
1. preliminaries on differentiable functions

Definition 1.1. Let U be an open subset of Rm. A function f : U → Rn is differ-
entiable at x ∈ U if there is a linear transformation T : |Rn → Rm such that: for all
ε > 0 there is some δ > 0 with the following property:

v ∈ Rn, ‖v‖ < δ =⇒ x+ v ∈ U and ‖f(x+ v)− f(x)− Tv‖ ≤ ε‖v‖
There is only one linear transformation T with the above property and it is denoted
by f ′(x).

Theorem 1.2. chain rule: Let U, V,W be open subsets of Rm,Rn,Rp respectively.
Let f : U → V and g : V → W be functions that are differentiable at x ∈ U and
y ∈ V respectively, Assume furthermore that f(x) = y. Then

(1) the composite g ◦ f is differentiable at x and
(2) (g ◦ f)′(x) = g′(f(x) ◦ f ′(x).

Proof. left to the reader. See [1] or [14] �

Definition 1.3. f : U → R is a function defined on an open subset U ⊂ Rn. f is C0

if f is continuous.
f is C1 if all its partial derivatives ∂if are defined and continuous on U . More

generally, f is Ck (where k ∈ N) if all its partial derivatives ∂if are defined and are
Ck−1.
f is C∞ if f is Ck for every non-negative integer k.
The collection of Ck functions on U will be denoted by Ck(U).

Proposition 1.4. (1) If f ∈ Ck(U) then f ∈ Ck−1(U).
(2) If f, g ∈ Ck(U) then f + g and fg are also Ck. All constant functions are Ck.

Proof. Part 2 follows from part (1) and the Liebniz rule. �

Lemma 1.5. U ⊂ Rn is open. Let f : U → R be C1. Then f is differentiable (see
the first definition) at every point x ∈ U . Its derivative f ′(x) : Rn → R is given by

f ′(x)(a1, a2, ..., an) = a1∂1f(x) + a2∂2f(x) + ...+ an∂nf(x)∀(a1, ..., an) ∈ Rn

Proof. An iterated use of the mean-value theorem. See [1] or [14]. �

Definition 1.6. Let U ⊂ Rn and V ⊂ Rm be open. Given f : U → V define
fi : U → R for i = 1, 2, ...,m by f(x) = (f1(x), ..., fm(x)) for every x ∈ U . If all the
fi are Ck then f is said to be Ck as well.

Theorem 1.7. Let U, V,W be open subsets of Rm,Rn,Rp respectively. If f : U → V
and g : V → W are both Ck then so is g ◦ f .

Proof. Induction on k. The case k = 0 is OK.
Assume k > 0. In view of the lemma, one sees that “f is Ck” is equivalent to

the reformulation “f is differentiable at all x ∈ U and x 7→ f ′(x) is a Ck−1 function,
denoted by f ′, from U to the space of m× n matrices.”

The chain rule now tells us that g ◦ f is differentiable, and also that (g ◦ f)′ =
(g′ ◦ f).f ′ where . denotes matrix multiplication. Now both g′ and f are Ck−1. By
the induction hypothesis, g′ ◦ f is Ck−1. In addition, f ′ is also Ck−1. It follows that
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the matrix product g′ ◦ f.f ′ is also Ck−1. We have shown that (g ◦ f)′ is Ck−1. In
view of the equivalent reformulation, the theorem follows.

�

Proposition 1.8. Let f : U×V → R be Ck where k > 0 and U ⊂ R and V ⊂ Rn are
both open subsets. Assume furthermore that 0 ∈ U . Then there is a Ck−1 function
g : U × V → R such that

(1) f(x, y) = f(0, y) + xg(x, y) for all x ∈ U, y ∈ V

Proof. The above equation in fact defines a Ck function g on the domain (U \{0})×V .
We have a > 0 such that the open interval (−a, a) is contained in U . Now let
0 < |x| < a, y ∈ V and let γ(t) = (tx, y) for 0 ≤ t ≤ 1. An application of the
fundamental theorem of calculus to the function f ◦ γ shows that

(2) g(x, y) =

∫ 1

0

∂1f(tx, y)dt whenever 0 < |x| < a, y ∈ V

By assumption, ∂1f is Ck−1 on U × V . It follows easily that the expression on the
right in equation (2) defines a Ck−1 function on U × V , once again denoted by g by
abuse of notation. The desired equation (1) holds on (U \ {0}) × V and continuity
shows that it holds on U × V as well. �

Corollary 1.9. Let a, b > 0, let X = (−a, a)r × (−b, b)s and let f : X → R be a C∞

function that vanishes on 0× (−b, b)s. (here 0 = (0, 0, ..., 0) ∈ (−a, a)r). Then there
are C∞ functions g1, ...gr defined on X such that

f = x1g1 + x2g2 + ...+ xrgr

2. Inverse Function Theorem

Theorem 2.1. Inverse function theorem (a) Let U be an open subset of Rn,
let p ∈ U and let f : U → Rn be a C1 function such that the linear transformation
f ′(p) : Rn → Rn is invertible. Then f |V is a one-to-one open map for some nbhd
V of p in U . Thus f(V ) is open and there is a homeomorphism h : V → f(V )
such that f(x) = h(x) for all x ∈ V . (b) If the above f is Ck for some k ≥ 1 then
h−1 : f(V )→ V is also Ck.

Part (b) of the theorem is deduced from part (a) in exactly the same manner in all
the sources (that I’ve seen) and is omitted. We concentrate on part (a). The proof by
the Contraction Principle in [11, 13, 14] is valid even for Banach spaces. The proof
of part (a) in [1] is interesting and different.

Problem 2.2. Deduce part (a) of the inverse function theorem from ‘one-variable-
calculus’ (Intermediate Value thm. and Mean-Value thm. precisely) when f(x1, ..., xn) =
(g(x1, ..., xn), x2, x3, ..., xn) under the assumption that ∂1g(p) 6= 0.

Problem 2.3. Assume thet the f in the statement of IFT is given by f = (f1, ..., fn)
where the fi : U → R are C1. Prove that there is a permutation σ such that if
gi = fσ(i) for all i, then Fi defined by

Fi(x1, ..., xn) = (x1, ..., xi−1, gi, gi+1, ..., gn)

satisfies the hypothesis of the inverse function theorem at p for all i = 1, 2, ...n.
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Problem 2.4. Deduce the inverse function thm. from the previous two problems.

Problem 2.5. Assume that f : U → Rn is continuous everywhere, and differentiable
at a given point p ∈ U . Assume that the linear transformation f ′(p) is invertible.
Prove that there is a nbhd V of p in U such that f(V ) contains a neighbourhood of
f(p).

Hint: prove for all sufficiently small and positive r, that
(i) ‖x− p‖ = r implies f(x) 6= f(p)
(ii) the map from the sphere of radius r to Rn\{f(p)} given by x 7→ f(x) is homotopic
to x 7→ f(p) + f ′(p)(x− p).

Now deduce that {f(x) : ‖x − p‖ ≤ r} contains the connected component of f(p)
in the complement of the compact set {f(x) : ‖x− p‖ = r}.

3. the definition of a C∞ manifold

It is a good idea to read the definition of a presheaf (also a sheaf) on a topological
space. Even though the little that is required for the moment has been spelt out
below.

Notation 3.1. Recall that C0(Y ) denotes the collection of continuous functions Y →
R. Let U ⊂ V ⊂ Y both be open subsets of Y . If f ∈ C0(V ) then f |U ∈ C0(U).
Denote f 7→ f |U by Res(U, V ) : C0(V )→ C0(U).

Let f : Y → Z be continuous. For every open V ⊂ Z and for every g ∈ C0(V ) we
obtain f ∗g ∈ C0(f−1V ) giiven by (f ∗g)x = g(f(x)) for all x ∈ f−1V .

Definition 3.2. Let Y be a topological space. A subpresheaf (or a presheaf of
subsets) R of C0

Y consists of

(1) the data: a subset R(U) ⊂ C0(U) for every open subset U of Y
subject to the condition:

(2) Res(U, V )R(V ) ⊂ R(U) whenever U ⊂ V are both open subsets of Y .

R is a subsheaf of C0
Y if in addition

(3) f ∈ C0(V ), V = ∪{Vi : i ∈ I},∀i ∈ I Res(Vi, V )f ∈ R(Vi) =⇒ f ∈ R(V ).

A sheaf of R-subalgebras of C0
Y is a subsheaf R of C0

Y such that R(U) is a
R-subalgebra of C0(U) for every open U ⊂ Y .

Definition 3.3. A ringed space1 is a pair (Y,R) where Y is a topological space and
R is a sheaf of R-subalgebras of C0

Y .
If (Y,R) is a ringed space and if U ⊂ Y is open, then we obtain the ringed space

(U,RU) by setting RU(V ) = R(V ) for all open V ⊂ U .
A morphism of ringed spaces f : (Y,R)→ (Y ′, R′) is simply a continuous map f :

Y → Y ′ with the property: U ′ open in Y ′ and g ∈ R′(U ′) implies f ∗g ∈ R(f−1(U ′)).
See notation above for f ∗g.

In addition, if f is a homeomorphsim and if its inverse f−1 : Y → Y ′ gives rise to
a morphism (Y ′, R′) → (Y,R) of ringed spaces then f is said to be an isomorphism
of ringed spaces.

1the term ‘ringed space’ in mathematical literature covers a more general situation than encoun-
tered in these notes
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Example 3.4. Let 0 ≤ k ≤ ∞ and let U be open in Rn. We have the sheaf
of R-subalgebras Ck

U given by Ck
U(V ) = Ck(V ) for all open subsets V ⊂ U . See

Prop.1.4(2).

Definition 3.5. A Ck-manifold is a ringed space (M,R) with the property that M
is covered by its open subsets U for which (U,RU) is isomorphic to (Ω, Ck

Ω) where Ω
is open in Rn for some n.

For a Ck-manifold (M,R) it is traditional to denote R by Ck
M .

Given Ck manifolds (M,Ck
M) and (N,Ck

N), a map f : M → N is Ck if it is a
morphism (M,Ck

M)→ (N,Ck
N) of ringed spaces. In other words,

(1) f : M → N is continuous and
(2) For every open V ⊂ N and for every g ∈ Ck

N(V ), the continuous function f ∗g
defined on f−1V belongs to Ck

M(f−1V ).

Problem 3.6. Let U and V be open in Rn and Rm respectively. They are Ck

manifolds in a natural manner. Show that the two definitions of “f : U → V is Ck”
given in 3.5 and 1.6 are equivalent to each other.

Problem 3.7. Let U be an open subset of Ck manifold M . Let f1, f2, ..., fr be real-
valued functions defined on U . Denote by f : U → Rr the map x 7→ (f1(x), ..., fr(x)).
Prove that f : M → Rr is Ck in the sense of definition 3.5 if and only if fi ∈ Ck

M(U)
for all i = 1, 2, ..., r.

Problem 3.8. f : M → N is a local homeomorphism and (N,Ck
N) is a Ck manifold.

Show that M acquires the structure of a Ck manifold for which f : M → N is Ck in
the sense of 3.5.

Problem 3.9. In the previous problem, is there only one Ck structure on M for
which f is Ck?

Problem 3.10. Define real analytic manifolds and complex analytic manifolds (the
latter are referred to as complex manifolds). State and prove the analog of the
previous problem in this context.

Problem 3.11. It is well known that the function f : R → R given by f(t) =
exp(−1/t) for t > 0 and
f(t) = 0 otherwise

is C∞. Using this function alone (and 1.4,1.7, 3.5) show that if p ∈ U ⊂ M where
M is a Ck manifold and U is open in M there is a Ck function φ : M → R which (a)
vanishes on the complement of U and (b) satisfies φ(p) = 1.

Problem 3.12. Let M and N be Ck manifolds. Let f : M → N be any function.
Show that f is Ck if and only if

g : N → R is Ck =⇒ g ◦ f is Ck

4. Tangent-spaces and cotangent-spaces

There are plenty of books on Differential geometry that contain the basic concepts
and definitions: tangent bundles, one-parameter groups, the Frobenius theorem on
sub-bundles of the tangent bundle:[7, 3, 10, 13, 18] are some of them.
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The definition given of the tangent space of a C∞ manifold in most sources e.g.
[7, 13, 18] is the same. In Eucliden space, given a vector v we may compute the
directional derivative Dvf(p) of a function f defined on a neighbourhood U of p ∈ Rn.
Now E(f) = Dvf(p) is a linear functional that satisfes the Liebniz rule:

E(fg) = f(p)E(g) + g(p)E(f)

The domain of the linear functional is the R-algebra of germs( see [13, 18] of C∞

functions at p is denoted by C∞Rn,p.
It is a simple exercise to deduce from Corollary 1.9 that every linear functional

that satisfies the Liebniz rule is of the type f 7→ Dvf(p) for a unique v ∈ Rn.

Definition 4.1. The tangent-space TpM of a C∞ manifold M at p is the collection of
linear functionals E : C∞M,p → R that satisfies the Leibniz rule. By the above remarks,
we see that if dim(M) = n then TpM is a vector space of rank n.

If f : (M, p) → (N, q) is C∞ then we get a R-algebra homomorphism f ∗ : C∞N,q →
C∞M,p. If E ∈ TpM then the composite

C∞N,q
f∗−→ C∞M,p

E−→ R

also satisfies the Leibniz rule. The corresponding element of TqN is denoted by f ′(p)E.
This gives rise to the linear transformation f ′(p) : TpM → TqN .

Definition 4.2.

5. differentiable submanifolds

What does it mean for an arbitrary subset A of a C∞ manifold M to be a C∞

submanifold?
For this purpose, we define a function f : A → R to be admissible if every point

p ∈ A has a neighborhood Up in M and a C∞ function fp : Up → R that agrees with
f on the intersection A ∩ Up. The collection of admissible functions f : A → R will
be denoted by R(A). This is clearly a R-subalgebra of C0(A).

It is clear that if B is any subset of A and if f ∈ R(A), then f |B ∈ R(B). The
only subsets B we are interested in, however, are the open subsets (in the relative
topology) of A. The B 7→ R(B) (for such B) defines a sheaf of R-subalgebras of C0

A.

Definition 5.1. A is a C∞ submanifold of M if the ringed space(A,R) is a C∞

manifold.
Given a point p ∈ A we will say that A is smooth at p if there is a neighbourhood

U of p in A such that the ringed space (U,RU) is a C∞ manifold (see prop 5.6).
Thus a subset A is a C∞ submanifold iff A is smooth at every point p ∈ A.

Example 5.2. Let U1 and U2 be open in Rm and Rn−m respectively. Let y0 ∈ U2.
Then U1 × {y0} is a C∞ submanifold of U1 × U2.

One frequently obtains C∞ submanifolds through the two lemma below, both of
which are simple consequences of the Inverse fUnction Thm.

Lemma 5.3. Parametric form. Let U and V be open subsets in Rm and Rn

respectively and let f : (U, q) → (V, p) be a C∞ function. Assume that the linear
transformation f ′(q) : Rm → Rn is one-to-one. Then there is
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a neighbourhood U1 of q in U ,
a neighbourhood U2 of zero in Rn−m,
a neighbourhood Ω of p in V , and
a diffeomorphism φ : U1 × U2 → Ω

such that φ(x, 0) = f(x) for all x ∈ U1.
In view of example 5.2, it follows that f(W ) is a C∞ submanifold of V for all W

open in U1–and in particular this is the case for W = all sufficiently small nbhds of
q in U .

Lemma 5.4. Implicit form. If U, V are open in Rn,Rn−m respectively, if f :
(U, p)→ (V, q) is C∞ and if f ′(p) : TpRn → TqRn−m is surjective, then

there are nbhds Ω of p in U , Ω2 of q in V and Ω1 of 0 in Rm, and a diffeomorphism
φ : Ω → Ω1 × Ω2 such that f(x) = p2φ(x) for all x ∈ Ω. Here p2 : Ω1 × Ω2 → Ω2 is
the projection to the second factor.

In view of example 5.2, we see that f−1(q) is smooth at p. Furthermore, Tpf
−1(q)

is the kernel of f ′(p).

Remark 5.5. In view of the fact that f ′(p) : TpM → TqN has been defined for every
C∞ map f : (M, p) → (N, q) we may re-state the second statement of the above
lemmas as follows:

(1) If f ′(p) is one-to-one, then f(W ) is a C∞ submanifold of N for all sufficiently
small nbhds W of p in M .

(2) If f ′(p) is onto, then f−1(q) is smooth at p. Furthermore the tangent-space of
f−1(q) at p is the kernel of the linear transformation f ′(p).

Proposition 5.6. Given p ∈ A ⊂ M where M is a C∞ manifold, then A is smooth
at p if and only if there is a diffeomeorphism U1 × U2 → W (where W is a nbhd of p
in M , and U1, U2 are open in Rm,Rn−m respectively) such that W ∩ φ−1A is simply
U1 × {c} for some point c ∈ U2

Proof. ⇐ has already been remarked in example 5.2.
Now for the converse. The question being local at p, we may assume that M is

an open subset of Rn. Because A is smooth at p there is an isomorphism of ringed
spaces

g : (M1 ∩ A,RM1∩A)→ (U,C∞U )

where M1 is a nbhd of p in M and U is an open subset of Rm. Put q = g(p). Denote
the inverse of g by f . The composite

U
f−→M1 ∩ A ↪→M1 ↪→ Rn

is then of the type (f1, ..., fn). Denote the i-the co-ordinate function on Rn by pi :
Rn → R. Because the pi are C∞, the pi|M1∩A belong to R(M1 ∩ A). And because f
is a morphism of ringed spaces these pull back to C∞ functions of U . In other words,
all the fi are C∞ functions on U .

Note next that g is given by (g1, ..., gm) where the gi ∈ R(M1 ∩ A). It follows
that there is a nbhd of M2 of p in M1 and C∞ functions g̃i defined on M2 such that
g̃i(x) = gi(x) for all x ∈ M2 ∩ A. Putting g̃ = (g̃1, ..., g̃m) we obtain a C∞ map
g̃ : M2 → Rm such that g̃(x) = g(x) for all x ∈M2 ∩ A.
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Summarising, we have open subsets U ⊂ Rm and M2 ⊂ Rn and C∞ maps f : U →
Rn and g̃ : M2 → Rm. Furthermore g̃(f(x)) = x for all x ∈ f−1(M2 ∩ A). The chain
rule shows that f ′(q) is one-to-one. The claim now follows from lemma 5.3. �

Problem 5.7. A subset of a topological space is locally closed if it is the intersection
of an open subset and a closed subset. Prove that a submanifold A of a manifold M
is a locally closed subset. (No differentiability assumptions anywhere).

Problem 5.8. let A′ denote the transpose of a matrix A. Let X(resp.Y ) be the space
of (k× n)(resp.symmetric(k× k)) matrices with entries in R. Define F : X → Y by
F (A) = A′A for all A ∈ X. Deduce from the implicit function theorem that the Stiefel
variety Vk(Rn) = F−1idk×k is a C∞ submanifold of X of codimension k(k + 1)/2.

Problem 5.9. Assume that 0 ∈ R is a regular value (see dfn 6.1) of C∞ function
f : M → R. Define h(x, t) = f(x) − t2 for all x ∈ M, t ∈ R. Prove that zero is a
regular value of h as well.

remark Let W = {x ∈M : f(x) ≥ 0}, let ∂(W ) = {x ∈M : f(x) = 0}. Then W is
a manifold with boundary ∂(W ) and h−1(0) is referred to as the double of W because
it is obtained from W × {±1} by identifying (x,−1) with (x, 1) for all x ∈ ∂(W ).

Problem 5.10.

Show that the graph of a function f : R → R s a C∞ sub manifold of R2 off f is
itself a C∞ function.

Problem 5.11. ‖(x1, ..., xn)‖ =
√
x2

1 + ...+ x2
n. Let v1, v2, ..., vg be distinct points of

Rn. Let r1, r2, ..., rg, R > 0. Assume

(1) ri + rj < ‖vi − vj‖ whenever 1 ≤ i < j ≤ g, and
(2) ri + ‖vi‖ < R whenever 1 ≤ i ≤ g

Let f(x) = (R2 − ‖x‖2)
i=g

Π
i=1

(‖x− vi‖2 − r2
i ) for all x ∈ Rn. Let h(x, t) = f(x)− t2 for

all (x, t) ∈ Rn × R. Prove that 0 is a regular value of h.
When n = 2, the manifold h−1(0) as an orientable surface of genus g. In general,

it is the connected sum of g copies of S1 × Sn−1 .

Problem 5.12. With f as in the previous problem, show that

{(x, y) ∈ Rn × Rk : f(x) = ‖y‖2}
is a C∞ submanifold of Rn × Rk of codimension 1.

Problem 5.13. map germs Let M,N be C∞ manifolds. Let p ∈M and q ∈ N . The
set of map germs mapgrm((M, p) → (N, q)) is the set of equivalence classes of C∞

maps f : (U, p)→ (N, q) where U is a nbhd of p in M . The equivalence relation ∼ is
given as follows: given fi : (Ui, p)→ (N, q) for i = 1, 2 ,
f1 ∼ f2 if and only if there is a nbhd U of p contained in U1 ∩ U2 such that

f1(x) = f2(x) for all x ∈ U . The germ of f is the equivalence class of f , and will be
denoted by [f ]. The three subsets of mapgrm((M, p) → (N, q)) consisting of germs
of f such that f ′(p) : TpM → TqN is (i) one-to-one (ii) onto and (iii) an isomorphism
are denoted by (i) immgrm((M, p)→ (N, q)), (ii) sbmgrm((M, p)→ (N, q)) and (iii)
diffgrm((M, p)→ (N, q))

autgrm(M, p) is defined to be diffgrm((M, p)→ (M, p)).
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(1) For [f ] ∈ mapgrm((M, p) → (N, q)) and g ∈ mapgrm((N, q) → (S, r)) define
[g] ◦ [f ] ∈ mapgrm((M, p)→ (S, r)).

(2) Show that the above binary operation ◦ turns autgrm(M, p) into a group.
(3) We have an action of the group autgrm(N, q) × autgrm(M, p) on the set

mapgrm((M, p)→ (N, q)) given by

([g], [h]).[f ] = [g] ◦ [f ] ◦ [h]−1

The subsets (i), (ii) and (iii) listed above, of mapgrm((M, p) → (N, q)), are
also taken into themselves by this group action. This group action restricts
to an action of the subgroups autgrm(N, q) and autgrm(M, p).

There are nine questions:
which of the three groups autgrm(N, q), autgrm(M, p), autgrm(N, q)×autgrm(M, p)

fails to act transitively on the sets (i) immgrm((M, p)→ (N, q)), (ii) sbmgrm((M, p)→
(N, q)) and (iii) diffgrm((M, p)→ (N, q))?

Problem 5.14. Given (M, p) and (N, q) and a non-negative integer r consider the set
of C∞ maps f : (U, p)→ (N, q) (where U is a nbhd of p in M) such that rank(f ′(x)) =
r for all x ∈ U . Denote the set of germs of such maps by mapgrmr((M, p)→ (N, q)).
Which of the three groups autgrm(N, q), autgrm(M, p), autgrm(N, q)× autgrm(M, p)
fails to act transitively on mapgrmr((M, p) → (N, q))? (The rank theorem in [14] is
another corollary of the Inverse function thm, and this is useful here.)

Problem 5.15. Let p : M̃ → M be the universal covering space of a topological

manifold M . Let Γ be the group of covering transformations. Assume that M̃ has
been given a C∞ structure.

Then M itself acquires the structure of a ringed space: given an open subset U of
M , we define R(U) ⊂ C0(U) by

∀f ∈ C0(U), f ∈ R(U) ⇐⇒ p∗f ∈ C∞(p−1(U))

Show that the ringed space (M,R) is a C∞ manifold if and only if every covering

transformation is a diffeomorphism of M̃ .

Problem 5.16. Let p : R2 → M be the universal cover of the Mobius band. The
covering transformations are (x, y) 7→ x + m, (−1)my) for all m ∈ Z. The previous
problem defines a C∞ structure onM . Let A = p(R× {0}). This A is a subset of M
homeomorphic to a circle. Is there a C∞ function f : M → R for which b ∈ R is a
regular value and f−1(b) = A?

6. transversality

[12, 5, 8] are all excellent references.

Definition 6.1. M,N, f : M → N are all C∞ and A is a closed C∞ submanifold of
N .

Let p ∈M . Let q = f(p). f is said to be transverse to A at p if
(a) q /∈ A or
(b) q ∈ A and TqA+ f ′(p)TpM = TqN .
f is transverse to A on a subset D ⊂ M if f is transverse to A at every point

p ∈ D.
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If this condition is satisfied for D = M , then f is said to be transverse to A.
One checks easily that the set B = {p ∈ M :f is not transverse to A at p} is a

closed subset of f−1(A) and in particular a closed subset of M
A point a ∈ N is a regular value of f if f : M → N is transverse to the submanifold
{a} of N–in other words, f ′(p) is surjective whenever f(p) = a.

Proposition 6.2. If f is transverse to A, then f−1(A) is a C∞ submanifold. Fur-
thermore (with notation as above, for all p ∈ f−1(A), q = f(p) ∈ A,

the linear transformation f ′(p) : TpM → TqN takes Tpf
−1(A) into TqA and induces

an isomorphism of quotient-spaces f ′(p) : TpM/Tpf
−1(A)

∼=−→ TqN/TqA.
In particular, if a ∈ N is a regular value of f then f−1(a) is a submanifold whose

tangent-space at p equals the kernel of f ′(p).

7. miscellany

One ought to know the definition of p : E → B is a fiber bundle ( see any of
[17, 9, 6]).

Straight from the definition, one checks that
(A) if pi : Ei → B are fiber bundles for i = 1, 2, then E1×BE2 → B is a fiber bundle.
(B) if If p : E → B is a fiber bundle and if f : Y → B is continuous, then the the
projection Y ×B E → Y turns the fiber product into a fiber bundle on Y . This fiber
bundle is often denoted f ∗E.
(C) It should be easy to guess what the definition of a C∞ fiber bundle is. One ought
to check the counterparts of (A) and (B) in this context. One should note that the
definition of “p : E → B is a C∞ fiber bundle” implies that p is a submersion. This
observation shows that the fiber products in (A) and (B) are indeed C∞ manifolds (
see hw 3).

Remark 7.1. A section of a fiber bundle p : E → B is a continuous s : B → E such
that p(s(x)) = x for all x ∈ B. If the fiber bundle and the section s are both C∞ then
the tangent-space Ts(x)E is the direct sum of the tangent-spaces of the submanifolds
p−1(x) and s(B) at that point s(x).

One should also know what a vector bundle is (see [17, 9, 2]) and also the definition
of a C∞ vector bundle of a C∞ manifold. Facts (A) and (B) above are also valid for
vector bundles.

Remark 7.2. Pointwise addition of C∞ sections of a C∞ vector bundle p : V → M
turns the set of C∞ sections, denoted by Γ(M,V ) henceforth, into a commutative
group. Given a C∞ real-valued function f and s ∈ Γ(M,V ) we get another section
fs given by (fs)(x) = f(x)s(x). We see that Γ(M,V ) now inherits the structure of
a module over the ring of C∞ functions on M .

In particular, every vector bundle p : V → M has the zero section, which we’ll
denote by 0V : M → V . The tangent-space of V at 0V (x) is the direct sum of the
tangent-spaces of p−1(x) and 0V (M) at that point, by 7.1.

Two examples have been encountered so far:

Example 7.3. The tangent bundle TM of a C∞ manifold M (see [18, 10, 7, 3]).
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Given a C∞ map, we have Tf : TM → TN given by Tf(v) = f ′(x)v for all
v ∈ TxM .

The complement of the zero section of the tangent bundle TM will be denoted
henceforth by T ′M .

Example 7.4. The normal bundle N of a locally closed C∞ submanifold Y of Rm.
It is given by

N = {y, v) ∈ Y × Rm :< w, v >= 0∀w ∈ TyY }
Now N is a closed C∞ submanifold of Y × Rm. Denoting (y, v) 7→ y by p : N → Y
one checks that p : N → Y is a C∞ vector bundle on Y .

For ε > 0, let Nε = {(y, v) ∈ N : ‖v‖ < ε}. This is an open subset of N
that contains the zero section 0N(Y ) = {(y, 0) : y ∈ Y }. Define A : N → Rm

by A(y, v) = y + v for all (y, v) ∈ N . A simple computation (an application of 7.1
and/or 7.2) shows that A′(p) is an isomorphism for every p ∈ 0V (Y ). From the inverse
function thm and the local compactness of Y one deduces
the tubular nbhd thm there are open subsets Ω ⊂ N and U ⊂ Rm such that
(a) 0V (Y ) ⊂ Ω and
(b) A|Ω : Ω→ U is a diffeomorphism.

When Y is compact then we may take Ω = Nε for some positive ε.

Corollary 7.5. Every C∞ submanifold Y of Rm is contained in an open subset U ⊂
Rm that is equipped with a C∞ map r : U → Y such that r(y) = y for all y ∈ Y .

In fact, if B : U → Ω is the inverse of the diffeomorphism A|Ω of the tubular nbhd
thm, then r = p ◦ B is the desired retraction (with p : N → Y as in the notn of the
tubular nbhd thm).

It is easy (and shown in class) to prove that every compact (Hausdorff) C∞ manifold
can be embedded in RN for some N . The same statement is true for arbitrary second
countable Hausdorff C∞ manifolds Y . We will assume this and proceed to rewrite
the previous corollary as

Corollary 7.6. Let Y be a C∞ second countable Hausdorff manifold. Then there
exists an open subset U ⊂ Rm and C∞ mappings i : Y → U and r : U → Y such that
r(i(y)) = y for all y ∈ Y .

8. Sard’s theorem and applications

The proof of Sard’s thm given in class is taken from [12]. Sard’s thm (both state-
ment and proof) for Ck maps is due to Whitney– see [13].

Theorem 8.1. Sard’s theorem If f : M → N is C∞ then the complement in N of
the set of regular values of f is a set of measure zero.

Remark 8.2. If f : Rn → R is a polynomial function, then the complement of the
set of regular values is a finite set.

If f ∈ C[x1, ...., xn] then f : Cn → C given by x 7→ f(x) has its regular values as
the complement of a finite subset of C. The proof of such statements require some
rudimentary algebraic geometry.

Corollary 8.3. If M,N and f : M → N are all C∞ and if dim(M) < dim(N), then
f(M) has measure zero. In particular, f is not surjective.
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Proof. In fact a ∈ N is a regular value of f iff f−1(a) is empty.
�

The four applications of Sard’s theorem we are concerned with follow a fixed pat-
tern. The simplest of all is the standard and important lemma below. See 7.2 for the
definition of a section of a vector bundle.

Lemma 8.4. Let p : V →M be a C∞ bundle. Let s1, ...sr be C∞ sections of V . As-
sume that for every x ∈M , the vector space p−1(x) is spanned by s1(x), s2(x), ..., sr(x).

Then for almost all (a1, ..., ar) ∈ Rr the section a1s1 + a2s2 + ...arsr of V meets the
zero-section of V transversally. In particular, for such (a1, ..., ar) the set

Z(a1, ..., ar) = {x ∈M : a1s1(x) + ...arsr(x) = 0}
is a C∞ submanifold of M .

Proof. Define A : M × Rr → V by A(x, a1, ..., ar) = a1s1(x) + ...arsr(x).
Step 1: Show A is a submersion. In particular, A is transverse to the zero section
0V (M) of V . Its inverse image Z = A−10V (M) is therefore a C∞ sbmanifold of V .
Let q = p2 ◦ i where i : Z ↪→M × Rr denotes the inclusion and p2 : M × Rr → Rr is
the projection. Note that q−1(a1, ..., ar) = Z(a1, ..., ar) for all (a1, ..., ar) in Rr.
Step 2: Prove that (a1s1 + ...+arsr) : M → V is transverse to 0V (M) iff (a1, ..., ar) is
a regular value of q (an application of the frequently employed lemma below). Now
appeal to Sard’s theorem.

�

Lemma 8.5. Let p : P → S be a submersion and let f : P → N be transverse to a
C∞ submanifold W ⊂ N . Let B = f−1(W ). Let q = p|B : B → S. Now let s ∈ S.
Then
s is a regular value of q iff f |p−1(s) : p−1(s)→ N is transverse to W .

We shall discuss next perturbations/deformations of a given C∞ map f0 : X → Y .
The definition is given below. The properties (a,b,c) listed in 8.6 below ensure that
there exist fs with desirable properties (see 8.7, 8.9 and 8.10).

Definition 8.6. X, Y, f0 : X → Y are all C∞. A deformation of f0 is a C∞ map
F : X × S → Y where S is a nbhd of 0 in Rk and F (x, 0) = f0(x) for all x ∈ X. For
s ∈ S, the C∞ map fs : X → Y is then given by fs(x) = F (x, s) for all x ∈ X.

There are three conditions on F that we are concerned with:
(a) the linear transformation F ′(x, 0) : T(x,0)(X × S)→ Tf0(x)Y is onto for all x ∈ X

Define F̃ : T ′X × S → TY by F̃ (v, s) = T (fs)v for all v ∈ T ′X, s ∈ S (see 7.3 for
the notation T ′X and T (fs).

(b) F̃ is transverse to the zero-section of TY on the subset T ′X × {0}. See 6.1 for
notation.

Let (X ×X)′ be the complement of the diagonal ∆X in X ×X.
Define G : (X ×X)′ × S → Y × Y by

G(x1, x2, s) = (fs(x1), fs(x2))∀(x1, x2) ∈ (X ×X)′,∀s ∈ S.
(c) G is transverse to ∆Y on the subset (X ×X)′ × {0}.

The proposition below will lead to a proof of Thom’s transversality lemma.
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Proposition 8.7. Assume that X is compact and that F satisfies 8.6(a). Let A ⊂ Y
be a closed C∞ submanifold. Then for almost all s ∈ S ′, where S ′ is a nbhd of zero
in S, the map fs : X → Y is transverse to A.

Proof. X × {0} is contained in the open subset {(x, s) ∈ X × S :
the linear transformation F ′(x, s) is onto } of X × S. The compactness of X assures
us that this open subset contains X×S ′ where S ′ is a nbhd of 0 in S. It will simplify
notation to replace the given (S, F ) by (S ′, F |X×S′). We proceed doing so. Thus
we now assume that F ′(x, s) is surjective for all (x, s) ∈ X × S. In other words, F
is a submersion. It follows that F is transverse to every C∞ submanifold of Y , in
particular to A. Thus F−1(A) is a C∞ submanifold of X × S. By Sard’s theorem,
the set of regular value s of the projection F−1(A) → S is the complement of a set
of measure zero. By lemma 8.5 the set of regular values of that projection coincides
with set of s ∈ S for which fs : X → Y is transverse to A.

�

Definition 8.8. If V is a vector space over a field F , its projective space P(V ) is the
set of one-dimensional linear subspaces of V .

Let p : V → Z be a C∞ vector bundle on a C∞ manifold. Every z ∈ Z gives rise to
a real vector space p−1(z) and therefore to a real projective space P(p−1(z)) as well.
The disjoint union of these projective spaces, indexed by z ∈ Z, is the set P(V ). Let
V ′ denote the complement in V of its zero section 0V (Z). There is a surjective map
q : V ′ → P(V ) given as follows. For z ∈ Z and 0 6= v ∈ p−1(z) , we define q(v) to be
the one-dimensional subspace Rv of p−1(z).

Both the topology and C∞ structure on P(V ) are dictated by q : V ′ → P(V ).

The proposition below will lead to a proof of Whitney’s immersion theorem.

Proposition 8.9. Assume that X is compact and that F satisfies 8.6(b). Then the
collection S0 of s ∈ S for which Tfs|T ′X : T ′X → TY is transverse to the zero section
of TY contains the complement of a set of measure zero in a nbhd of 0 in S.

For s ∈ S0, the closed subset Ks = {(x, L) : x ∈ X,L ∈ P(TxX), f ′(x)L = 0} of
P(TX) is a C∞ submanifold whose dimension is 2 dim(X)− dim(Y )− 1.

In particular, fs is an immersion for s ∈ S0 when 2 dim(X) ≤ dim(Y )

Proof. B = {(v, s) ∈ T ′X×S : F̃ is not transverse to the zero section of TY at (v, s)}
is a closed subset of T ′X × S (see 6.1). Now F̃ (tv, s) = tF̃ (v, s) for all t ∈ R, (v, s) ∈
T ′X×S. It follows that there is a closed subset B ⊂ P(TX)×S such that B = q̃−1B
where q̃ = q × idS : T ′X × S → P(TX)× S with q : T ′X → P(TX) as in 8.8.

The assumption 8.6(b) says that B ∩ T ′X × {0} is empty. It follows that B ∩
P(TX) × {0} is empty. Furthermore P(TX) is compact (because P(TX) → X is
proper and X is compact). Replacing S by a suitable nbhd of 0 in S we may assume

that B is empty, in other words that F̃ is transverse to the zero section 0TY (Y ) of
TY .

We take S0 to be the set of regular values of C∞ map F̃−10TY (Y ) → S. The
first assertion of the proposition now follows from Sard’s theorem and 8.5 as before.

For s ∈ S0 we see that K̃s = f−1
s 0TY (Y ) is a closed C∞ submanifold of T ′Y whose

dimension is dimT ′X − (dimTY − dim 0TY Y ) which is 2 dim(X)− dim(Y ). Because

q : T ′X → P(TX) is a submersion with one-dimensional fibers and K̃s = q−1Ks
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the second assertion of the proposition follows. That assertion also shows that Ks

is empty for s ∈ S0 if “dimKs < 0” and that is exactly the same as saying that
fs : X → Y is an immersion. This completes the proof. �

The proposition below will lead to a proof of the Whitney embedding theorem.
But if this is the only application we are concerned with, the proof could be much
shorter (see 8.14 below).

Proposition 8.10. Assume that X is compact and that the deformation F of f0

satisfies 8.6(b) and (c). Let S00 be the collection of s ∈ S that satisfies

(1) fs|T ′X : T ′X → TY is transverse to the zero section of TY
(2) gs : (X ×X)′ → Y × Y given by gs(x1, x2) = (fs(x1), fs(x2)) is transverse to

∆Y .

Then S00 contains the complement of a set of measure zero in a nbhd of 0 in S.
If 2 dim(X) < dim(Y ) then fs is an embedding for all s ∈ S00.

Proof. As in the proof of 8.9 we may assume that F̃ is transverse to the zero section of
TY . The set C = {(x, x′, s) ∈ (X ×X)′×S : G is not transverse to ∆Y at (x, x′, s)}
is a closed subset of (X ×X)′ × S (as has been remarked in 6.1).
Claim: C is a closed subset of X ×X × S.

We assume the claim and proceed. 8.6(c) says that C ∩X ×X ×{0} is empty. By
the compactness of X × X we may shrink S once again to a smaller nbhd of 0 and
now assume that C is empty. It follows that M = G−1∆Y is a C∞ submanifold of

(X ×X)′× S. We intersect the set of regular values of F̃−1(0TY Y )→ S with the set
of regular values of M → S and observe (appealing to 8.5 again) that all s in this
intersection are members of S00. This proves the first assertion of the proposition.
Now for the second assertion. By 8.9 we know fs is an immersion for s ∈ S00. That
fs is one-to-one follows from dim g−1

s (∆(Y )) < 0.
We now address the claim. The statement is local in nature, and we may therefore

assume that X and Y are open subsets of vector spaces V and W respectively. We
have natural identifications TX ∼= X×V and TY ∼= Y ×W ( and we simplify notation
by replacing these ∼= by =). Let V ′ = V \ {0}.

Define A : X × V ′ × S → W by A(x, v, s) = f ′s(x). The assumption that F̃ is
transverse to the zero section of TY is clearly equivalent to the assumption that 0 is
a regular value of the C∞ map A.

Now consider the open subset Ω = {(x, v, t) ∈ X × V ′ × R : x + tv ∈ X}. The
function (x, v, t, s) 7→ F (x+ tv, s)−F (x, s) defined on Ω×S vanishes when t = 0 and
by 1.8 we see that it equals tR where R : Ω× S → W is C∞. We see that R|t=0 = A
from the definition of derivative. Thus our assumption is that 0 is a regular value of
R|t=0. It follows that for compact subsets K1 ⊂ X,Ks ⊂ V ′, K3 ⊂ S there is a nbhd
I of 0 in R such that K1×K2× I is contained in Ω and R|t=h is transverse to 0 ∈ W
on the subset K1 ×K2 ×K3 for all h ∈ I. In other words,

(x, v, s) 7→ F (x+ hv, s)− F (x, s)

h

is transverse to 0 ∈ W at all (x, v, s) ∈ K1 ×K2 ×K3 for all h ∈ I.
It follows that (x, v) 7→ F (x + v, s) − F (x, s) is transverse to 0 ∈ W for all x ∈

K1, v ∈ {h ∈ I : h > 0}K2, s ∈ K3. We take K2 to be a sphere centered at zero in
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V . We deduce that {h ∈ I : h > 0}K2 contains a punctured nbhd U∗ of zero in V .
It follows that if H(x, x′, s) = F (x′, s)− F (x, s) then H is transverse to 0 ∈ W at all
(x, x′, s) when s ∈ K3, x ∈ K1, x

′ − x ∈ U∗. But C is simply the subset at which H
is not transverse to the submanifold {0}. We have now shown the closure of C does
not intersect ∆K1 ×K3. It follows that no point of ∆X × S is in the closure of C.
This proves the claim, and therefore completes the proof of the proposition as well.

�

Problem 8.11. Let X be a locally closed C∞ submanifold of a finite dimensional
vector space V , We have V ′ = V \ {0} and q : V ′ → P(V ). (a) Prove that the closure
of {(x, x′, q(x′ − x)) : x, x′ ∈ X, x 6= x′} in X × X × P(V ) is C∞ submanifold B
(referred to as the blow-up of X ×X along the diagonal). (b) Prove that B has an
open subset U that is diffeomorphic to (X ×X)′. (c) Prove that the complement of
U in B is a closed C∞-submanifold that is diffeomorphic to P(TX).

This construction may be employed (i) to make the proof of the above proposition
more conceptual and (ii) also to show that S00 is open.

Problem 8.12. Let f0 : S1 → R2 be the inclusion. Show that there is a sequence of
C∞ maps fn : S1 → R2, none of which is an embedding, but which converge uniformly
to f0.

Problem 8.13. Parametrise the circle by (cos(θ), sin(θ)). Let fn : S1 → R2 be a
sequence of maps that converges uniformly to a C∞ map f0 : S1 → R2. Assume
furthermore that ∂

∂θ
fn converges uniformly to ∂

∂θ
f0. Show that if f0 is an embedding,

then the fn are embeddings as well for all sufficiently large n.

Problem 8.14. In proposition 8.10 assume that f0 : X → Y is an immersion. An
earlier hw problem shows that by shrinking S we may assume that fs is an immersion
for all s ∈ S. Now give a self-evident proof of the claim in the proof of 8.10. Next
deduce Whitney’s embedding theorem as stated in thm. 8.17 from the immersion
thm.

Lemma 8.15. If X, Y, f0 : X → Y are all C∞ there exist deformations F of f0 that
satisfy 8.6 (a), (b) and (c).

Remark 8.16. The proof given below is for X is compact. We will also rely on
7.6 which in turn depends on embedding Y as a locally closed C∞ submanifold of
Euclidean space. Thus the proof given in these notes (so far) is complete only when
(a) Y is compact or Y is open in Euclidean space and (b) X is compact.

Proof. We will assume that (i) X is a compact C∞ submanifold of a finite dimensional
real vector space V and (ii) we have i, r, U as in 7.6 with U an open subset of a finite
dimensional vector space W .

Hom(V,W ) is the space of linear transformations from V to W . We define

D : X ×W × Hom(V,W )→ W by D(x,w, L) = i(f0(x)) + w + L(x)

forall x ∈ X,w ∈ W,L ∈ Hom(V,W ).

(3) D(x, 0, 0) = i(f0(x)) ∈ U for all x ∈ X.
By the compactness of X we obtain a nbhd S of 0 in W × Hom(V,W ) such that
D(X × S) is contained in U . We define F to be r ◦ D|X×S. We may assume that
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S = S ′ × S ′′ where S ′ and S ′′ are nbhds of 0 in W and Hom(V,W ) respectively.
Equation (3) and the identity r ◦ i = idY show that F is a deformation of f0.

Fix some x ∈ X. Put y = f0(x). Then consider the map S ′ → Y given by
w 7→ F (x,w, 0). The derivative of this map at 0 ∈ S ′ is the linear transformation
w 7→ r′(y)w which is a surjection W → TyY . This proves that F satisfies (a).

We now check that F satisfies 8.6(c). With x ∈ X and y = f0(x) as above,
consider next the map S ′′ → Y given by L 7→ F (x, 0, L). Its derivative at 0 ∈ S ′′

is the linear transformation L 7→ r′(y)L(x). Now suppose x′ ∈ X also satisfies
f0(x′) = y. Assume that x′ 6= x. It follows that the derivative of S ′′ → Y × Y given
by L 7→ G(x, x′, 0, L) at 0 ∈ S ′′ is the linear transformation Hom(V,W )→ TyY ×TyY
gievn by the formula L 7→ (r′(y)L(x), r′(y)L(x′). Because 0 6= x− x′ ∈ V we see that
L 7→ r′(y)L(x) − r′(y)L(x′) = r′(y)L(x − x′) is surjective. This implies that G is
transverse to ∆Y at (x, x′, 0, 0). This proves that F satisfies (c).

We now come to (b). We have D : X×S → U and therefore the map D̃ : T ′X×S →
T (U) defined in an analogous manner. We fix x ∈ X, 0 6= u ∈ TxX and consider the

map E : S → T (U) given by (w,L) 7→ D̃(u,w, L). Now the tangent-spaces at all
points of U are identified canonically with W , and this gives a natural identification
R : T (U)→ U ×W . We see that

E(w,L) = (if0(x) + w + L(x), (if0)′(x)u+ L(u))

This is a constant plus a linear transformation, so its derivative at any point is the
linear transformation

(w,L) 7→ (w + L(x), L(u))

which is clearly surjective. We have shown that D̃ is a submersion.

Now F̃ = T (r)◦ D̃ ( see 7.3 for the definition of T (r)). Now r ◦ i = idY implies that

T (r) ◦ T (i) is the identity on TY . It follows that F̃ induces a surjection on tangent-
spaces at T ′X × {0} which more than checks the desired transversality condition of
(b).

�

The above lemma and the three preceeding propositions now finish the proofs of
the following three theorems.

Theorem 8.17. Let X, Y, f0 : X → Y be C∞. Assume X is compact. Let A be a
closed C∞ submanifold of Y . Let ε > 0. Then there exists a C∞ map f : X → Y
with d(f0(x), f(x)) < ε for all x ∈ X with the property

(1) (the transversality lemma) f is transverse to A
(2) (Whitney’s immersion theorem) f is an immersion if if 2 dim(X) ≤ dim(Y )
(3) (Whitney’s embedding theorem) f is an embedding if 2 dim(X) < dim(Y ).

Remark 8.18. There are formulations with “approximation” replaced by homotopy.
The precise relation between these concepts when the domain is compact is a hw 3
problem.

Problem 8.19. A closed subset A of a C∞ manifold Y has the property that there
is an increasing sequence of closed subsets ∅ = A−1 ⊂ A0 ⊂ ... ⊂ Ar = A such that
for all 0 ≤ i ≤ r, Ai \ Ai−1 is C∞ submanifold of dimension i of Y \ Ai−1. Let X be
a compact C∞ manifold. Assume that dim(X) + r < dim(Y ). Prove that every map
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C∞ map f : X → Y , where X is a compact C∞ manifold of is homotopic to a map
g : X → Y such that g(X) ∩ A is empty.

Under the weaker assumption dim(X) + r ≤ dim(Y ) prove that there is a g such
that g(X) ∩ A is a finite set.

9. degree

[12, 8, 5] are excellent references.
A very nice self-contained account of Duality is given in [4].
We will need the following theorem(see[4],[16])

Theorem 9.1. If X is a compact connected (non-empty) orientable n-manifold, then
Hn(X) ∼= Z. For every x ∈ X, the natural arrow Hn(X) → Hn(X,X \ {x}) is an
isomorphism.

If one works with singular homology with Z/2Z coefficients, then the above state-
ments are true even after dropping the hypothesis of orientability.

Definition 9.2. An orientation θX of a (compact connected orientable nonempty)
X is a generator of Hn(X).

Let x ∈ X. The image of θX in Hn(X,X \ {x}) is denoted by θX(x). Now let U
be a nbhd of x ∈ X. We obtain a unique θU(x) ∈ Hn(U,U \ {x}) that is taken to
θX(x) under the arrow Hn(U,U \ {x})→ Hn(X,X \ {x}) (recall that this arrow is an
isomorphism by excision).

Definition 9.3. Let f : X → Y be a continuous map where X, Y are compact
connected nonempty oriented n-manifolds. deg(f) is the unique integer such that
Hn(f)θX = deg(f)θY .

Let x ∈ X. Assume that x is an isolated point of the closed set f−1f(x). We
then obtain nbhds Ux of x in X and Uy of y = f(x) in Y such that f(Ux) ⊂ Uy
and f(Ux \ {x}) ⊂ Uy \ {y}. We define degx f to be the unique integer such that
θUxx 7→ (degx f)θUyy under Hn(Ux, Ux \ {x})→ Hn(Uy, Uy \ {y}).

It is easy to check that degx f is in fact independent of the choice of Ux, Uy.
If the hypothesis of orientability is dropped, then deg(f) and degx f are still well

defined in Z/2Z.

Theorem 9.4. Let f : X → Y be a continous map, where both (X, θX) and (Y, θY )
are compact connected nonempty oriented manfolds. Assume that y ∈ Y has the
property that f−1(y) is finite. Then

deg(f) = Σ{degx f : x ∈ f−1(y)}

Proof. Put S = f−1(y). First show that there is a nbhd Uy of y whose inverse image
is the disjoint union pairwise disjoint nbhds Ux of x for all x ∈ S. Let U = tx∈SUx.

Consider

(1) X
f−→ Y → (Y, Y \ {y})

(2) X → (X,X \ S)
f−→ (Y, Y \ {y})

(3) (U,U \ S)→ (X,X \ S)
f−→ (Y, Y \ {y})

(4) (U,U \ S)
f−→ (Uy, Uy \ {y})→ (Y, Y \ {y})

(5) (Ux, Ux \ {x})
i(x)−−→ (U,U \ S)

f−→ (Uy, Uy \ {y})
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We are concerned with the effect of the above arrows on n-th relative homology.
The effect of the arrows in (1) on θX is:
θX 7→ deg(f)θY 7→ deg(f)θY (y).
Now the composite of the arrows in (1) and (2) is the same. Define θXS by θX 7→

θXS under Hn(X)→ Hn(X,X \S) We see therefore that f : (X,X \S)→ (Y, Y \{y})
on n-the relative homology takes θXS to deg(f)θY (y).

By excision, (U,U \ S) → (X,X \ S) induces an isomorphism on all homologies.
Thus we get θU(S) ∈ Hn(U,U \ S) that is taken to θX(S) under Hn(U,U \ S) →
Hn(X,X \ S). We now see that the composite of the arrows in (3) takes θU(S) to
deg(f)θY (y). The composite of the arrow in (3) is no different from the composite of
the arrows in (4). By the definition of θUy(y) we deduce that θU(S) 7→ deg(f)θUyy

under the map (U,U \ S)
f−→ (Uy, Uy \ {y}).

By the defintion of degx f , the composite of the arrows in (5) takes θUxx to
(degx f)θUyy. Thus the theorem is a consequence of the claim:

Σ
x∈S

i(x)θUxx = θU(S)

with the i(x) as in (5).
We now verify the above claim. Consider the sequence of arrows below.

⊕
x∈S

Hn(Ux, Ux \ {x})→ Hn(U,U \ S)→ Hn(X,X \ S)→ ⊕
x∈S

Hn(X,X \ {x})

The first is evidently an isomorphism. the second is an isomorphism by excision. The
composite is given by a S × S matrix. The diagonal entries of this matrix are the
isomorphisms

Hn(Ux, Ux \ {x})→ Hn(X,X \ {x})
for all x ∈ S. The off-diagonal entries are

Hn(Ux, Ux \ {x})→ Hn(X,X \ {x′})

for x 6= x′;x, x′ ∈ S. Because Ux is contained in X \{x′} these off-diagonal entries are
zero. It follows that the composite of the second and third arrow is an isomorphism,
and this composite takes both

Σ
x∈S

i(x)θUxx and θU(S)

to

⊕x∈SθX(x) ∈ ⊕x∈SHn(X,X \ {x})
This shows the equality of those two elements that crop up in the claim. �

Remark 9.5. Now assume that the X, Y, f in the theorem are all C∞. Let y be
a regular value of f . Then f−1(y) is discrete, being a 0-submanifold, and compact,
and is therefore finite. Wth notation as above the Ux → Uy are diffeomorphsms and
therefore the degx f ∈ {±1}.

Problem 9.6. Let X and Y be compact oriented surfaces of genus g1 and g2 respec-
tively. Suppose f : X → Y is a map with deg(f) 6= 0. Show that g1 ≥ g2. Hint:
Consider the ring homomorphism f ∗ on cohomology with rational coefficients.
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Problem 9.7. Let P ∈ C[X]. Then z 7→ P (z) gives a map C→ C which extends to
a continuous map P ∗ : C ∪∞ → C ∪∞ of one-point-compactifications. Show that
dega(P

∗) is the highest power of (X − a) that divides P (X)− P (a) in the ring C[X]
for every a ∈ C. What is deg∞(P ∗)?

With P ∈ R[X] and P ∗ : R ∪∞ → R ∪∞ figure out a formula for dega(f) for all
a ∈ R ∪∞.

Problem 9.8. Let n > 1. Fix a point v0 ∈ Sn−1 = {x ∈ Rn :< x, x >= 1}. For
every v ∈ Sn−1 that is orthogonal to v0, define gv : C→ Rn by gv(a+ ib) = av0 + bv
for all a, b ∈ R.

Show there is a unique map f : Sn−1 → Sn−1 such that f(gv(z)) = gv(z
2) for all

z ∈ C : |z| = 1 and for all v ∈ Sn−1” < v, v0 >= 0.
Prove that deg(f) = 1 + (−1)n.

10. direct sums, tensor products, exterior products, duals, etc of
vector bundles

Any construction of a ‘new vector space from some old ones’ has an analogue for
vector bundles. For example, given vector bundles pi : V1 → B and p2 : V2 → B
there is a vector bundle p : V1⊗V2 on B whose fiber p−1(x) over x ∈ B is canonically
identified with p−1

1 (x)⊗ p−1
2 (x). If the Vi are C∞ bundles then so s V1 ⊗ V2.

One may construct such things by (a) patching, (b) principal bundles and associated
fiber spaces, (c) sheaves. These notes have a brief version of (b). Both (b) and (c)
work in great generality (beyond C∞ situations).

See [17, 9] for the definition below:

Definition 10.1. a principal G-bundle on a space B consists of the data

(1) a map π : P → B
(2) a right G-action on P such that

(a) π(xg) = π(x) for all x ∈ P
(b) X is covered by its open subsets U for which there is a homeomorphism

f : U ×G→ π−1(U) such that

πf(z, g) = z and f(z, hg) = f(z, h)g for all z ∈ U ;h, g ∈ G
Given an action of G on a space F the associated fiber space is the quotient of

P × F by the equivalence relation (zg, y) ≡ (z, gy) for all z ∈ P, g ∈ G, y ∈ F . The

associated fiber space is denoted P ×G F . The composite P × F p1−→ P
π−→ B factors

through P ×G F → B. It is easily checked that P ×G F → B is a fiber bundle with
fiber F .

Of special interest are representations ρ : G → GLm(R). Such a ρ gives an action
of G on Rm. The associated fiber space P ×G Rm is then a vector bundle of rank m
on B.

Example 10.2. See [?, 10]. A real rank k vector bundle p : V → B gives rise to its
bundle of frames: P is the open subset of the k-fold fiber product

V k
B = V ×B V ×B V × ...×B V

consisting of those (v1, v2, ..., vk) which form a basis for the vector space p−1(x). We
then have π(v1, ..., vk) = p(v1) which gives π : P → B.
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Next notice that for all x ∈ B, every point (v1, ..., vk) of π−1(x) gives rise to an
isomorphism φ : Rk → p−1(x), namely φ(a1, a2, ..., ak) = a1v1 + a2v2 + ...+ akvk. This
leads to the description of P as tx∈BIso(Rk, p−1(x)). Now given φ ∈ Iso(Rk, p−1(x))
and g ∈ GLk(R) we get φ◦ g ∈ Iso(Rk, p−1(x)). This gives the right action of GLk(R)
on P .

Remark 10.3. These constructions make it possible to construct new bundles from
old ones in the following manner. Given a real rank k vector bundle p : V → B we
consider its bundle of frames π : P → B; this is a principal GLk(R)-bundle. The
fiber space associated to a representation ρ : GLk(R) → GLm(R) is a real rank m
bundle on B. Let us denote this bundle by ρV . When m = k and ρ = id then ρV is
canonically identified with V .

To obtain the dual bundle V ∗, we take ρ(A) = (tA)−1, for all A ∈ GLk(R).
To obtain Λ2(V ) we consider ρ : GLk(R)→ GL(Λ2(Rk)) given by ρ(A) = AΛA.
Given vector bundles pi : Vi → B for i = 1, 2 , we may construct V1⊗V2 as follows.

We have the frame bundles π : i : Pi → B of the vector bundles pi : Vi → B. Denoting
the fiber prodct P1 ×B P2 by P we see that P is a principal G-bundle on B, where
G = GLk1(R) × GLk2(R). We consider the representation ρ : G → GL(Rk1 ⊗ Rk2)
given by (S, T ) 7→ S ⊗ T .

Remark 10.4. Let B be a C∞ manifold. We have the sheaf of R-algebras C∞B on B.
It has already been remarked that Γ(B, V ) is a module over the ring of C∞ functions
on B. The presheaf defined by U 7→ Γ(U, V |U) for all open subsets U of B is in reality
a locally free sheaf of modules over C∞B . Let us denote this sheaf by C∞(V ).

One shows that V 7→ C∞(V ) establishes an equivalence of the category of C∞

bundles on B and the category of locally free sheaves of C∞B -modules.

11. fundamental groupoid

12. Thom isomorphism

Given a fiber bundle E → B with fiber F the cohomology of E can be computed
from the cohomology of B, that of F , and plenty of other information recorded by
the Leray spectral sequence.

The Thom isomorphism is a special case, and works better with sheaf cohomology.
It will be stated first in this form. The version ?? for singular cohomology is stated
later.

The data is a real rank k bundle p : V → B, as before V ′ is the complement of the
the zero section 0V (B). The Thom isomorphism for sheaf cohomology states

There is a natural isomorphism Hi(B,OrV ) ∼= Hi+k
0V (B)(V )

Identification of the above groups with those arising from singular cohomology
requires some hypotheses on B.

* We assume that the collections of contractible open subsets forms a basis for the
topology of B.

For an open subset U of B, denote the pair (p−1(U), p−1(U) ∩ V ′) by (VU , V
′
U).

To each such U , we associate the Abelian group Hk(VU , V
′
U). Cohomology is a con-

travariant functor, and so we see that this defines a presheaf on B. Its sheafification
is the Orientation sheaf OrV . The hypothesis * on B ensures that all the stalks of this
sheaf are isomorphic to Z (why?) An orientation of V is a global section s of OrV
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such that s(x) is a generator the stalk of OrB at x for all x ∈ B. If an orientation
exists, then V is said to be orientable. It is clear that V is orientable if and only if
its restriction to each connected component of B is orientable. If B is connected and
s is an orientation, then the only other orientation is (−s).

The term Hi+k
0V (B)(V ) is simply Hi+k(V, V ′). In view of the fact that cohomology( ei-

ther sheaf cohomology or singular cohomology) with values in locally constant sheaves
has still be defined, the Thom isomorphism will be stated below in a weaker form
which is adequate when V is orientable.

Theorem 12.1. (1) Hi(V, V ′) = 0 for all i < k (where k is the rank of V ).
(2) The natural arrow Hk(V, V ′)→ Γ(B,OrV ) is an isomorphism.
(3) Let s ∈ Γ(B,OrV ) be an orientation. By the above statement s has a pre-image

θ in Hk(V, V ′).
a ∈ Hi(B) 7→ p∗a.θ ∈ Hi+k(V, V ′) yields an isomorphism Hi(B)→ Hi+k(V, V ′).

Some clarification of the notation used in part (3). p∗ is a ring homomorphism
from the cohomology of B to the cohomology of V . The cohomology of (V, V ′) is a
module over the cohomology of V . A proof of this theorem appears soon after the
Leray-Hirsch theorem in ch.5 of [16]. A part of it is sketched below.

Proof. The idea is to prove the statement not just for p : V → B but also for
p|p−1(U) : p−1(U)→ U for all open subsets U of B.

Hm(Rk,Rk \ {0}) is isomorphic to Z when m = k, and is zero for m 6= k. The
Kunneth formula shows that the theorem is true for the vector bundle p1 : U ×Rk →
U .

Let U be the collection of open subsets U of B such that V |U is isomorphic to the
trivial bundle. Thus the theorem is proved for all U ∈ U . Let Um = {U1 ∪ ... ∪ Um :
Ui ∈ U∀i}. Next we will prove the theorem for U ∈ Um by induction on m. For this
it will be helpful to recall the form of the Mayer Vietoris sequence below for open
sets J,K ⊂ B, with I = J ∩K and U = J ∪K

Hi+k−1(VI , V
′
I )→ Hi+k(VU , V

′
U)→ Hi+k(VJ , V

′
J)⊕ Hi+k(VK , V

′
K)→ Hi+k(VI , V

′
I )→

Assume now that the first two assertions of the theorem have been proved for all
u ∈ Um for some m ≥ 1. Let U ∈ Um+1. Then U = J ∪K with J ∈ Um and K ∈ U .
Then I = J∩K is of course in U . Let q < k.Then the terms adjacent to Hq(VU , V

′
U) in

the above sequence vanish, and so that proves the first assertion for U . For the second
assertion, we note that i = 0 in the above sequence gives the left exact seqeunce

0→ Hk(VU , V
′
U)→ Hk(VJ , V

′
J)⊕ Hk(VK , V

′
K)→ Hk(VI , V

′
I )

which sits right above the left exact sequence(meaning there is a commutative diagram
of left exact sequences with downward vertical arrows )

0→ Γ(U,OrV )→ Γ(J,OrV )⊕ Γ(K,OrV )→ Γ(I,OrV )

The vertical arrows indexed by I,J,K are all isomorphisms, which implies that the
vertical arrow for U is also an isomorphism ( by the five-lemma).
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For the passage to arbitrary open sets, see [16]. But in the situations we are
concerned with, the proof is complete. Specifically if B is a manifold of dimension
(m− 1) then every open subset belongs to Um (precise reference to be found).

The assertion of (3) is also proved by induction on m.
�

13. Orientation and the first Stiefel Whitney class

References

[1] Apostol, T.M.“Mathematical analysis” Addison-Wesley series in mathematics, 1974.
[2] Atiyah, M“K-theory”
[3] Bishop, R. and Crittenden,R“ Geometry of manifolds” Academic Press, 1964.
[4] Chern, S.S.“Differentiable manifolds” mimeographed notes, University of Chicago 1953.
[5] Greenberg, M.
[6] Guillemin, Pollack “Differential Topology” Prentice Hall 1974.
[7] Hatcher
[8] Hicks, N. “Notes on differential geometry” 1965
[9] Hirsch, M“Differential Topology” GTM 33.

[10] Husemoller“Fiber bundles”
[11] Kobayashi, S. and Nomizu, K.“Foundations of differential geometry”Interscience, Wiley 1969.
[12] Lang, S. “Differential manifolds”Addison-Wesley 1972.
[13] Milnor, J. “Topology from the Differentiable Viewpoint”
[14] Narasimhan, R. “Analysis on Real and Complex Manifolds” Advanced studies in pure mathe-

matics, 1973.
[15] Rudin, W.“Principles of mathematical analysis” McGraw-Hill,1976.
[16] Spivak, M. “Calculus on Manifolds”1965.
[17] Spanier, E.“ Algebraic Topology”
[18] Steenrod“Topology of Fiber bundles”
[19] Warner, F.“Foundations of Differentiable manfolds...” GTM 94.


