + 3) = 1, χ(T 2 + 2T + 4) = 1, ,

χ(T 2 + 3T + 3) = 1, χ(T 2 + 3T + 4) = 1,

χ(T 2 + 4T + 1) = −1, χ(T 2 + 4T + 2) = 1, χ(T 2 + 4T + 4) = 1.

44. Let k be a commutative field. For monic polynomials f, g ∈ k[T ] which are
coprime, let [ g

f
] ∈ k× be the image of

g mod f ∈ (k[T ]/(f))×

under the norm map (k[T ]/(f))× → k×. Prove

[
g

f
] = [

f

g
] · (−1)deg(f)deg(g).

Here for a commutative ring A over k which is finite dimensional as a k-vector
space, the norm map N : A → k is defined as follows. For a ∈ A, N(a) is the
determinant of the k-linear map A→ A ; x 7→ ax. In the case A is a field, N : A→ k
is the norm map which appears in the text book of field theory. If A is a field and is

11



a Galois extension of k, N(a) =
∏

σ∈G σ(a) where G is the Galois group Gal(A/k).
To prove 44, I suggest to reduce the problem to the case k is an algebraically closed
field, and write f = (T − a1) · · · (T − am) and g = (T − b1) · · · (T − bn), and suggest
to prove that [ g

f
] is equal to

∏
1≤i≤m,1≤j≤n(ai − bj).

45. Let Fq be a finite field of characteristic 6= 2 of order q. By using Problem
44, prove the analogue of the quadratic reciprocity law( g

f

)
=
(f
g

)
· (−1)

q−1
2
·deg(f)deg(g)

for monic irreducible polynomials f, g ∈ Fq[T ] such that f 6= g .

Suggestions for the proof. It may be helpful to use the following facts. (1) For a
finite field k of characteristic not 2, k×/(k×)2 is of order 2. Here (k×)2 = {x2 | x ∈
k×}. (2) For a finite field k and for a finite field K which is an extension of k,

the norm map K× → k× is surjective and induces an isomorphism K×/(K×)2
∼=→

k×/(k×)2.

46. Let Fq be a finite field, let n ≥ 1 be an integer, and assume that q − 1 is
divisible by 2n. By using 44, prove the following reciprocity law for n-th powers.

If f and g are monic polynomials over Fq such that f 6= g, f mod g is an n-th
power in the field Fq[T ]/(g) if and only if g mod f is an n-th power in the field
Fq[T ]/(f).

Grothendieck introduced the notation Spec(A) for the set of all prime ideals of
a commutative ring A, for it remained him of the spectrum of a linear operator.
Before he came to algebraic geometry, Grothendieck studied linear operators on
infinite dimensional vector spaces.

47. Let Mn(C) be the ring of all (n, n)-matrices over C and let ϕ ∈Mn(C). Let
A be the commutative subring of Mn(C) over C generated over C by ϕ. That is,

A = {a0 + a1ϕ+ a2ϕ
2 + · · ·+ anϕ

n | n ≥ 0, ai ∈ C}.

Prove that there is a bijection between Spec(A) and the set of all eigen values of ϕ.

(The set of all eigen values of ϕ is called the spectrum of ϕ.)

In the following Problems 48, 49, 50, we compare what happens for

(a) (X,A) where X is a compact Hausdorff space and A is the ring of C-valued
continuous functions on X

and what happens for

(b) (X,A) where A is any commutative ring and X = Spec(A).

We have the following facts (a1)–(a3) for (X,A) in (a).

(a1) For f ∈ A, f is invertible if and only if f(x) 6= 0 for any x ∈ X.

12



(a2) (This appeared in Problem 1.) For a subset S of X, let I(S) be the ideal
{f ∈ A | f(x) = 0 for any x ∈ S} of A. For an ideal J of A, let V (J) be the
closed subset {x ∈ X | f(x) = 0 for any f ∈ J} of X. Then for any subset S of X,
V (I(S)) coincides with the closure of S.

(a3) Let Y and Z be closed subsets of X. Assume Y ∩ Z = ∅. Then there
is a C-valued continuous function f on X such that f(x) = 0 for any x ∈ Y and
f(x) = 1 for any x ∈ Z.

In the following Problems 48, 49, 50, we consider the analogue of (a1), (a2),
(a3) for (X,A) in (b), respectively. For the Problems 48 and 50, you may use the
fact that if I is an ideal of a commutative ring A such that I 6= A, then there is a
maximal ideal m of A such that I ⊂ m.

48. Let (X,A) be as in the above (b). Let f ∈ A. Prove that the following
conditions (i)–(iii) are equivalent.

(i) f is invertible.

(ii) f(p) 6= 0 for any p ∈ Spec(A).

(iii) f(p) 6= 0 for any p ∈ max(A).

Here as in the course, f(p) for p ∈ Spec(A) denotes the image of f in the residue
field of p. (The residue field of p = the field of fractions Q(A/p) of the integral
domain A/p.)

49. Let (X,A) be as in the above (b). For a subset S of X, let I(S) be the
ideal {f ∈ A | f(x) = 0 for any x ∈ S} of A. For an ideal J of A, let V (J) be the
subset {x ∈ X | f(x) = 0 for any f ∈ J} of X. Recall that as in the course, Zariski
topology on X is defined by taking all subsets of X of the form V (J) (for ideals J
of A) as closed sets. Prove that for any subset S of X, V (I(S)) coincides with the
closure of S for Zariski topology.

50. Let (X,A) be as in the above (b). Let I and J be ideals of A. Assume
V (I) ∩ V (J) = ∅. Prove that I + J = A. Prove that there is f ∈ A such that
f(x) = 0 for any x ∈ V (I) and f(x) = 1 for any x ∈ V (J).

13



Set 6.

Please study the following Problems 51–60 by February 22 (Friday).

The following fact about Noetherian property may be useful for Problem 51. For
a commutative ring A, the following (i) and (ii) are equivalent. (i) A is Noetherian.
(ii) For any sequence I1, I2, I3, . . . of ideals of A such that I1 ⊂ I2 ⊂ I3 ⊂ . . . ,
there is n ≥ 1 such that In = In+1 = In+2 = . . . . The proof of (i) ⇒ (ii) is that
the ideal I := ∪n≥1In is finitely generated by the Noetherian assumption, and the
finite generators should belong to some In for n big enough, and I = In and hence
In = In+1 = In+2 = . . . . I omit the proof of (ii)⇒ (i).

51. Let A be a Noetherian integral domain. Let f be a prime element of A (this
means that f 6= 0 and the ideal (f) of A is a prime ideal). Prove that there is no
prime ideal p of A such that 0 ( p ( (f).

A suggestion for the proof: Assume such p exists. Take a non-zero element g of
p. By using the fact f /∈ p and by some argument, get g = g1f for some g1 ∈ A,
g1 = g2f for some g2 ∈ A, g2 = g3f for some g3 ∈ A, . . . , and use the Noetherian
property of A looking at the ideals (g) ⊂ (g1) ⊂ (g2), . . . of A.

52. Let A be a unique factorization domain (UFD; see below). Let p be a prime
ideal of A. Assume that there is no prime ideal q of A such that (0) ( q ( p. Prove
that p = (f) for some prime element f of A.

A suggestion for the proof. Take a non-zero element of p and consider the prime
factorization of it.

Remark. This is just a remark concerning UFD. For a non-zero element a of
an integral domain A, the following conditions (i) and (ii) need not coincide. (i)
a is a prime element (in the sense written in Problem 51). (ii) a /∈ A× and a can
not be written as bc with b, c ∈ A such that b /∈ A× and c /∈ A×. (i) implies (ii)
but (ii) need not imply (i). If a non-zero element a of A is written in the form
a = uπ1 . . . πn with u ∈ A× and with elements πi of A satisfying (ii), we do not
have any uniqueness of such expression of a. But if πi in this expression are prime
elements, this expression of a is unique up to replacements of πi by viπi for units
vi and changes of the order of π1, . . . , πn in the presentation. An integral domain
is called UFD if any non-zero element of A is written in the form uπ1 . . . πr where
u ∈ A× and πi are prime elements.

53. In the polynomial ring k[T1, . . . , Tn] in n variables over a field k, the ideals
pi = (T1, . . . , Ti) (i = 0, 1, . . . , n) are prime ideals. (p0 means the ideal (0). You do
not need prove that they are prime ideals.) Prove that for each i = 0, 1, . . . , n− 1,
there is no prime ideal q of A such that pi ( q ( pi+1.

Hint. Apply Problem 51 to A = k[T1, . . . , Tn]/pi ∼= k[Ti+1, . . . , Tn] and f = Ti+1.

Let A be the ring of polynomial functions on the algebraic set X = {(x, y) ∈
C2 | y2 = x3 + 1}. We have an isomorphism C[T1, T2]/(T 2

2 − T 3
1 − 1)

∼=→ A by
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sending T1 (resp. T2) to the function x (resp. y) on X which has value x (resp.
y) at (x, y) ∈ X. In the course, I will tell (without proof) the following. A is not
PID, but the local ring of A at any prime ideal is PID. In the following Problems
54-56, let p be the maximal ideal {f ∈ A | f(0, 1) = 0} of A. Note that we have
p = (x, y − 1) and that (y − 1)(y + 1) = x3.

54. Note that any element f of A is written in the form f0(y) +f1(y)x+f2(y)x2,
where fi(y) (i = 0, 1, 2) are polynomials in y. For i = 0, 1, 2, let mi be the (y − 1)-
adic order of fi(y). (This means that in the case fi(y) 6= 0, fi(y) is divisible by
(y− 1)mi but not divisible by (y− 1)mi+1. In the case fi(y) = 0, mi is defined to be
∞.) Let m = min{3mi + i | i = 0, 1, 2}. Prove that if f 6= 0, in the local ring Ap of
A at p, f is xm times a unit.

55. Let the notation be as in Problem 54. Prove that any non-zero ideal of Ap

is written in the form (xm) for some m ≥ 0, and hence Ap is a PID.

Recall that we have the Taylor expansion

(1 + x)a =
∞∑
n=0

(
a
n

)
xn

for x ∈ C such that |x| < 1, where(
a
0

)
= 1,

(
a
1

)
= a,

(
a
2

)
=
a(a− 1)

2
,

(
a
n

)
=
a(a− 1) . . . (a− (n− 1))

n!
.

In the case a = 1/m (m ≥ 1), this gives an m-th root of 1 + x. For example,

(1 + x)1/2 = 1 +
1

2
x− 1

8
x2 + . . . .

56. Consider the ring homomorphism h : A → C[[T ]] over C which sends x to

T and y to
∑∞

n=0

(
1/2
n

)
T 3n = 1 + 1

2
T 3 − 1

8
T 6 + . . . . Prove that h induces a ring

homomorphism Ap → C[[T ]]. Prove that for any n ≥ 1, the two arrows in

C[T ]/(T n)→ A/pn ∼= Ap/(pAp)
n = Ap/x

nAp → C[[T ]]/(T n) ∼= C[T ]/(T n)

are isomorphisms. Here the first arrow is the ring homomorphism over C which
sends T to the class of x, and the second arrow is the ring homomorphism induced
by h. Obtain an isomorphism

lim←−
n

Ap/(pAp)
n ∼= C[[T ]].

57. Prove that for any n ≥ 1, the canonical ring homomorphism Z/5nZ →
Z[i]/(2 − i)n is an isomorphism. By taking lim←−n, deduce that Z5 := lim←−n Z/5

nZ
contains a square root of −1.
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58. (Here assume that you already know that Z5 has a square root of −1.)
Prove that there are two ring homomorphisms Z[i] → Z5. (You can use the fact
Z5 is an integral domain.) Show that the inverse image of 5Z5 ⊂ Z5 under one
homomorphism is (2 − i) ⊂ Z[i], and the inverse image of 5Z5 under the other
homomorphism is (2 + i) ⊂ Z[i].

The following is a complement to the story of Taylor expansion written before
Problem 56.

For a prime number p and for a rational number a which belongs to Z(p) =

{ r
m
| r,m ∈ Z, p 6 |m}, it is known that

(
a
n

)
∈ Z(p) for any n ≥ 0. For m ≥ 1

which is prime to p and for x ∈ pZp, an m-th root of 1 + x in Zp is obtained as∑∞
n=0

(
1/m
n

)
xn. (You do not need to prove these.) The case p = 5, m = 2 and

x = −5/4 of this implies that a square root of 1 − 5/4 = −1/22 exists in Z5 and
hence a square root of −1 exists in Z5.

59. Obtain a square root 68 mod Z/53Z of −1 = 22(1− 5
4
) in Z/53Z by applying

the above Taylor expansion of (1− 5/4)1/2.

(In the computation, if 1/4 appears, a good method is to expand it as 1/4 =
−1/(1− 5) = −1− 5− 52 − . . . .)

Note that for a sequence an (n = 1, 2, 3, . . . ) of rational numbers, for a prime
number p, and for c ∈ Q, an converges to c in the p-adic number field Qp if and only
if the p-adic order ordp(an − c) tends to ∞.

60. Prove that 1 − (2/3)n! (resp. 1 − 6n!) (n = 1, 2, 3, . . . ) converges to 0 in Qp

for any prime number p 6= 2, 3, and converges to 1 in Q2 and in R (resp. in Q2 and
in Q3).
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Set 7. Please study the following Problems 61–70 by March 1 (Friday).
This time, you prove quadratic reciprocity law and related things.

61. LetK be a commutative field whose characteristic is not 2 and which contains
a primitive 8-th root ζ8 of 1 (a primitive n-th root of 1 is an element α such that
αn = 1 and αi 6= 1 for 1 ≤ i < n).

Prove that ζ8 + ζ−1
8 is a square root of 2.

62. Let p be a prime number which is not 2. In Problem 61, take the algebraic
closure of Fp as K. By using the fact Fp = {x ∈ K | xp = x} and by using Problem
61, prove the formula (2

p
) = (−1)

p2−1
8 ,

that is, a square root of 2 exists in Fp if and only if p ≡ 1, 7 mod 8 and does not
exist if p ≡ 3, 5 mod 8.

63. LetK be a commutative field whose characteristic is not 3 and which contains
a primitive cubic root ζ3 of 1. Prove that ζ3 − ζ2

3 is a square root of −3. Let p be a
prime number which is not 2, 3. By taking the algebraic closure of Fp as K and using
the fact Fp = {x ∈ K | xp = x}, prove that

(−3
p

) is 1 if and only if p ≡ 1 mod 3.

The following Problems 64 and 65 are preparations for Problem 66 which is a
generalization of Problem 63.

64. Let N ≥ 1 be an integer, let K be a commutative field, and assume that K
contains a primitive N -th root ζN of 1. For a function f : Z/NZ → K, define the
Fourier transform F(f) of f as the function Z/NZ→ K defined by

(F(f))(x) =
∑

y∈Z/NZ

f(y)ζxyN .

(This is an analogue of the Fourier transform of a function on R.) Let g = F(F(f)).
Prove g(x) = Nf(−x).

65. In Problem 64, in the case N is a prime number q and f : Fq = Z/qZ→ K
is defined by f(x) =

(
x
q

)
if x 6= 0 and f(0) = 0, prove that F(f) = G · f where

G =
∑

a∈F×
q

(
a
q

)
ζaq .

66. Let K be a commutative field and let q be a prime number which is different
from 2. Assume that the characteristic of K is not 2, q, and assume that K contains
a primitive q-th root ζq of 1. Let q∗ = q if q ≡ 1 mod 4, and let q∗ = −q if
q ≡ 3 mod 4. Using Problems 64 and 65, prove that∑

a∈F×
q

(a
q

)
ζaq is a square root of q∗.

(For Problems 66 and 67, please use the fact
(−1
p

)
= (−1)

p−1
2 freely.)
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67. Let p and q be prime number which are not 2 and assume p 6= q. In Problem
66, take the algebraic closure of Fp as K. By using the fact Fp = {x ∈ K | xp = x}
and by using Problem 66, prove the formula(q∗

p
) =

(p
q

)
.

From this, deduce the quadratic reciprocity law(q
p

) =
(p
q

)
· (−1)

p−1
2
· q−1

2 .

68. By using Problem 64 and Problem 65 taking the algebraic closure of Q as K,
prove that if L is a quadratic field (an extension of Q of degree 2), then L ⊂ Q(ζN)
for some N ≥ 1. Here ζN denotes a primitive N -th root of 1.

69. LetK be a commutative field whose characteristic is not 7 and which contains
a primitive 7-th root ζ7 of 1. Prove that for a = 1, 2, 3, ζa7 + ζ−a7 are solutions of
x3 + x2 − 2x− 1 = 0.

Let p be a prime number which is not 7. By taking the algebraic closure of Fp
as K and by using the fact Fp = {x ∈ K | xp = x}, prove that x3 + x2 − 2x− 1 = 0
has a solution in Fp if and only if p ≡ ±1 mod 7.

70. Let p be a prime number which is not 7. Let F = Q(ζ7 + ζ−1
7 ) and let OF be

the integer ring of F . Prove that if p ≡ ±1 mod 7, there are three maximal ideals p
of OF such that pOF ⊂ p. Prove that for other p, pOF is a maximal ideal.

(Please use the fact

Z[T ]/(T 3 + T 2 − 2T − 1)
∼=→ OF ; T 7→ ζ7 + ζ−1

7 . )
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