\classheader{2013-02-11} The rest of the course will cover \begin{itemize} \item the correspondence between ideals and geometry \item local rings, Dedekind domains, and regular local rings \item completion, $p$-adic numbers \item algebraic curves \item projective curves \item Weil conjectures and recent big theorems in number theory \end{itemize} Last time, we proved that \[\nil(A)=\{f\in A\mid f(\frak{p})=0\text{ for all }\frak{p}\in\Spec(A)\}=\bigcap_{\frak{p}\in\Spec(A)}\frak{p}.\] Now, let's prove that if $A$ is finitely generated over a field, then in fact \[\nil(A)=\{f\in A\mid f(\frak{p})=0\text{ for all }\frak{p}\in\max(A)\}=\bigcap_{\frak{m}\in\max(A)}\frak{m}.\] The $\subseteq$ inclusion follows from what we proved last time, so let's prove the $\supseteq$ inclusion. Assume that $f(\frak{p})=0$ for all $\frak{p}\in\max(A)$. We will prove that $A[\frac{1}{f}]=0$, which suffices to show that $f$ is nilpotent. If $A[\frac{1}{f}]\neq 0$, then there is some $\frak{m}\in\max(A[\frac{1}{f}])$. Because $A$ is finitely generated over a field, the inverse image of $\frak{m}$ in $A$ is also a maximal ideal, say $\frak{p}\in\max(A)$. Then $\frac{f}{1}\notin \frak{m}$ because $f\in A[\frac{1}{f}]^\times$, but then $f\notin\frak{p}$, which contradicts our assumption. \subsection*{Ideal $\longleftrightarrow$ Geometry} Let $A$ be a commutative ring. For an ideal $I$ of $A$, we use $\sqrt{I}$ or $\rad(I)$ to denote \[\{f\in A\mid \text{there is some }n\geq 1\text{ such that }f^n\in I\},\] which is called the radical of $I$. Note that $\sqrt{I}$ is the inverse image of $\nil(A/I)$ under the quotient map $A\to A/I$. If $I=\sqrt{I}$, then we say that $I$ is a radical ideal. Note that $\sqrt{\!\!\sqrt{I}}=\sqrt{I}$; this is easy to see from the definition. \begin{theorem} Let $A$ be a commutative ring. \begin{enumerate} \item The radical ideals $I$ of $A$ are in bijection with the closed subsets $V(I)$ of $\Spec(A)$. \item If $A$ is finitely generated over a field, then $I=\sqrt{I}$ if and only if $V(I)$ is a closed subset of $\Spec(A)$. \end{enumerate} \end{theorem} \pagebreak \begin{proposition} Let $A$ be a commutative ring. \begin{enumerate} \item For any subset $S\subseteq\Spec(A)$, we have $\overline{S}=V(I(S))$, where recall that \begin{align*} I(S)&=\{f\in A\mid f(\frak{p})=0\text{ for all }\frak{p}\in S\},\\ V(I)&=\{\frak{p}\in\Spec(A)\mid f(\frak{p})=0\text{ for all }f\in I\}. \end{align*} \item For any ideal $J$ of $A$, we have $\sqrt{J}=I(V(J))$. \item[1' {\small\&} 2'.] If $A$ is finitely generated over a field, then $\Spec(A)$ can be replaced by $\max(A)$. \end{enumerate} \end{proposition} \begin{proof}[Proof of part 2 of proposition] By replacing $A$ by $A/J$, it is enough to prove that \[\nil(A)=I(V(0))\] because $\nil(A)=\sqrt{0}$ and there is a bijection \[\Spec(A/J)\longleftrightarrow\{\frak{p}\in\Spec(A)\mid \frak{p}\supseteq J\}.\]But we know this is true, because $V(0)=\Spec(A)$, so \[I(V(0))=\{f\in A\mid f(\frak{p})=0\text{ for all }\frak{p}\in\Spec(A)\}=\nil(A).\qedhere\] \end{proof} Note that the theorem follows from the proposition; the bijection is given by \begin{center} \begin{tikzcd} \text{} \ar[bend left]{r}{V(\;)} & \text{} \ar[bend left]{l}{I(\;)} \end{tikzcd} \end{center} \begin{definition} Let $k$ be an algebraically closed field. A subset of $k^n$ of the form \[V(f_1,\ldots,f_m)=\{x=(x_1,\ldots,x_n)\in k^n\mid f_1(x)=\cdots=f_m(x)=0\}\] where $f_1,\ldots,f_m\in k[T_1,\ldots,T_n]$ is called an algebraic subset of $k^n$. We know there is an identification $k^n=\max(k[T_1,\ldots,T_n])$. Then algebraic subsets of $k^n$ are just the closed subsets in the Zariski topology; the above set is just $V(J)$ for $J=(f_1,\ldots,f_m)$. \end{definition} Let $S$ be an algebraic subset of $k^n$, and let $A$ be the ring of polynomial functions on $S$, i.e. the functions on $S$ that can be written as polynomials in the coordinate functions. Then we can identify $S=\max(A)$, and there is a bijection \begin{center} \begin{tikzcd} \{\text{radical ideals }J\text{ of }A\} \ar[bend left]{r}{V(\;)} & \{\text{algebraic subsets of }k^n\text{ contained in }S\} \ar[bend left]{l}{I(\;)} \end{tikzcd} \end{center} \subsection*{Prime Ideals} In the ring $k[T_1,T_2]$, the ideals $(T_1)$, $(T_2)$, and $(T_1^2-T_2^3-1)$ are prime ideals, but $(T_1T_2)$ is not a prime ideal. \begin{center} \begin{tikzpicture}[scale=0.8] \begin{axis}[title={$y^2-x^3-1=0$}, no markers, axis lines=middle,axis y line=center,axis equal,axis y line=middle, axis x line=middle, xmin=-2.5, xmax=2.5, ymin=-2.5, ymax=2.5,xtick={-2,-1,...,2},ytick={-2,-1,...,2},axis equal,width=7cm, height=7cm,tick label style={color=gray}] \addplot +[no markers,raw gnuplot,very thick] gnuplot { set contour base; set cntrparam levels discrete 0.00; unset surface; set view map; set isosamples 1000; set xrange[-4:3]; set yrange[-3:3]; splot y^2-x^3-1; }; \end{axis} \end{tikzpicture} \begin{tikzpicture}[scale=0.8] \begin{axis}[title={$y=0$}, no markers, axis lines=middle,axis y line=center,axis equal,axis y line=middle, axis x line=middle, xmin=-2.5, xmax=2.5, ymin=-2.5, ymax=2.5,xtick={-2,-1,...,2},ytick={-2,-1,...,2},axis equal,width=7cm, height=7cm,tick label style={color=gray}] \addplot +[no markers,raw gnuplot,very thick] gnuplot { set contour base; set cntrparam levels discrete 0.00; unset surface; set view map; set isosamples 1000; set xrange[-4:3]; set yrange[-3:3]; splot y; }; \end{axis} \end{tikzpicture} \begin{tikzpicture}[scale=0.8] \begin{axis}[title={$x=0$}, no markers, axis lines=middle,axis y line=center,axis equal,axis y line=middle, axis x line=middle, xmin=-2.5, xmax=2.5, ymin=-2.5, ymax=2.5,xtick={-2,-1,...,2},ytick={-2,-1,...,2},axis equal,width=7cm, height=7cm,tick label style={color=gray}] \addplot +[no markers,raw gnuplot,very thick] gnuplot { set contour base; set cntrparam levels discrete 0.00; unset surface; set view map; set isosamples 1000; set xrange[-4:3]; set yrange[-3:3]; splot x; }; \end{axis} \end{tikzpicture} \end{center} \begin{center} \begin{tikzpicture}[scale=0.8] \begin{axis}[title={$xy=0$}, no markers, axis lines=middle,axis y line=center,axis equal,axis y line=middle, axis x line=middle, xmin=-2.5, xmax=2.5, ymin=-2.5, ymax=2.5,xtick={-2,-1,...,2},ytick={-2,-1,...,2},axis equal,width=7cm, height=7cm,tick label style={color=gray}] \addplot +[no markers,raw gnuplot,very thick] gnuplot { set contour base; set cntrparam levels discrete 0.00; unset surface; set view map; set isosamples 1000; set xrange[-4:3]; set yrange[-3:3]; splot x*y; }; \end{axis} \end{tikzpicture} \end{center} Prime ideals in $k[T_1,\ldots,T_n]$ correspond to irreducible algebraic sets, also known as algebraic varieties. These cannot be written as a non-trivial union of smaller algebraic sets. In the same way that a prime number is a number that cannot be divided into two other numbers, an algebraic variety is an algebraic subset that cannot be divided into two other algebraic subsets. The prime ideal is a princess of the world of ideals. Her father is the prince ``Point'' in the world of geometry. Her mother is the princess ``Prime Numbers'' in the world of numbers. She inherits the purity from her parents.