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Introduction

Math 318 is one of the nine courses offered for first-year mathematics graduate students at the
University of Chicago. It is the second of three courses in the year-long geometry/topology sequence.

These notes are being live-TeXed, though I edit for typos and add diagrams requiring the TikZ
package separately. I am using the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the
material here should be credited to the lecturer, not to me.

Please email any corrections or suggestions to chonoles@math.uchicago.edu.

mailto:chonoles@math.uchicago.edu


Lecture 1 (2013-01-07)

The last time I taught this course was in 2002. Back then, differential topology was taught first.
Here is what I covered back then, together with some book recommendations:

• For basics (e.g., the definition of differentiable manifold), I recommend Chapter 1 of Frank
Warner’s Foundations of Differentiable Manifolds and Lie Groups.

• I also covered the notion of ‘‘general position’’. A good reference for this is Chapter 1 of
Milnor’s Topology from the Differentiable Viewpoint. The book by Guillemin and Pollack is
also good for this.

• Hirsch’s Differential Topology is good for everything.

• The final main topic I covered last time was de Rham cohomology, the Poincaré lemma, etc.

General Position

Given f0 : M → N , how beautiful can a perturbation f (of f0) get?

For example, consider the map f0 : S1 → R2 with the following graph:

The focus of our attention is at the point of self-tangency. We have two options: we can make the
curve avoid itself,

or we can make it intersect itself in a non-tangent way,

We might also consider a map f0 : S1 → R3 that intersects itself:

But because we are working in R3, there is no reason it should intersect itself at all; we can just
perturb the curve at the intersection appropriately.
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This is an illustration of the Whitney theorem; given an n-dimensional manifold, we can always
find an embedding in Rk for k ≥ 2n+ 1, and an immersion for k = 2n. This result requires Sard’s
theorem. These theorems fall under the heading of general position.

Here are some other results I plan to talk about:

• Given a map f0 : M → N and a closed submanifold A ↪→ N , the preimage f−1
0 (A) may not

be a submanifold of M , but after an appropriate perturbation, f−1(A) is a submanifold.

• A closed submanifoldA ↪→ N of codimension r defines a cohomology class θ(A) ∈ Hr(N ;Z/(2)).
If its normal bundle is oriented, we actually get a cohomology class θ(A) ∈ Hr(N ;Z).

• Let f : M → N be a map. If f is transverse to A, then f−1(A) is also a submanifold and
θ(f−1(A)) ∈ Hr(M ;Z/(2)) and f∗(θ(A)) = θ(f−1(A)). If M and A are both submanifolds of
N that meet transversally, then M ∩A is a submanifold of N and θ(A)` θ(M) = θ(A ∩M).

This whole course is repeated applications of three statements, two of which you’ve seen already:

• Inverse Function Theorem

• Existence and Uniqueness of Solutions to ODEs

• Sard’s Theorem

Differentiable Manifolds

As you should all know, a topological manifold is a space which is locally homeomorphic to Rn.

We can’t consistently decide when a function on a manifold is differentiable. To fix this problem,
we give a manifold a differentiable structure. The usual definition of a differentiable structure
on a topological manifold is via coordinate charts. However, if you work with complex algebraic
geometry, a more natural definition is with sheaves. You can find the definition of sheaf, subsheaf,
etc. in Warner’s book, or in Gunning’s Lectures on Riemann Surfaces.

Let Ω ⊂ Rn be an open set. A function f : Ω→ R is k-times continuously differentiable, and we
say that f is Ck, when the following holds:

(a) If k = 0, f is continuous, and

(b) if k > 0, then ∂if(x) are defined for all 1 ≤ i ≤ n and all x ∈ Ω, and ∂if : Ω→ R is Ck−1.

We say that f is C∞ when f is Ck for all k. We can define the notions of Ck, C∞, and Cω manifolds
(the notation Cω means real analytic, i.e., the Taylor series equals the function). For any topological
space X, we will write C0(X) for the set of real-valued continuous functions on X, and C0

X for the
sheaf of such functions on X.

Given an open Ω ⊂ Rn, we can consider the set R = Ck(Ω) of Ck functions on Ω (or C∞(Ω) or
Cω(Ω), respectively). Observe that

(1) R is a ring under pointwise addition and multiplication,

(2) all constant functions are in R, and

(3) R is a subsheaf of the sheaf of continuous functions C0
Ω; that is, for all Ω′ ⊆ Ω we have

R(Ω′) ⊆ C0(Ω′), and the restriction of an element of R(Ω) to Ω′ is an element of R(Ω′).
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Thus, in fact, R is a sheaf of R-algebras.

Given a pair (M,R) where M is a topological space and R is a subsheaf of C0
M , we say that a pair

(U,ψ) is a coordinate chart when U ⊂ M is open and ψ : U → Rm is a homeomorphism onto its
image ψ(U), which we require to be open in Rm.

We say that a coordinate chart (U,ψ) is admissible if, for all open U ′ ⊂ U and h ∈ C0(U ′),

h ∈ R(U ′) ⇐⇒ h ◦ (ψ|U ′)−1 ∈ C∞(ψ(U ′)).

(Note that the map ψ|U ′ : U ′ → ψ(U ′) is a homeomorphism because ψ was a homeomorphism of U
onto its image.) Lastly, we say that M is a C∞ manifold if it is covered by admissible coordinate
charts. The definitions of Ck and Cω manifolds are analogous.

H What is the redundancy, exactly? H

This definition actually has a redundancy in the case of C∞ manifolds. This is because for C∞

manifolds, we have partitions of unity available to us.

But I’m using the more general definition because other objects, such as real analytic or complex
analytic manifolds, do not have partitions of unity.

Let’s review:

1. We’ve defined the notion of a coordinate chart for any topological space M .

2. Given a pair (M,R) where R ⊆ C0
M , we defined what it means for a chart to be admissible.

3. (M,R) is a C∞ manifold if M is covered by admissible charts.

When discussing a given C∞ manifold M , we will refer to its sheaf as C∞M .
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Lecture 2 (2013-01-09)

Review of Previous Class

For any topological space Y , we define C0(Y ) to be the set of continuous real-valued functions
on Y . For any open subsets U ⊆ V of Y , there is a restriction map Res(U, V ) : C0(V )→ C0(U).
Recall that a presheaf R of subsets of C0

Y consists of, for all open U ⊆ Y , a choice of R(U) ⊆ C0(U)
such that whenever U ⊆ V , we have Res(U, V )(f) ∈ R(U) for any f ∈ R(V ).

Given a presheaf R of subsets of C0
Y , we say that it is a sheaf of subsets when the following condition

is satisfied: given any open V ⊆ Y and f ∈ C0(V ), if for all p ∈ V there is a neighborhood Vp ⊆ V
of p such that Res(Vp, V )(f) ∈ R(Vp), then f ∈ R(V ).

We say that a sheaf R of subsets of C0
Y is a sheaf of R-subalgebras if R(U) ⊆ C0(U) is an

R-subalgebra for all open U .

For us, a ringed space will consist of a pair (Y,R) of a topological space Y and a sheaf R of R-
subalgebras of C0

Y . A morphism (Y,R)→ (Y ′, R′) of ringed spaces is a continuous map f : Y → Y ′

such that for all open V ′ ⊆ Y ′ and g ∈ R′(V ′), the pullback f∗g, i.e. the composition

f−1(V ′)
f |f−1(V ′)−−−−−−−→ V ′

g−−−→ R,

is an element of R(f−1(V )). An isomorphism (Y,R)→ (Y ′, R′) is a homeomorphism f : Y → Y ′

such that f−1 : (Y ′, R′)→ (Y,R) is also a morphism of ringed spaces.

Fix some k ∈ {0, 1, 2, . . . ,∞, ω}. A standard example of a ringed space is (Ω, CkΩ) where Ω is an
open subset of Rn, and CkΩ is the sheaf defined by CkΩ(V ) = Ck(V ) for any open V ⊆ Ω.

Definition. A Ck manifold is a ringed space (M,R) such that M is covered by open sets Ui where
each (Ui, RUi) is isomorphic as a ringed space to some (Ωi, C

k
Ωi

), where Ωi is an open subset of Rni .
We then refer to R as CkM .

Given Ck manifolds M and N , a map f : M → N is a Ck map when it is a morphism of ringed
spaces (M,CkM )→ (N,CkN ).

Tangent Vectors

A natural way we think about tangent vectors arising is as the tangent vector to a curve. We can
define an equivalence relation ∼ on curves through a point p ∈M , according to when they have the
same tangent vector at p.

Given a Ck manifold M and a point p ∈ M , we consider two Ck maps γ : (−a, a) → M and
δ : (−b, b)→M where γ(0) = δ(0) = p. When do we want to say that γ ∼ δ?
First, let’s define germs. If U, V ⊆M are open subsets containing p and f ∈ CkM (U) and g ∈ CkM (V ),
we say that f ∼ g if there is an open W ⊆ U ∩ V containing p such that f |W = g|W . The collection

CkM,p :=
∐

open U3p
CkM (U)

/
∼

is the set of germs of functions on M at p. In fact, it is an R-algebra.
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Given a germ f at p, say defined on U (so that f : U → R is a Ck function), there is some 0 < a′ < a
such that the image of γ|(−a′,a′) is contained in U , so we can consider the composition

(−a′, a′)
γ|(−a′,a′)−−−−−−−→ U

f−−→ R.

The composition is defined on a (smaller) neighborhood of 0, so we can still consider (f ◦ γ)′(0).

The above procedure gives a linear functional Dγ : CkM,p → R, assigning to a germ f the value of
(f ◦ γ)′(0). We say that γ ∼ δ precisely when Dγ = Dδ. A tangent vector of M at p is then an
equivalence class of curves under this relation.

Assume that M is an open set Ω ⊆ Rn. Then the chain rule tells us that (f ◦ γ)′(0) = f ′(p)γ′(0),
where f ′(p) : Rn → R is a linear functional. Then in this case, γ1 ∼ γ2 ⇐⇒ γ′1(0) = γ′2(0), so this
matches our intuition about how tangent vectors should behave. We see that the space of tangent
vectors of Ω at p can be canonically identified with Rn.

Note that there is no natural notion of adding curves, but when we think about the corresponding
linear functionals Dγ , the vector space structure becomes clear. According to our definition, Dγ

is an element of the dual space of CkM,p. Thus, by definition, the tangent space of M at p can be

considered as a subset of the dual space, i.e. TpM ↪→ (CkM,p)
∗.

Theorem. TpM is a linear subspace of (CkM,p)
∗.

Proof. It suffices to check in the case that M = an open subset Ω ⊆ Rn. In this case, we see that

TpM = {∑n
i=1 ai∂i(p)},

where for any germ f ∈ CkM,p, the functional ∂i|p sends f 7→ ∂if |p := ∂f
∂xi
|p.

Note that for any curve γ, the corresponding functional D = Dγ satisfies the Leibniz condition:

D(fg) = f(p)Dg + g(p)Df.

Thus, it is reasonable to include this condition in our definition of tangent vector.

Proposition. For any p ∈ Rn, the only linear functionals on C∞Rn,p that satisfy the Leibniz condition
are those of the form f 7→∑n

i=1 ai∂if |p.

H What is a counterexample? H

You might find it interesting to show that the proposition is false even for C1
R.

Proof of Proposition. WLOG, let’s say that p = 0. First, we make two observations:

1. If we put f = 1 in the Leibniz condition, we get that D(g) = D(g) + g(p)Df for all g, so we
must have D(1) = 0, and hence by linearity, D(λ) = 0 for any λ ∈ R.

2. ∂i(xj) = δij .

Let D be a functional that satisfies the Leibniz condition, and put D(xi) = ai. Let

E = D −
n∑
i=1

ai∂i.
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We see that E(xi) = 0 for all i, and we want to show that this forces E = 0, i.e. E(f) = 0 for all
f ∈ C∞Ω,p. Equivalently, we can show that E(f − f(p)) = 0, since E(f(p)) = 0.

Lemma. If f is a C∞ function defined in a neighborhood of 0 in Rn and f(0) = 0, then there exist
C∞ functions g1, . . . , gn (defined in a possibly smaller neighborhood of 0) such that f =

∑n
i=1 xigi.

Intuitively, this lemma makes sense, because if f vanishes along the hyperplane x1 = 0, this suggests
that x1 ‘‘divides’’ f , i.e. that f(x1, x2) = x1g(x1, x2) for some function g; and if f vanishes on the
space where x1 = x2 = 0, this suggests that f is a sum of a multiple of x1 and a multiple of x2.
Proving this lemma will be a part of the first homework assignment.

Using the lemma, we can conclude the argument. Because E satisfies the Leibniz condition, we have

E(f) =
n∑
i=1

xi(0)︸ ︷︷ ︸
= 0

E(gi) + gi(0)E(xi)︸ ︷︷ ︸
= 0

= 0.

We define the contangent space T ∗pM of M at p to be the dual space (TpM)∗. If v1, . . . , vn are a

basis for TpM ⊂ (CkM,p)
∗, then letting D =

⋂n
i=1 ker(vi), we have T ∗pM = CkM,p/D.

Our proposition implies that when k =∞, we have D = R + m2 where m = {f ∈ C∞M,p | f(p) = 0}.
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Lecture 3 (2013-01-11)

From now on, assume all spaces in this course are Hausdorff, unless I say so explicitly. Additionally,
we will only be considering the case that k =∞.

You will often see the following definition of a C∞ manifold:

Data: A topological space M , covered by open sets Uα indexed by α ∈ A, together
with homeomorphisms ψα : Uα → Ωα ⊂ Rn, where Ωα is open, which satisfy

Conditions: For any α, β ∈ A, the composition (ψα|Uα∩Uβ ) ◦ (ψβ|Uα∩Uβ )−1 is a C∞

map between open subsets of Rn:

ψβ(Uα ∩ Uβ) Uα ∩ Uβ ψα(Uα ∩ Uβ)
ψβ |Uα∩Uβ

homeo

ψα|Uα∩Uβ
homeo

This information specifies a ringed space.

Let U ⊂ M be open, and let f : U → R be a function. For any α ∈ A, we can consider the
composition f |U∩Uα ◦ (ψα|U∩Uα)−1,

ψα(U ∩ Uα) U ∩ Uα R.
(ψα|U∩Uα )−1 f |U∩Uα

We then define f to be a C∞ function on U precisely when the map f |U∩Uα ◦ (ψα|U∩Uα)−1 is C∞

for all α ∈ A.

Corollary (of the definition). For any of the n projections pi : Rn → R, the composition

Uα Ωα Rn Rψα pi

is a C∞ function on Uα.

Now let’s go back to tangent spaces for a moment. Recall that

TpM = {linear functionals E : C∞M,p → R | E(fg) = f(p)E(g) + g(p)E(f)}.

Given a C∞ map of pointed manifolds ψ : (M,p)→ (N, q) – in other words, ψ : M → N is a C∞

map and ψ(p) = q – then for any open V ⊂ N with q ∈ V , we get a pullback map

C∞(V ) C∞(ψ−1(V ))

C∞N,q C∞M,p R

ψ∗

re
st

ri
ct

io
n

restrictio
n

ψ∗ E

Thus, given a tangent vector E ∈ TpM , we get a linear map (E ◦ ψ∗) : C∞N,q → R satisfying the
Leibniz rule, and thus (E ◦ ψ∗) ∈ TqN . By definition, we say that E ◦ ψ∗ = ψ′(p)E. The map
ψ′(p) : TpM → TqN is a linear transformation.
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Submanifolds

One basic thing we need to decide is when a subset A of a C∞ manifold M is a C∞ submanifold.
For example, if M = R3, then the cone

A = {(x, y, z) ∈ R3 | x2 + y2 = z2, z ≥ 0}

should not be a C∞ submanifold, because it isn’t smooth at the apex.

We define

R(A) =

f : A→ R

∣∣∣∣∣∣∣∣
for all p ∈ A, there is some
neighborhood Up ⊂M of p
and a C∞ map fp : Up → R
such that f |A∩Up = fp|A∩Up

 .

If B ⊂ A, then the map f 7→ f |B defines a map R(A)→ R(B); this is because the requirement is
clearly a local condition. If we apply this to those B which are open in A (that is, in the relative
topology), this yields a sheaf R of R-subalgebras of C0

A (check for yourself that these are R-algebras).

Definition. Given a C∞ manifold M and a subset A ⊆M , we say that A is a C∞ submanifold if
the ringed space (A,R) defined in this way is a C∞ manifold. More generally, if p ∈ A, then we say
that A is a C∞ submanifold at p when there is a neighborhood Up of p in A such that (Up, RUp) is
a C∞ submanifold.

Examples. The subset
{(x, y, 0) ∈ R3 | x2 + y2 < 1}

is, according to our definition, a C∞ submanifold of R3. Similarly,

{(x, sin( 1
x)) ∈ R2 | x > 0}

is a C∞ submanifold of R2. Usually, C∞ submanifolds are required to be closed, and we will add
that requirement later, but for now, these are both submanifolds.

Here is another example. Let Ω1 ⊂ Rm and Ω2 ⊂ Rn−m be open sets, and let y0 ∈ Ω2. If we set
M = Ω1 × Ω2, then A = Ω1 × {y0} is a C∞ submanifold of M . The open sets of A are precisely
those subsets of the form U × {y0} for some open U ⊂ Ω1.

If i : Ω1 → A is the obvious map i(x) = (x, y0), one observes that f ∈ R(i(U)) if and only if f ◦ i
is C∞ in the traditional sense. Thus, i−1 : A→ Ω1 is an admissible coordinate chart covering A,
demonstrating that A is a C∞ manifold in our usual sense.

Theorem. Let M be a C∞ manifold of dimension n, and let p ∈ A ⊂ M . Then A is a C∞

submanifold of dimension m at p if and only if there exists a neighborhood Up of p in A and a
diffeomorphism φ : Up → Ω1 × Ω2, where Ω1 ⊂ Rm and Ω2 ⊂ Rn−m are open and y0 ∈ Ω2, such
that φ(Up ∩A) = Ω1 × {y0}.
We’ve just done the ⇐= direction.

Lemma (Parametric form, special case). If U ⊆ Rm is open with 0 ∈ U , if f : (U, 0)→ (Rn, 0) is a
C∞ map, and if f ′(0) : Rm → Rn is injective, then there is some open U1 ⊂ U with 0 ∈ U1, some
open U2 ⊂ Rn−m with 0 ∈ U2, some open Ω ⊂ Rn, and some diffeomorphism φ : U1×U2 → Ω, such
that there is a commutative diagram
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U1 U1 × U2 Ω Rni

f |U1

φ

where i(x) = (x, 0) for all x ∈ U1.

Corollary. In particular, f(V ) is a C∞ submanifold of Rn for all open V ⊂ U1.

Proof of special case of Lemma 1. One may choose a C∞ map g : (W, 0) → (Rn, 0), where W ⊂
Rn−m is open, such that g′(0) : Rn−m → Rn is injective, and f ′(0)Rm + g′(0)Rn−m = Rn.

Let F : U×W → Rn be the map defined by F (x, y) = f(x)+g(y). Then F ′(0, 0) : Rm×Rn−m → Rn
is an isomorphism. The inverse function theorem implies that there exist U1 and U2, neighborhoods
of 0 ∈ U and 0 ∈ W respectively, and an open Ω ⊂ Rn, such that F |U1×U2 : U1 × U2 → Ω is a
diffeomorphism.

Lemma (Parametric form). If U ⊆ Rm and V ⊆ Rn are open, if f : (U, p)→ (V, q) is C∞, and if
f ′(q) : Rm → Rn is injective, then there are neighborhoods U1 of q in U , U2 of 0 in Rn−m, and Ω
of p in V , and a diffeomorphism φ : U1 × U2 → Ω such that φ(x, 0) = f(x) for all x ∈ U1.

Proposition (Implicit form). If U ⊆ Rn and V ⊆ Rn−m are open, if f : (U, p) → (V, q) is C∞,
and if f ′(p) : TpRn → TqRn−m is surjective, then there are neighborhoods Ω of p in U , Ω1 of 0 in
Rm, and Ω2 of q in V , and a diffeomorphism φ : Ω → Ω1 × Ω2 such that f(x) = p2(φ(x)) for all
x ∈ Ω, where p2 : Ω1 × Ω2 → Ω2 is projection onto the second factor.

Proof of =⇒ in Theorem. Because the question is local, we may assume WLOG that M is an
open subset of Rn.

Recall that we are assuming A is a C∞ submanifold of dimension m at p. Thus, there is an
isomorphism of ringed spaces g : (U1 ∩A,RU1∩A)→ (V,C∞V ) where U1 is a neighborhood of p in M
and V is an open subset of Rm. Let q = g(p), and let f = g−1. Let (f1, . . . , fn) be the coordinate
functions of the composition

V U1 ∩A U1 Rnf

and let the coordinate functions on Rn be denoted pi : Rn → R. Because the pi are C∞, the maps
pi|U1∩A belong to R(U1 ∩A), and because f is a morphism of ringed spaces, these pull back to C∞

functions on V . Thus, the functions fi are all C∞ functions on V .

Let (g1, . . . , gm) be the coordinate functions of g. Then we have gi ∈ R(U1 ∩A) for all i. It follows
that there is a neighborhood U2 of p in U1 with C∞ functions g̃i on U2 such that g̃i(x) = gi(x) for
all x ∈ U2 ∩ A, which we can put together into g̃, a C∞ map g̃ : U2 → Rm such that g̃(x) = g(x)
for all x ∈ U2 ∩A.

Thus, we have produced open subsets V ⊆ Rm and U2 ⊆ Rn, and C∞ maps f : U → Rn and
g̃ : U2 → Rm, such that g̃(f(x)) = x for all x ∈ f−1(U2 ∩ A). The chain rule shows that f ′(q) is
injective, and applying the lemma now, we are done.
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Lecture 4 (2013-01-14)

Last time, we defined what it means for A to be a C∞ submanifold of M at p. In the future, I’ll
sometimes shorten this to ‘‘A is smooth at p’’.

Theorem (Implicit Function Theorem). Let M be a C∞ manifold and p ∈M . Let U ⊂M be an
open neighborhood of p. Let N be another C∞ manifold, and let f : U → N be a C∞ map. If the
derivative f ′(p) : TpM → Tf(p)N is surjective, then the fiber f−1(f(p)) is smooth at p.

Definition. Let f : M → N be a C∞ map. We say that q ∈ N is a regular value of f if for all
p ∈ f−1(q), the derivative f ′(p) : TpM → TqN is surjective.

Corollary. If q ∈ N is a regular value of f : M → N , then f−1(q) is C∞ submanifold of M .
Furthermore, for all p ∈ f−1(q), the tangent space Tpf

−1(q) can be identified with the kernel of
f ′(p) : TpM → TqN .

Proof of Implicit Function Theorem. Assume that U is open in Rn and that p = 0 ∈ U , and assume
that N is open in Rm. Let f : U → N , and assume that f ′(0) is surjective.

Clearly, there exists a C∞ map g : U → Rn−m such that if F = (f, g), then the derivative
F ′(0) : T0U → TqN × T0Rn−m is an isomorphism. By the Inverse Function Theorem, there is an
open neighorhood U ′ ⊆ U of 0, an open neighborhood N ′ ⊆ N of q, and an open neighborhood
V ⊆ Rn−m of 0, such that there is a commutative diagram

U ′ N ′ × V ′

N ′

F |U′
∼=

f |U′ p1

Note that F |U ′ restricts to a diffeomorphism from f−1(q) ∩ U ′ to {q} × V ′, and that the latter is a
C∞ submanifold of N ′ × V ′. This proves the theorem.

Now we prove the corollary. The commutative diagram

f−1(q) M

{q} N

f

of C∞ manifolds induces a commutative diagram of the corresponding tangent spaces,

Tpf
−1(q) TpM

0 = Tqq TqN

f ′(p)

This shows that Tpf
−1(q) ⊆ ker(f ′(p)); none of the assumptions of the theorem were needed here.

Now we look at the local picture to get the reverse inclusion.

By our earlier work, we can take the local picture to just be a surjective linear map L : Rn → Rm
(note that L(0) = 0). Then L−1(0) is already a linear subspace, and T0(L−1(0)) = L−1(0) = ker(L)
and L′(0) = L. Thus, the reverse inclusion is essentially a tautology in this case.
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Example. The Stiefel variety V (n, k) is defined to be

V (n, k) = {(v1, . . . , vk) | vi ∈ Rn, 〈vi, vj〉 = δij for all i, j}.

For example, V (n, 1) = Sn−1. Considering the map V (n, 2)→ V (n, 1) defined by (v1, v2) 7→ v1, we
see that all fibers are diffeomorphic to Sn−2. This is an example of a fiber bundle.

We also have V (n, n) = O(n), the orthogonal group. Given a linear transformation L : Rn → Rn
such that 〈Lv, Lw〉 = 〈v, w〉 for all v, w ∈ Rn, then 〈Lei, Lej〉 = 〈ei, ej〉 = δij for all i, j, where the
ei are the standard basis vectors. We can set Lei = vi.

H How does the rest of this identification proceed? H

We can identify V (n, n− 1) ∼= SO(n) as follows. We can define a map F : (Rn)k → Rk(k−1)/2 by
(v1, . . . , vn) 7→ 〈vi, vj〉 for 1 ≤ i ≤ j ≤ k. Check that F ′(p) is onto for all p ∈ V (n, k).

Definition. Let M,N be C∞ manifolds, let A ⊆ N be a C∞ submanifold, and let f : M → N be
a C∞ map. We say that f is tranvserse to A at a point p ∈ f−1(A) when the composition

TpM Tf(p)N Tf(p)N/Tf(p)A
f ′(p)

is surjective, or equivalently, if

Tf(p)A+ f ′(p)TpM = Tf(p)N.

We then say that f is transverse to A when it is transverse to A at p for all p ∈ f−1(A).

Proposition. If f : M → N is transverse to a C∞ submanifold A ⊆ N , then

(a) f−1(A) is a C∞ submanifold, and

(b) for all p ∈ f−1(A), if q = f(p), then TpM/Tpf
−1(A) ∼= TqN/TqA.

Assuming the first part of this proposition, the commutative diagram of manifolds

f−1(A) M

A N

f

induces a commutative diagram on tangent spaces, where the rows are exact:

0 Tpf
−1(A) TpM TpM/Tpf

−1(A) 0

0 TqA TqN TqN/TqA 0

f ′(p) f ′(p)

The second part is asserting that the final vertical arrow, f ′(p), is an isomorphism.

Proof of Proposition. We may assume that N = Rk+`, and letting x1, . . . , xk+` be the coordinate
functions of N , we may assume that A is given by (x1, . . . , xk) = (0, . . . , 0).
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Our map f : M → N ↪→ Rk+` has coordinate functions (f1, . . . , fk+`). Each of the fi are C∞

functions on M . Let g : M → Rk be the map g = (f1, . . . , fk). Note that, by the assumption that f
is transverse to A, we have that g′(p) is onto for all p ∈M such that g(p) = 0, i.e. all p that are in

g−1(0) = {points where f1 = · · · = fk = 0} = f−1(A).

Thus, the implicit function theorem implies that g−1(g(p)) = f−1(A) is smooth at p for all such p,
i.e. that f−1(A) is a C∞ submanifold of M . This proves the first part of the proposition. By the
corollary to the implicit function theorem, we also obtain the identification

Tpf
−1(A) = Tpg

−1(0) = ker(g′(p) : TpM → T0Rk) = (f ′)−1(TqA)

which gives us the second part of the proposition.
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Lecture 5 (2013-01-16)

Definition. Let P and Q be C∞ submanifolds of a C∞ manifold M . We say that P and Q intersect
transversely if for all x ∈ P ∩ Q, we have TxP + TxQ = TxM . This guarantees that P ∩ Q is a
submanifold, and that Tx(P ∩Q) = TxP ∩ TxQ.

Let i : P ↪→M . Then to say that P meets Q transversely is equivalent to saying that the map i is
transverse to Q.

If x ∈ P , then via i′(x) : TxP → TxM we can regard TxP as a subspace of TxM . Then the statement
that i is transverse to Q is just saying that i′(x)TxP + TxQ = TxM , and i′(x)TxP = TxP and
Txi
−1(Q) = i′(x)−1TxQ, so that Tx(P ∩Q) = TxP ∩ TxQ.

Usually, when people talk about submanifolds, e.g. ‘‘A is a smooth submanifold of M ’’, they mean
what we have discussed, but with the additional assumption that A is closed. From now on, we will
adopt this convention, and when I want to refer to our earlier, more general notion, we will say
‘‘locally closed submanifold’’.

Additionally, all manifolds will now be assumed to be second-countable and Hausdorff.

Some good sources the topics we’ll be discussing are Milnor’s Topology from the Differential
Viewpoint and Guillemin and Pollack’s Differential Topology.

Our goal will be to put an equivalence relation on the collection of all closed submanifolds of
codimension r of a C∞ manifold y, called concordance.

Theorem (Transversality theorem). If X and Y are compact C∞ manifolds, A ↪→ Y is a C∞

submanifold, and f0 : X → Y is a C∞ map, then there is a C∞ map f : X → Y which is transverse
to A and which is homotopic to f0 (you may also see it stated as ‖f − f0‖ < ε).

Theorem (Sard’s theorem). If X and Y are C∞ manifolds and f : X → Y is a C∞ map, then

{y ∈ Y | y is not a regular value of f}

is a set of measure zero.

When we get to proving Sard’s theorem, we’ll say what we mean by a set of measure zero.

Definition. Given C∞ manifolds M and N , there is a unique C∞ manifold structure on M ×N
such that, if p : M ×N →M and q : M ×N → N are the projection maps and f : X →M ×N is
some map, then X is C∞ if and only if p ◦ f and q ◦ f are both C∞.

Definition. A deformation of a C∞ map f0 : X → Y is a C∞ map F : X × S → Y , where S ⊂ R
is an open neighborhood of 0, such that F (x, 0) = f0(x) for all x ∈ X. We say that a deformation
is rich if the derivative F ′(x, 0) : T(x,0)(X × S)→ Tf0(x)Y is surjective for all x ∈ X.

Note that, given a deformation F of f0, we get a C∞ map fs : X → Y for all s ∈ S, namely
fs(x) = F (x, s). If S is connected, then fs is homotopic to f0 for all s ∈ S.

For example, if Y = R, we can take S = R, and define F : X×S → Y by F (x, s) = fs(x) = f0(x)+s.
This deformation is rich because, for any x ∈ X,

d

dt
(f0(x) + ts)

∣∣∣∣
t=0

= s.
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Lemma 1. If F : X × S → Y is a rich deformation and X is compact, then there is a open
neighborhood S′ ⊂ S of 0 such that F |X×S′ induces surjections on all tangent spaces.

Proof. Either by the implicit function theorem, or by noting that

{T ∈ HomR(Rm,Rn) | T is surjective}

is open, we see that
U = {(x, s) ∈ X × S | F ′(x, s) is onto}

is an open set in X × S, and X × 0 ⊂ U . Now, the fact that X is compact implies that there is
some neighborhood S′ of 0 in S such that X × S′ ⊂ U .

Proof of transversality theorem. We may as well replace S by S′, so we assume that F ′(x, s) is
surjective for all (x, s) ∈ X×S. We see that F is transverse to A, because a composite of surjections
is a surjection:

T(x,s)(X × S) TyY TyY/TyA.
F ′(x,s)

Therefore, F−1A is a C∞ submanifold. For example, if X = Y = R, then the picture in X × S
might look like

F−1A

where the lines represent the fibers over different s ∈ S, and the points where the fiber over s
intersects F−1A simply constitute f−1

s (A).

H Did we choose a specific s, and if so, how? H

F−1A X × S

S

q
p2

We want to show that s is a regular value of q; you should do this yourselves. Now, once we prove
the following lemma, we are done.

Lemma 2. As above, let q : F−1A→ S be the restriction of p2 to F−1A. Then s ∈ S is a regular
value of q if and only if fs : X → Y is transverse to A.

Note that Sard’s theorem implies the existence of such points s ∈ S.
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H Missing content H

Proof of Lemma 2. Let (x, s) ∈ F−1A, and y = F (x, s) ∈ A.

0

TxX ⊕ TsS TyY/TyA

T(x,s)(X × S) TyY

F ′(x, s)TyA T(x,s)F
−1A TyA

0 0
=

F ′(x,s)

onto

=

Then F ′(x, s)(v, 0) = f ′0(x)v for all v ∈ TxX.

Lemma. Every compact C∞ manifold Y is diffeomorphic to a submanifold of Rn.

Proof. Define the function ϕ by

ϕ(t) =

{
e−1/t if t > 0,

0 if t ≤ 0.

This is a C∞ function whose graph looks like

ϕ(t)

Given a < b ∈ R, define f(x) = (b−x)(x−a). Now define g(x) =
∫ x
−∞ ϕ(f(t)) dt. Since the function

ϕ(f(t)) is compactly supported its total integral is finite, so we can normalize the function g so
that its integral is 1.

Ultimately, we can make a C∞ function ψ : Rn → R such that ψ(x) = 1 if ‖x‖ ≤ α and ψ(x) = 0
if ‖x‖ ≥ β for any choice of 0 < α < β. Then consider the function M : Rn → Rn defined by
x 7→ ψ(x)x. Note that M ′(x) is injective on TxRn for ‖x‖ < α, and is 0 if ‖x‖ ≥ β.

H Missing content H

If Y is a compact Hausdorff manifold, we have plenty of open sets U ⊂ Y .
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U Ω = B(0; 2β) Rmh

diff

M

M extends to a C∞ function on Y .
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Lecture 6 (2013-01-18)

There was a mistake in the statement of exercise 5.10.

One way of producing deformations of f0 : X → Y is via the tubular neighborhood theorem. This
is an example of where we’ll use existence and uniqueness of solutions to ODE’s.

There are many forms of the theorem, but we’ll state it for Y compact.

Theorem (Tubular neighborhood theorem). Let Y ⊆ Rm+n be a compact C∞ submanifold of
dimension n. Let

N = {(y, v) ∈ Y × Rm+n | 〈w, v〉 = 0 for all w ∈ TyY },

and let
Nε = {(y, v) ∈ N | ‖v‖ < ε}.

Then

1. N is a closed C∞ submanifold of Y × Rm+n.

2. There is some ε > 0 such that (y, v) 7→ y + v for (y, v) ∈ Nε gives a diffeomorphism from Nε

to an open subset of Rm+n. We say that this open subset is a ‘‘tubular neighborhood’’.

Proof. Because we can check the condition of being a submanifold locally, to show that N is a
submanifold it suffices to cover Y by open subsets U such that p−1

1 (U) is a C∞ submanifold of
U × Rm+n, where p1 : N → Y is the projection map. We may assume that each U is of the
form {(x, f(x)) | x ∈ Ω} for some open Ω ⊆ Rn and for some C∞ map f : Ω → Rm (after some
permutation in Sn+m).

Let y = (x, f(x)), with x ∈ Ω. Then

TyY = {(y, f ′(x)v) | v ∈ Rn}.

Write w = (w1, w2) where w1 ∈ Rn and w2 ∈ Rm. Then

〈v, w1〉+ 〈f ′(x)v, w2〉 = 〈v, w1〉+ 〈v, f ′(x)∗w2〉 = 0

where f ′(x)∗ : Rm → Rn is the adjoint of f ′(x) : Rn → Rm.

For all v ∈ Rn, 〈v, w1 + f ′(x)∗w2〉 = 0, so w1 = −f(x)∗w2. Thus

p−1
1 (U) = {(x, f(x))︸ ︷︷ ︸

∈Y

, (−f ′(x)∗w2, w2) | x ∈ Ω, w2 ∈ Rm}.

If ϕ : M → Rn is C∞ then its graph in M × Rn is a C∞ submanifold (with M = U × Rm, we get
the result).

Now to part 2. Let A : N → Rm+n be defined by A(y, v) = y + v for all (y, v) ∈ N . Note that we
have p−1(U) ∼= U × Rm.

Let’s discuss T(y0,0)N . We have two submanifolds of N , namely Ny0 = p−1
1 (y0) and Y ↪→ N (this is

just y 7→ (y, 0)).

We see that Ny0 and Y are submanifolds of N that meet transversely at (y0, 0), and in fact

Ty0Y ⊕ T(y0,0)(Ny0) = T(y0,0)N.
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By definition, A′(y0, 0)(α, 0) = α for all α ∈ Ty0Y , and A′(y0, 0)(0, w) = (0, w). Therefore

A′(y0, w) = y0 + w. It follows that A′(y0, 0) : T(y0,0)N
∼=−→ Ty0Rn+m.

Then Z = {(y, v) | A′(y, v) is a diffeomorphism} is an open subset ⊇ Y × 0. The compactness of Y
implies that there is some ε > 0 such that Nε ⊆ Z.

Now, we claim that there is some ε > 0 such that A|Nε is injective. If not, we’d get (y′n, v
′
n) 6= (y′′n, v

′′
n),

both in N1/n, such that y′n + v′n = y′′n + v′′n (∗). Since Y is compact, we may assume that
limn→∞ y′n =: y′ and limn→∞ y′′n =: y′′ exist. We now get y′ = y′′, by taking the limit of ∗ as
n→∞.

Both sequences eventually lie in a fixed neighborhood of (y′, 0) ∈ N , but this contradicts the inverse
function theorem because A′(y, 0) is a diffeomorphism.

Thus A|Nε : Nε → Rn+m is injective, open, and A′ is injective for all points of Nε. Thus, A(Nε) = Uε
is open, and A : Nε → Uε is a diffeomorphism to an open subset Uε ⊂ Rm+n.

Now, let’s prove the existence of rich deformations of f0 : X → Y where both are compact C∞

manifolds.

Proof. Let i : Y ↪→ Rm+n. We have Y ⊂ Uε ⊂ Rm+n.

We know that i ◦ f0 has a rich deformation G : X × S → Rm+n, i.e. G′(x, 0) is surjective for all
x ∈ X, and G(x, 0) = f0(x) for all x ∈ X. Then G−1(Uε) is open in X ×S, which contains X ×{0}.
Because X is compact, there is an open neighborhood S′ ⊆ S of 0 such that X × S′ ⊆ G−1(Uε).
Thus, G(X × S′) ⊆ Uε.
There is a C∞ retraction r : Uε → Y (remember that Uε is a ‘‘tube’’ around Y ).

X × S′ Uε YG

F

r

p1(A|Nε)−1︸ ︷︷ ︸
=r

y = y for all y ∈ Y

Nε Uε Y

Y Z

A|Nε
∼=

p1

For all x ∈ X, f0(x) ∈ Y , and

F (x, 0) = rG(x, 0) = rf0(x) = f0(x).

G′(x, 0) is onto by assumption for all x ∈ X.

Y Uε Y

id

r

so r′(x) is onto for all x ∈ Y .

G(x, 0) ∈ Y so r′(f0(x)) ·G′(x, 0) = F ′(x, 0) is onto.
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Let X be a compact C∞ manifold. We want a ‘‘rich’’ (our definition of this can vary) deformation
of f0 : X → Y such that fs : X → Y is an embedding.

Let F : X × S → Y be a deformation of f0.

B0 = {(x1, x2) ∈ X ×X | x1 6= x2 and f0(x1) = f0(x2)}

B = {(x1, x2, s) ∈ X ×X × S | x1 6= x2 and F (x1, s) = F (x2, s)} q−−→ S

q−1s is the ‘‘bad set of fs : X → Y ’’.

X ×X × S Y × Y
(x1, x2, s) (F (x1, s), F (x2, s))

G

Then G−1(∆Y ) = B, where ∆Y is the image of the diagonal embedding Y → Y × Y . We
may hope that G is transverse to ∆Y . Note that ∆Y is C∞ submanifold whose codimension in
Y × Y is dim(Y ). B ⊂ X × X × S is a submanifold of codimension = dim(Y ), i.e. dim(B) =
(2 dim(X)− dim(Y )) + dim(S).

Consider q : B → S. Sard’s theorem say that there are plenty of regular values of q. If s is a regular
value, then Bs is a C∞ submanifold of B of codimension = dim(S).

dim(Bs) = dim(B)− dim(S) = 2 dim(X)− dim(Y ) + dim(S)− dim(S).

Thus, under the assumption that 2 dim(X) < dim(Y ), we may hope that fs : X → Y is injective.
To get an embedding, we have to work a little more.
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Lecture 7 (2013-01-23)

Theorem (Whitney embedding theorem). Let X and Y be C∞ manifolds, and assume that X is
compact. If 2 dim(X) + 1 ≤ dim(Y ), then every f0 : X → Y can be approximated by an embedding.

Proof. We will give a proof in the case when Y is Rm, and using tubular neighborhoods it will work
even when Y is compact.

Let’s write Y = V where V is a vector space of dimension m (a notational aid for when we are
using the vector space structure). Let g1, . . . , gr be C∞ functions from X to R, and let v1, . . . , vm
be a basis for V . Define a deformation F : X × S → Y of f0, where S = Rrm, by

F (p, t) = f0(p) +
∑
i,j

tijgi(p)vj ,

where t = (tij) ∈ S.

Define G : (X×X \∆X)×S → V ×V by G(p, q, t) = (F (p, t), F (q, t)). We want G to be transverse
to ∆V ⊂ V × V .

Let H : V × V → V be defined by H(v1, v2) = v1 − v2. Then H ′(v1, v2) is onto, 0 is a regular value
of H, and H−1(0) = ∆V .

We see that we want to demonstrate the surjectivity of (H ◦G)′(p, q, t) at all points in

{(p, q, t) | p 6= q and F (p, t) = F (q, t)}.

Now note that
(H ◦G)(p, q, t) = f0(p)− f0(q) +

∑
i,j

tij(gi(p)− gi(q))vj .

Let’s look at the derivative evaluated at points of the form (0, 0, ?), as it is easiest to compute in
this case, and it will suffice for surjectivity anyway.

Because the vj form a basis for V , a necessary and sufficient condition that

TS V

(0, 0, ?) (H ◦G)′(p, q, t)(0, 0, ?)

is surjective is that there is some i such that gi(p) 6= gi(q).

For instance, you could consider an embedding

X RN

R
gi

pi

where N = r.

Now, G−1(∆V ) is a C∞ submanifold of (X ×X \∆X)× S.

Let Q : G−1(∆V )→ S be the projection.
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Consider the regular values of Q (which are a subset of S). For any regular value s, we have

Q−1(s) = {(p, q) ∈ X ×X | p 6= q and fs(p) = fs(q)}

is a C∞ submanifold of X ×X \∆X of dimension 2 dim(X)− dim(Y ). Thus, if 2 dim(X) < Y , this
set is empty.

For f : X → Y to be an embedding, we need that

(i) f is injective,

(ii) f ′(p) is injective for all p ∈ X,

(iii) f |X : X → f(X) is a homeomorphism and f(X) is a closed subset of Y ,

though if X is compact then (iii) is not required.

The tangent bundle

The tangent bundle of X is denoted by TX. As a set, it is equal to the disjoint union

TX =
∐
x∈X

TxX.

Given an open Ω ⊆ Rn, there is a natural identification TΩ ∼= Ω×Rn (this is the topology and C∞

structure on TΩ).

In general, the topology on TX is defined as follows. There is a natural projection π : TX → X
defined by π(TxX) = x for all x ∈ X.

If f : P → Q is C∞, then there is an induced commutative diagram

TP TQ

P Q

π

F

π

f

where F is the map defined by F |TxP = f ′(x) for all x ∈ P .

Now let X be a C∞ manifold. For all charts (Ω, g : Ω → U) on X, i.e. with g : Ω → U a
diffeomorphism from an open Ω ⊂ Rn to an open U ⊆ X, we get a commutative diagram

TΩ TU TX

Ω U X

homeo

h

g

The C∞ structure is transported via h.

Returning to our argument, we have F : X × S → V , a deformation of f0. This gives rise to
F̃ : (TX)× S → TV , a C∞ map.

Let w ∈ TpX be such that F̃ (w, s) = F ′(p, s)(w, 0).
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Now define T ′X to be the complement of the zero section of TX; in other words,

T ′X =
∐
x∈X

(TxX \ {0}).

Clearly, T ′X is an open subset of TX.

We claim that F̃ : (T ′X)× S → V has 0 ∈ V as a regular value.

Let’s assume the claim for now. Then M := F̃−1(0) is a C∞ submanifold with

2 dim(X)− dim(S)− dim(F̃−1(0)) = dim(V ) = dim(Y ).

Consider the map Q′ : M → S, and let s be a regular value of Q′. Then

dim((Q′)−1(s)) = dim(M)− dim(S) = 2 dim(X)− dim(Y ).

Under the assumption that 2 dim(X) ≤ dim(Y ), the fiber is forced to be empty,

(Q′)−1(s) = {(p, w) ∈ TX | 0 6= w ∈ TpX for p ∈ X, and f ′s(p)w = 0}.

If 2 dim(X) ≤ dim(Y ), then f ′s(p) : TpX → Tfs(p)V is injective for all p ∈ X.

Proof of claim. Fix p ∈ X and 0 6= w ∈ TpX. We have the map F̃ |(p, w) × S → V . We need to
find an i such that g′i(p)w 6= 0.

Taking the derivative of H ◦G, we get

f ′0(p)w +
∑
i,j

tij(g
′
i(p)w)vj .

In our case, j is a C∞ embedding

X RN

R

j

pi

0 6= w ∈ TpX implies that j′(p)w 6= 0, which implies that there is some i such that (pi ◦ j)′(p)w 6= 0,
i.e. g′i(p) 6= 0.

Thus, we are done.

Our proof shows a form of the Whitney immersion theorem (at least when Y = Rn), then every
f0 : X → Y can be approximated by f : X → Y which is an immersion (i.e. f ′(p) : TpX → Tf(p)Y
is injective for all p ∈ X) if 2 dim(X) ≤ dim(Y ).

Next time we’ll do Sard’s theorem and maybe a bit more about vector bundles.

Corollary (of Sard’s theorem). Let M and N be C∞ smooth manifolds (we also assume second
countable and T2), let f : M → N be a C∞ map, and assume that dim(M) < dim(N). Then f is
not onto. If a ∈ N is a regular value of f , then f−1(a) manifold of dimension dim(M)− dim(N).
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Lecture 8 (2013-01-25)

Today we’ll talk about Sard’s theorem.

All manifolds today will be second-countable and Hausdorff.

Definition. Given C∞ manifolds M and N , and a C∞ map f : M → N , we define

Crit(f) = {x ∈M | f ′(x) is not surjective}.

Thus, f(Crit(f)) ⊂ N . The complement f(Crit(f))c is called the set of regular values of f .

Theorem (Sard’s theorem). The set f(Crit(f)) has measure zero.

Preliminaries

Let M be a C∞ manifold, and E ⊆ M . We say that the measure of E is zero when, for all
diffeomorphisms

Ω U

Rn M

ϕ

open open

we have m∗(ϕ−1(E)) = 0, where m∗ denotes outer Lebesgue measure.

Lemma. Given an open Ω ⊆ Rn, a subset E ⊆ Ω, and a C1 map f : Ω→ Rk, then

(a) if k = n and m∗(E) = 0, then m∗(f(E)) = 0, and

(b) if k > n, then m∗(f(Ω)) = 0.

Proof. For (a), it suffices to prove that m∗(f(E ∩K)) = 0 where K is compact. Given x, y ∈ Ω
such that the line between them is contained in Ω, i.e. such that tx+ (1− t)y ∈ Ω for all 0 ≤ t ≤ 1,
then

‖f(y)− f(x)‖ ≤ sup{‖f ′(z)‖ | z = tx+ (1− t)y, 0 ≤ t ≤ 1} · ‖y − x‖.
Given a compact K ⊂ Ω, there is a δ > 0 such that

Kδ := {x+ v | x ∈ K, ‖v‖ ≤ δ} ⊆ Ω.

If m∗(E ∩K) = 0, then for all ε > 0, there is some covering

E ∩K ⊆
∞⋃
i=1

Ci

where the Ci are translates of [−ai, ai]n with diam(Ci) < δ and
∑
m∗(Ci) < ε.

We have diam(f(Ci)) ≤ S diam(Ci) where S = sup{‖f ′(z)‖ | z ∈ Kδ}.
There is a fixed ratio S′ between the volume of a ball and the volume of a cube.

Thus, f(Ci) ⊆ an open ball of volume ≤ SS′ vol(Ci).
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To prove (b), note that the claim reduces to considering mapping a cube C in n variables into an
open ball B in k variables. Because we have

vol(B)

vol(C)
< constant · (diam(C))k−n,

by covering a compact set K with cubes of sufficiently small diameter we are done.

Corollary. Given an open Ω ⊆ Rn and open U ⊆ M , and a diffeomorphism ϕ : Ω → U , then if
E ⊆ Ω has m∗(E) = 0, then ϕ(E) has measure zero.

Remark 1. To prove Sard’s theorem, it suffices to consider the case when the domain is an open
subset of Rn and the codomain is Rk. This is because, given our map f : M → N , we can cover
N by countably many open sets N =

⋃∞
m=1 Um, so that M =

⋃∞
m=1 f

−1(Um), and we can cover
each f−1(Um) by subsets diffeomorphic to open subsets of Rn. Then note that the union of the
Crit(f−1(Um)→ Um) is Crit(f).

Remark 2. Part (b) of the lemma implies Sard’s theorem in the case that dim(domain) <
dim(codomain).

Proof of Sard’s theorem.

Step 1

We take Ω ⊆ Rn an open set and a C∞ map f : Ω→ R.

The case of n = 0 is evident. We proceed by induction on n > 0. Note that

X1 := Crit(f) = {x ∈ Ω | ∂if(x) = 0 for all 1 ≤ i ≤ n},

and we can form a decreasing sequence of closed sets

Xk := {x ∈ Ω | all partial derivatives of order r vanish, for all 1 ≤ r ≤ k}.

It will suffice to show that

(a) f(Xm −Xm+1) has measure zero for all m = 1, 2, 3, . . ., and

(b) f(X∞) has measure zero, where X∞ = X1 ∩X2 ∩X3 ∩ · · · .
For each multi-index (i1, . . . , im+1), consider the set

Y = {x ∈ Ω | ∂i1∂i2 · · · ∂im+1f(x) 6= 0 and ∂i2 · · · ∂im+1f(x)︸ ︷︷ ︸
:=ϕ(x)

= 0}.

We have a finite collection of such Y ’s, and Xm −Xm+1 is contained in the union of these Y . It
suffices to show that f(Y ∩X1) has measure zero for each such Y . Rewrite Y as

Y = {x ∈ Ω | ϕ(x) = 0 and ∂ϕ
∂xi1

(x) 6= 0}.

Y is a C∞ submanifold of dimension n− 1 of Ω by . We have

X1 ∩ Y = {x ∈ Y | f ′(x) : TxΩ→ R is zero}
= {x ∈ Y | f ′(x)|TxY : TxY → R is zero}
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= Crit(f |Y )

It follows that f(Y ∩X1) ⊆ f(Crit(f |Y )) which has measure zero by induction hypothesis.

Now we turn to part (b). We have

X∞ = {p ∈ Ω | the Taylor expansiom of f − f(p) is zero at p}.

Fix a compact set K ⊂ Ω, and points a, x ∈ K such that the line segment joining them is contained
inside K. Let a ∈ X
Cover X∞ ∩K by cubes of diameter δ, such that the sum of the volume of the cubes is ≤ D. The
key fact is that there is some constant L such that

diam(f(C)) ≤ L · diam(C)n+1,

which follows from the inequality |f(x)− f(a)| ≤ C‖x− a‖n+1. We have

m∗(
⋃
f(C)) ≤ L

∑
diam(C)n+1

≤ diam(C) · L
∑

diam(C)n

≤ diam(C) · LL′D

and diam(C) can be shrunk to zero, so we are done.

Step 2

We have proven Sard’s theorem for a map f : Ω→ R where Ω ⊆ Rn is open. Now we need to prove
the claim for maps f : Ω→ Rk for all k ≥ 1. We proceed by induction on k, because we have just
dealt with the case of k = 1.

H I missed the details here / possible mistakes H

Consider the projection

Ω Rk

Rk−1

f

π◦f π

where π(x1, . . . , xk) = (x1, . . . , xk−1). We clearly have that Crit(π ◦ f) ⊆ Crit(f). Note that if
E ⊆ Rk−1 has m∗(E) = 0, then we have m∗(E × R) = 0. Thus, it suffices to show that

f({x ∈ Ω | f ′(x) is not onto but (π ◦ f)′(x) is onto})

is of measure zero. If (π ◦ f)′(x) is onto, we can choose coordinates on Ω such that

(π ◦ f)(x1, . . . , xn) = (x1, . . . , xk−1),

i.e. we can assume that f(x1, . . . , xn) = (x1, . . . , xk−1, ϕ(x1, . . . , xn)). We have submersions π and
π′ such that
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Ω Rk

Rk−1

f

π′ π

Then x ∈ Crit(f) if and only if x ∈ Crit(f |(π′)−1π′(x)→π−1π′(x)).

We’ve essentially frozen (x1, . . . , xk−1). Then ∂ϕ
∂xi

= 0 for all i = k, . . . , n.

E = f(Crit(f)) ∩ ({a} × R)

= { ∂ϕ∂xi (a, xk, . . . , xn) = 0 for all i}

where a = (a1, . . . , ak−1).

The set E ∩ π−1(a) is measure zero for all a.

We’d like to use Fubini’s theorem to finish, but the problem is that Fubini’s theorem requires that
the function be measurable to start with, which we can’t guarantee. Thus, we’ll have to use the
same sort of estimates we’ve been using to produce a correct proof. You can find the details in
Milnor’s book.
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Lecture 9 (2013-01-29)

This week, we’ll cover the connection with algebraic topology.

Theorem. If X is a compact connected (non-empty) orientable n-manifold, then

(a) Hn(X) ∼= Z,

(b) for all x ∈ X, there is a natural map Hn(X)
∼=−−→ Hn(X,X − x) ∼= Z.

Definition. An orientation of X is a generator of Hn(X), and an oriented manifold is a pair (X, θ)
where θ is an orientation of X.

Theorem. If we remove the hypothesis that X is orientable, then it is still true that

(a′) Hn(X;Z/2Z) ∼= Z/2Z,

(b′) there is a natural map Hn(X;Z/2Z)
∼=−−→ Hn(X,X − x;Z/2Z).

Definition. Let f : X → Y be continuous, where both (X, θX) and (Y, θY ) are compact connected
oriented n-manifolds. The degree of f is the unique integer deg(f) such that f∗(θX) = deg(f) · θY
where f∗ : Hn(X)→ Hn(Y ) is the induced map on homology. This does not depend on the choice
of θX or θY .

When X and Y are not assumed to be orientable, we can still define the degree of f in Z/2Z.

Definition. Let X and Y be oriented n-manifolds, and let x ∈ X be an isolated point of f−1(f(x)).
Let y = f(x). Thus, we have a neighborhood U ⊆ X of x such that f−1(f(x))∩U = {x}. In fact, we
can get a neighborhood U ⊆ X of x and U ′ ⊆ Y of y such that f(U) ⊆ U ′ and f(U \{x}) ⊆ U ′ \{y}.
The map f induces

Hn(U,U − x) Hn(U ′, U ′ − y)

Hn(X) Hn(X,X − x) Hn(Y, Y − y) Hn(Y )

excision∼=

‘‘ f∗ ’’

excision∼=
∼= ∼=

θX ∈ Hn(X) θX(x) ∈ Hn(U,U − x) θY (y) ∈ Hn(U ′, U ′ − y) θY ∈ Hn(Y )

We then define the local degree of f at x to be the unique integer degx(f) such that

degx(f) · θY (y) = ‘‘f∗’’θX(x).

Theorem. Let X and Y both be compact connected oriented (non-empty) n-manifolds, and let
f : X → Y be continuous. Let y ∈ Y , and assume that f−1(y) is finite. Then

deg(f) =
∑

x∈f−1(y)

degx(f).

Proof. We will use singular homology. We see that there is a neighborhood U ′y of y in Y such that
f−1(Uy) =

∐
x∈f−1(y) Ux where Ux is a neighborhood of x. We get an open cover of X, consisting of

{Ux | x ∈ f−1(y)} ∪ {X \ f−1(y)}

Last edited
2013-08-06

Math 318 - Geometry/Topology 2 Page 27
Lecture 9



H Why is this true? H

The homology class θX is representable by a cycle

ξ =
∑

x∈f−1(y)

σx + η,

where σx ∈ Cn(Ux) and η ∈ Cn(X − f−1(y)).

Because ξ is a cycle, we have ∂ξ = 0 ∈ Cn−1(X). Thus, f∗(θX) is represented by∑
f(σx) + f(η) ∈Zn(Y ) Cn(Y )

Zn(Y, Y − y) Cn(Y, Y − y)

We have η ∈ Cn(X − f−1(y)), and f(X − f−1(y)) ⊆ Y −{y}, so f(η) ∈ Cn(Y − y). Thus, when we
send θX ∈ Hn(X) via

Hn(X) Hn(Y ) Hn(Y, Y − y)
f∗ ∼=

the image can be represented by
∑

x∈f−1(y) f(σx), because f(η) is supported on Y − y.

H Missing content H

It follows that ∂σx ∈ Cn−1(Ux − {x}) for all x ∈ f−1(y).

We claim that σx ∈ Cn(Ux, Ux − {x}) is a generator of Hn(Ux, Ux − x).

Hn(X) Hn(X,X − x)

Hn(Ux, Ux − x)

∼=

excision

σx ∈ Zn(Ux, Ux − x)
f∗(σx) = degx(f) · θY

where σx denotes the corresponding homology class.

Corollary. Let X and Y be as before, and now assume that f is C∞. Suppose that y ∈ Y is a
regular value of f . Then f−1(y) is finite and degx(f) = ±1 for all x ∈ f−1(y).

Proof. For each x ∈ f−1(y), the restriction (Ux, Ux − x)→ (U ′y, U
′
y − y) is a diffeomorphism, which

induces Hn(Ux, Ux − x)
∼=−→ Hn(U ′y, U

′
y − y), so degx(f) = ±1.
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I haven’t shown you how to determine whether the local degree is +1 or −1, but it is still useful to
compute modulo 2. For f as above (we can drop the hypothesis that X and Y are orientable), then
if y is a regular value of f and #f−1(y) /∈ 2Z, then f is not null-homotopic.

Example. Let P ∈ C[z] be a polynomial with deg(P ) = d > 0. Because the map P : C → C is
proper, it extends to one-point-compactifications, so we have

C C

S2 C ∪ {∞} C ∪ {∞} S2

P

∼=
P ∗

∼=

and deg(P ∗) = d.

H Why did I write this? H

For all a ∈ C, we have #P−1(a) = d. P (z)− P (a), P ′(z) 6= 0 (?)

Vector bundles

Definition. A map p : E → B is a fiber bundle if there is an open covering {Uα}α∈A of B,
homeomorphisms ψα : p−1(Uα)→ Uα × F where F is a (possibly varying) topological space, such
that for each α ∈ A, the following diagram commutes

p−1(Uα) Uα × F

Uα

ψα

p|p−1(Uα)
p1

If B is connected, then all of the spaces F must be homeomorphic, and we say that p is a fiber
bundle with fiber F .

Let Uα, Uβ be two elements of this open cover of B. We can construct a commutative diagram:

(Uα ∩ Uβ)× F p−1(Uα ∩ Uβ) (Uα ∩ Uβ)× F

Uα ∩ Uβ

ψβ |p−1(Uα∩Uβ) ψα|p−1(Uα∩Uβ

Let φαβ = ψα|p−1(Uα∩Uβ) ◦ ψβ|−1
p−1(Uα∩Uβ)

, which is a homeomorphism making the following diagram
commute:

(Uα ∩ Uβ)× F (Uα ∩ Uβ)× F

Uα ∩ Uβ

φαβ
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When it is the case that that φαβ is a diffeomorphism for all α, β, we will say that ‘‘Uα ∩ Uβ →
Diffeo(F )’’.

Note that for all x ∈ Uα ∩ Uβ ∩ Uγ , we have

φαβ(x)φβγ(x) = φαγ(x).

This is called the cocycle condition.

Conversely, given an open cover {Uα}, and maps φαβ satisfying the cocycle condition, we can
construct a fiber bundle E → B by taking

∐
α∈A(Uα × F ), and quotienting by the equivalence

relation (x, v) ∈ Uα × F ∼ (x, φαβ(x)v) ∈ Uβ × F for all x ∈ Uα ∩ Uβ and v ∈ F .

Now we will define the notion of a vector bundle. We let F = Rk (or Ck for complex vector
bundles), and we require that φαβ : Uα ∩Uβ → GLk(R) is a diffeomorphism for all α, β ∈ A, so that
(x, v) 7→ (x, φαβ(x)v) is a diffeomorphism from (Uα ∩ Uβ)× Rk to itself. The resulting fiber bundle
on B is then a vector bundle. The number k is referred to as the rank of the vector bundle.

Given a C∞ fiber bundle p : V → B, then p is a vector bundle if

(a) there is an ‘‘addition’’ map

V ×B V V

B

(b) and there is a ‘‘scalar multiplication’’ map

R× V V

B

that gives p−1(b) the structure of a vector space for all b ∈ B.

Basically any construction you can do with vector spaces, you can do with vector bundles: direct
sum, tensor product, exterior algebra, etc.
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Lecture 10 (2013-01-30)

To construct a vector bundle on a base B, we can take an open cover B =
⋃
i∈I Ui and appropriate

transition functions ϕij : Ui ∩Uj → GLk(R) (appropriate just means that if we are doing topological
manifolds, they should be continuous; C∞ manifolds, they should be C∞; etc.) that satisfy the
cocycle condition ϕij(x)ϕjk(x) = ϕik(x) for all x ∈ Ui ∩ Uj ∩ Uk.
We then construct the vector bundle as

V :=
∐
i∈I

(Ui × Rk)
/
∼

where ∼ is the equivalence relation generated by

(x, y) ∈ Ui × Rk ∼ (x, ϕji(x)) ∈ Uj × Rk for all x ∈ Ui ∩ Uj .
The bundle map p : V → B is the map induced by the projection maps p1 : Ui × Rk → Ui.

Given vector bundles p1 : V1 → B and p2 : V2 → B, and letting Vi(x) = p−1
i (x) for each x ∈ B, we

can construct new vector bundles

V1 ⊕ V2, V1 ⊗R V2, V ∗, Λm(V ), etc.

whose fibers at x ∈ B are V1(x)⊕ V2(x), V1(x)⊗R V2(x), etc.

For example, we normally define V1 ⊕ V2 = V1 ×B V2, but here is another way: if V1 and V2 are the
vector bundles constructed by ϕ′ij : Ui ∩ Uj → GLk(R) and ϕ′′ij : Ui ∩ Uj → GL`(R) respectively, we
compose with the group homomorphism ρ : GLk(R)×GL`(R)→ GLk+`(R) sending

(A′, A′′) 7−→
(
A′ 0
0 A′′

)
,

and we see that ρ ◦ (ϕ′ij , ϕ
′′
ij) is a map from Ui ∩ Uj to GLk+`(R) that also satisfies the cocycle

condition. Then V1 ⊕ V2 is the associated vector bundle to this information.

For the tensor product, the construction is essentially the same; we now take the homomorphism
ρ : GLk(R)×GL`(R)→ GL(Rk ⊗R R`) sending (A′, A′′) to A′ ⊗A′′.
For V ∗, we take ρ : GLk(R)→ GLk(R) defined by ρ(A) = (AT)−1.

For Λm(V ), we take ρ : GL(Rk)→ GL(Λm(V )) defined by ρ(T ) = Λm(T ).

Definition. We define the bundle of frames of a vector bundle as follows. Let p : V → B be a real
vector bundle of rank k. We can construct the k-fold fiber product V ×B · · · ×B V , and we define

P = {(v1, . . . , vk) ∈ V ×B · · · ×B V | v1, . . . , vk are linearly independent}.
This is an open subset of the k-fold fiber product. It consists of the smoothly consistent ways of

taking isomorphisms p−1(x)
∼=←− Rk for each x. Note that for ψ ∈ P and g ∈ GLk(R), we get ψg ∈ P .

Thus, we have a fiber bundle π : P → B with a right G-action on P , under which each fiber is
stable (in fact the action on each fiber is simply transitive); in other words, the diagram

P ×G P

P B

action

p1 π

π
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commutes. Such a fiber bundle is, by definition, a principal G-bundle on B. You can see some
different takes on this in Kobayashi and Nomizu’s Foundations of Differential Geometry, and
Steenrod’s Topology of Fiber Bundles.

Definition. Given a topological group G, a principal G-bundle P on B, and an action of G on a
topological space F , the associated fiber space P ×G F is defined to be (P × F )/∼ where ∼ is the
equivalence relation generated by

(zg, y) ∼ (z, gy) for all z ∈ P , y ∈ F , and g ∈ G.

In fact, P ×G F is a fiber bundle on B with fiber F . The following diagram commutes:

P × F

P (P × F )/∼

B

Given a homomorphism ρ : G→ GLn(R), we obtain an action of G on Rn. Taking our fiber F to
be Rn, we can construct the associated fiber space P ×G Rn, which is a vector bundle on B. This is
an equivalent way of constructing vector bundles - all of the constructions mentioned above can be
done in this way too. For example, given a vector bundle V , we can construct Symm(V ) by taking
the associated fiber space to the natural homomorphism ρ : GL(Rk)→ GL(Symm(Rk)).

Let X be a topological space that is decent enough to have a universal covering space π : X̃ → X,
and let the group of covering transformations Γ be given the discrete topology. Then X̃ is a principal
Γ-bundle on X, and we can consider associated fiber spaces, vector bundles, etc.

We often have an action of π1(X,x0) on things. For example, if p : E → B is a fiber bundle and B is
a manifold or simplicial complex, then H i(p−1(x0)) is an abelian group with an action of π1(B, x0).
For any γ ∈ π1(X,x0), the corresponding action arises from the commutative diagram

γ∗E := I ×B E E

I = [0, 1] B

p2

p1 p

γ

Here are the details of the construction.

Lemma. Every fiber bundle on I is trivial.

Proof. There is a finite open cover of I where the fiber bundle is trivial on each element (because I
is compact). By induction on the number of elements on the cover, we are reduced to the case that
there are two elements of the cover. WLOG, we’ll assume that the fiber bundle is trivial on (open
sets containing) [0, 1

2 ] and [1
2 , 1], say with trivializations

π−1([0, 1
2 ]) [0, 1

2 ]× F

[0, 1
2 ]

ϕ

π p1

π−1([1
2 , 1]) [1

2 , 1]× F

[1
2 , 1]

ψ

π p1
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You can find a c such that

F

π−1(1
2)

F

φ|
∼=

∼=
ψ|

c

where φ| and ψ| denote φ and ψ suitably restricted.

H Why is α smooth? H

There is then an isomorphism with the trivial bundle, α : E → [0, 1]× F , defined by

α(e) =

{
ϕ(e) if e ∈ π−1([0, 1

2 ]),

(id[ 1
2
,1] × c)(ψ(e)) if e ∈ π−1([1

2 , 1]).

H Are the isomorphisms independent of the trivialization of π chosen? H

Corollary 1. If π : E → I is a fiber bundle, then the inclusions π−1(0)→ E and π−1(1)→ E are
homotopy equivalences, so we get induced isomorphisms

H i(π−1(0)) H i(E) H i(π−1(1)).
∼= ∼=

H Aren’t these homomorphisms in fact isomorphisms? H

Corollary 2. Let π : E → B be a fiber bundle and let γ : [0, 1] → B be a path from γ(0) = x to
γ(1) = y. We get an induced homomorphism H i(π−1(x)) → H i(π−1(y)), as well as an induced
homomorphism Hi(π

−1(y))→ Hi(π
−1(x)).

Proof. This is Corollary 1 applied to γ∗E.

We’re out of time, so let me request that you read the definitions of direct limit, presheaf, stalk,
sheaf, and sheafification. Spanier is a good reference for this.
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Lecture 11 (2013-02-01)

Today we’ll introduce a purely sheaf-theoretic definition of constructions such as the tensor product
of bundles, which is the one that is used in practice.

Everything we talk about today will be C∞.

Let p : V → B be a vector bundle on B. Given an open set U ⊆ B, a section s on U is a map
s : U → V making the diagram commute:

V

U B

ps

The set of C∞ sections s : U → V is denoted by Γ(U, V ). We’ll use the notation C∞(V ) for Γ(B, V ).

For any open set U ⊆ B, Γ(U, V ) is a module over the ring C∞B (U) = {C∞ maps f : U → R}, and
for any open sets U ′ ⊆ U of B, the restriction map Γ(U, V ) → Γ(U ′, V ) is a homomorphism of
C∞B (U)-modules, where Γ(U ′, V ) is given the structure of a C∞B (U)-module by restriction of scalars
along the map C∞B (U)→ C∞B (U ′). We say that U 7→ Γ(U, V ) is a sheaf of modules over C∞B . Here
is a diagram of the situation:

Γ(U, V ) is a module over C∞(U)

Γ(U ′, V ) is a module over C∞(U ′)

C∞(U) module hom. ring hom.

An example of a sheaf of C∞B -modules is

(C∞B )k = C∞B ⊕ · · · ⊕ C∞B︸ ︷︷ ︸
k times

.

If p : V → B is the trivial bundle of rank k, so that V = B × Rk and p is the projection map, then
clearly we can identify C∞(V ) with (C∞B )k.

Definition. A sheaf F of modules over C∞B is locally free of rank k if there is an open cover
B =

⋃
i∈I Ui such that F|Ui ∼= (C∞Ui )

k for all i ∈ I.

Theorem. The functor

category of vector bundles on B → category of locally free, finite rank sheaves of C∞B -modules

which sends V 7→ C∞(V ) is an equivalence of categories.

Proof. To see that it is fully faithful,

(I wasn’t able to get down this part of the argument in class. The next page is a supplement
provided to me by Professor Nori to fill in this gap.)
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C∞(V ) denotes the sheaf of C∞ sections of a vector bundle V on B. This is a
sheaf of C∞B -modules on B. Given C∞ vector bundles pi : Vi → B for i = 1, 2 a
homomorphism f : V1 → V2 is a C∞ map such that (i) p2 ◦ f = p1 and (ii) for all
x ∈ B the map

f |p−1
1 (x) : p−11 (x)→ p−12 (x)

is a linear transformation.
Given an open subset U ⊂ B let P (U) denote the set of homomorphisms from

(V1)|U to (V2)|U .
If U,U ′ are both open and if U ′ is a a subset of U then we have a restriction

P (U) → P (U ′). This gives P the structure of a presheaf . The lemmas below are
straightforward.

Lemma 0.1. P is a sheaf

Lemma 0.2. Let F1 and F2 be sheaves on B. Let R be a sheaf of rings on B (we are
concerned mainly with R = C∞B ). Let Q(U) be the collection of g : (F1)|U → (F2)|U
(here the g is required to be homomorphism of sheaves of R|U -modules). The lemma
states that presheaf Q on B is a sheaf.

Lemma 0.3. Let A be a ring. Every left A-module homomorphism h : A → A is of
right multiplication by h(1).

Let R be a sheaf of rings on a space X. Every homomorphism h of sheaves of left
R-modules from R to itself is right multiplication by h(1) ∈ R(X).

Homomorphisms of sheaves of R-modules from Rk to Rl are given by (k×l) matrices
with coefficients in the ring R(X).

Definition 0.4. A C∞ homomorphism f : V1 → V2 gives rise to a homomorphism of
sheaves of C∞B -modules C∞(f) : C∞(V1)→ C∞(V2). Indeed if s is a C∞ section of V1

on an open subset U of B then f ◦ s is a section of V2 defined on U . Thus s 7→ f ◦ s
gives rise to a homomorphism of presheaves, and that homomorphism is defined to
be C∞(f).

We put Fi = C∞(Vi) and R = C∞B in the second lemma and obtain the sheaf Q on
B.

Proposition 0.5. With notation as above, f 7→ C∞(f) gives a bijection P (B) →
Q(B).

Proof. In fact the “f 7→ C∞(f) construction” is valid for every open subset U of B. In
other words, we get a homomorphism of presheaves P → Q. Let U be the collection
of open subsets U ⊂ B for which the vector bundles (Vi)|U are trivial bundles for
both i = 1, 2.

Now the three statements
(a) U forms a basis for the topology of B
(b) both P and Q are sheaves
(c) P (U)→ Q(U) is a bijection for all U ∈ U (this is the last assertion in lemma 3)

imply that P (U)→ Q(U) is a bijection for all open subsets U ⊂ B, and in partic-
ular, for U = B.

�

1



We also need to check that this functor is essentially surjective. Let F be locally free. There exists

an open cover of Ui’s such that ψi : FUi
∼=−−→ (C∞Ui )

k. Restricted to Ui ∩ Uj , we get an isomorphism

(C∞Ui∩Uj )
k (C∞Ui∩Uj )

kψj◦ψ−1
i

∼=

which as we saw before corresponds to a C∞ map ϕij : Ui ∩ Uj → GLk(R). Check that ϕij satisfy
the cocycle condition, which will then let us construct the required V .

Let V1, V2 be vector bundles, and let s1 : U → V1 and s2 : U → V2 be C∞ sections of V1 and V2

respectively on U . Then whatever the definitions are, we would like to be able to say that

‘‘s1 ⊗ s2 is a C∞ section of V1 ⊗ V2 on U ’’.

Recall that we can take the tensor product of two sheaves. The sheaf C∞(V1)⊗C∞B C∞(V2) is a
locally free sheaf of C∞B -modules. By the equivalence we just proved, we get a vector bundle Z
with an isomorphism

C∞(Z) C∞(V1)⊗ C∞(V2),T
∼=

and we define Z to be V1 ⊗ V2. We have that s1 ⊗ s2 is a section of the bundle on the right on U ,
and T−1(s1 ⊗ s2) is a section of Z on U .

Let V be a vector bundle on B of rank k. We define det(V ) = Λk(V ), the top exterior power of V ,
which is a line bundle on B (i.e., a vector bundle of rank 1).

From now on, assume that all our topological spaces Z to be connected, and satsify the following
property (∗): the collection of contractible open subsets of Z forms a basis for the topology of Z.

Recall the definition of a constant presheaf: given an abelian group A, we define PA(U) = A for all
U open on Y . The sheafification of PA is denoted by AY .

Definition. The higher direct image is defined as follows. Given a continuous map f : X → Y , fix
an integer q ≥ 0. For any open U ⊆ Y , we define P q(U) := Hq(f−1(U)). Of course, for U ′ ⊆ U , we
have f−1(U ′) ⊆ f−1(U), and cohomology is contravariant, which is the right direction. Thus, P q is
a presheaf on Y .

The qth higher direct image of f is the sheafification of P q, and we denote it by Rqf∗ZX . As the
sheafification, it satisfies a certain universal property: for any sheaf G on Y and h : P q → G, there
is a unique h̃ such that

P q G

Rqf∗ZX

h

h̃

What if f : X → Y is a fiber bunde with fiber F? In particular, we might be interested in the case
when X = Y × F and f = p1.

Because cohomology is contravariant, we get a map Hq(F )
p∗2−−→ Hq(Y ×F ). By definition, we have

Hq(Y × F ) = P q(Y ), which comes with a restriction map to P q(U) = Hq(U × F ).

We claim that there is a natural map Hq(F )Y
φ−→ Rqf∗ZX , and that this is an isomorphism.

Last edited
2013-08-06

Math 318 - Geometry/Topology 2 Page 36
Lecture 11



The natural map φ is defined by

PHq(F )(U) = Hq(F ) P q(U) (Rqf∗ZX)(U)

Hq(F )Y

φ

To prove φ is an isomorphism of sheaves, it suffices to show it induces isomorphisms on all stalks.

Because the stalk at a point y ∈ Y is the limit over all open sets containing y, and because Y
satisfies the property (∗), we have

Hq(F ) Rqf∗ZY Hq(F )

id

∼=

Corollary. The sheaf Rqf∗ZY is locally constant, with stalks ∼= Hq(F ).

Definition. Let p : V → B be a real vector bundle of rank k. Let 0V : B → V be the zero section,
and let V ′ = V −0V (B). Then we can make a new bundle p : (V, V ′)→ B, with fibers (Rk,Rk−{0}).
For any open set U ⊆ B, the map U 7→ P(U) := Hk(p−1(U), p−1(U) ∩ V ′) is a presheaf; take the
associated sheaf. This sheaf is OrV , the orientation sheaf of V .

Note that OrV is a locally constant sheaf with all stalks ∼= Z. An orientation of V is a global section
s of OrV such that s(b) ∈ Hk(p−1(b), p−1(b)− {0}) is a generator for all b ∈ B.

Theorem (Thom isomorphism theorem). There is a natural isomorphism

H i(B,OrV )
∼=−−→ H i+k(V, V ′)

where the left denotes cohomology with values in an abelian group (the sheaf OrV is locally constant,
so this makes sense), and the right is cohomology of the pair (V, V ′).

Theorem (Thom isomorphism theorem, for us).

1. H i(V, V ′) = 0 for all i < k, when V is a vector bundle of rank k.

2. The natural map Hk(V, V ′)→ Γ(B,OrV ) is an isomorphism.

3. Let s be an orientation of V , i.e. s ∈ Γ(B,OrV ). Then s has a preimage θ ∈ Hk(V, V ′) by
part 2. The map

H i(B) H i+k(V, V ′)

α p∗α` θ

is an isomorphism.

Recall that we can form the cohomology ring
⊕∞

m=0H
m(X), where cup product is the multiplication.

For any Y ⊆ X, the group
⊕∞

m=0H
m(X,Y ) is a module over the cohomology ring.
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Lecture 12 (2013-02-04)

Last time, we stated the Thom isomorphism theorem. Here are the first two parts:

Theorem. Given a real vector bundle p : V → B of rank k,

1. H i(V, V ′) = 0 for all i < k.

2. The natural map Hk(V, V ′)→ Γ(B,OrV ) is an isomorphism.

Proof. We proceed by induction on k. Also, note that to prove the theorem for B, it will of course
suffice to prove it for all open subsets of B; if we set

P i(U) = H i(p−1(U), p−1(U) ∩ V ′),

then claim 1 is the same as saying that P i(U) = 0 for all i < k and all U .

Given open subsets U1, U2 ⊆ B, we apply the Mayer-Vietoris sequence

· · · P i−1(U1 ∩ U2) P i(U1 ∪ U2) P i(U1)⊕ P i(U2) P i(U1 ∩ U2) · · ·

Let U = {open U ⊆ B | V |U is a trivial vector bundle}. Thus, for each U ∈ U , we have some
isomorphism of vector bundles

V |U = p−1(U) U × Rk

U
p|p−1(U)

p1

and so P i(U) ∼= H i(U × (Rk,Rk \ {0})). Because (Rk,Rk \ {0}) has only one non-zero cohomology
term and it is a free abelian group, we can apply the Künneth formula, and we see that this is then
isomorphic to H i−k(U).

We prove claims 1 and 2 for each U of the form U = U1 ∪ · · · ∪Um, with Ui ∈ U , by induction on m.
The statement is true for W = U2 ∪ · · · ∪Um by induction, and U ∩W ⊆ U1 =⇒ U ∩W ∈ U =⇒
proved by induction hypothesis.

Thus, if claim 1 is true for U1 ∩B, U1, and W , then it is true for U = U1 ∪W . The Mayer-Vietoris
sequence for U1 and W is

· · · P i−1(U1 ∩W ) P i(U) P i(U1)⊕ P i(W ) P i(U1 ∩W ) · · ·

Put i = k for claim 2. We have isomorphisms

0 Pk(U) Pk(U1)⊕ Pk(W ) Pk(U1 ∩W )

Γ(U,OrV ) Γ(U1,OrV )⊕ Γ(W,OrV ) Γ(U1 ∩W,OrV )

t ∼= ∼=

(the maps on the bottom have a minus sign in one coordinate, as in the Mayer-Vietoris sequence). A
priori, the bottom row is just a complex, but because OrV is a sheaf, in fact it is an exact sequence,
and we can write
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0 Pk(U) Pk(U1)⊕ Pk(W ) Pk(U1 ∩W )

0 Γ(U,OrV ) Γ(U1,OrV )⊕ Γ(W,OrV ) Γ(U1 ∩W,OrV )

t ∼= ∼=

By the Five Lemma, we have that the map t is an isomorphism.

To see how this implies the claim for all open sets, see Spanier. Certainly, we are done when B is
compact. In Hurewicz and Wallman’s Dimension Theory, there is a proof that if B is an n-manifold,
or a subset of an n-dimensional simplicial complex, then B =

⋃n+1
i=1 Ui for some Ui ∈ U .

Proof of 3rd claim of Thom isomorphism theorem. By claim 2, there is an isomorphismHk(V, V ′) ∼=
Γ(B,OrV ). For the third part of the theorem, we start with an orientation s, i.e. an s ∈ Γ(B,OrV )
such that s(x) is a generator of the stalk of OrV at x for all x ∈ B. There is a corresponding
θ ∈ Hk(V, V ′), via this isomorphism.

The third claim is that the map ti(B) : H i(B) → H i+k(V, V ′) defined by α 7→ p∗α ` θ is an
isomorphism (note that p∗α ∈ H i(V )). As before, it will suffice to prove this for nice open sets U ,
i.e. our goal is now to prove that ti(U) : H i(U)→ H i+k(p−1(U), p−1(U) ∩ V ′) is an isomorphism.

We have a commutative diagram

· · · P i+k(U) P i+k(U1)⊕ P i+k(V ) P i+k(U1 ∩ V ) · · ·

· · · H i(U) H i(U1)⊕H i(V ) H i(U1 ∩ V ) · · ·

ti(U) ∼= ti(U1)⊕ti(V )

and the Five Lemma, with induction, implies that ti(U) is an isomorphism,

How can we decide when a vector bundle is orientable?

Giving a global section of a sheaf is the same as giving a global section on each connected component.

First, let’s talk about orientations of vector spaces. Given a real vector space V of dimension k,
the 2 generators of Hk(V, V ′) are in natural correspondence with the two connected components of
(ΛkV )′.

Fix a generator ξ ∈ H1(R,R \ {0}), and more generally, let ξ(n) ∈ Hn(Rn,Rn \ {0}) be a generator.

Given a non-zero ω ∈ ΛkV , there is some basis v1, . . . , vk such that ω = v1 ∧ · · · ∧ vk.
Let T : Rk → V be the map sending ei to vi. There is an induced map on cohomology, which is a
also an isomorphism:

Hk(Rk,Rk \ {0}) T ∗←−−∼= Hk(V, V ′).

Then (T ∗)−1(ξ(k)) ∈ Hk(V, V ′) is a generator.

As an exercise, show that {ϕ ∈ GLk(R) | det(ϕ) > 0} is connected. The maps ϕ : (Rk,Rk \ {0})→
(Rk,Rk \ {0}) are all homotopic to each other.

Now let V be a real rank k vector bundle on B, and assume B is connected. Take the top exterior
power of V , which we’ll write as det(V ) := Λk(V ). This is a vector bundle of rank 1. The fiber
bundle
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(det(V ))′

B

either has two connected components, and each connected component gives an orientation of V , or
it has one connected component, in which case V is not orientable.

Let Y be a C∞ manifold, and A a closed C∞ submanifold of codimension k. By excision, there is
an isomorphism

H∗(Y, Y −A)
∼=−−→ H∗(U,U −A)

for any open U ⊃ A. There is a normal bundle (TA)⊥, i.e. considering TaA ⊂ TaY , we have
TY |A = TA⊕ (TA)⊥. The tubular neighborhood theorem implies that, for A compact, there is a

diffeomorphism ((TA)⊥ε , 0(TA)⊥)
∼=−−→ (U,A), and (TA)⊥ = N is a rank k bundle on A.

Therefore, we have an isomorphism H i+k(Nε, N
′
ε)
∼= H i(A) (if N has been given an orientation).

An orientation of N , the normal bundle of A in Y , gives rise to a θ ∈ Hk(Y, Y −A).
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Lecture 13 (2013-02-06)

What we ended with last time was a discussion of what an orientation of a vector space was.

Let V be a rank k real vector space. There are two sets, each with two elements, and there is a
natural bijection between them: the first is OrV := {generators of Hk(V, V ′)}, and the second is
π0((det(V )′), where det(V ) = Λk(V ) is the top exterior power. Let the natural bijection be

OrV π0((det(V ))′)
N(V )

bijection

Given vector spaces V1 and V2, we have a natural commutative diagram of bijections

OrV1 ×OrV2 π0((det(V1)′)× π0((det(V2))′)

OrV π0((det(V ))′)

N(V1)×N(V2)

cross product tensor product

N(V )

where V = V1 × V2.

Recall that there is a natural map

Hk(X,A)⊗H`(Y,B)→ Hk+`((X,A)× (Y,B)) = Hk+`(X × Y,A× Y ∪X ×B).

Putting (X,A) = (V1, V
′

1) and (Y,B) = (V2, V
′

2), we have (X,A)× (Y,B) = (V, V ′).

Let k = dim(V1) and ` = dim(V2). There is a natural isomorphism

det(V1)⊗ det(V2) det(V1 × V2)

ω ⊗ η ω ∧ η

∼=

(note that the order matters). Similarly, we can map

det(V1)′ × det(V2)′ det(V1 × V2)′

(ω, η) ω ∧ η

∼=

This gives a map
π0((det(V1))′)× π0((det(V2))′)→ π0((det(V ))′).

Now let’s define an orientation of a vector bundle.

Let p : V → B be a rank k real vector bundle, and define V (x) = p−1(x) for all x ∈ B. There is
a quotient map (det(V (x)))′ → π0((det(V (x)))′). Take the disjoint union over x ∈ B; we get a
quotient map from the line bundle det(V ), minus its zero section:

(det(V ))′ Q

B

α

π
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where
Q :=

∐
x∈B

π0((det(V (x)))′).

We give Q the quotient topology from α. Because a vector bundle is locally trivial, Q is locally a
product with Z/2Z, so π is a covering space with all fibers being two-element sets. It is easy to see
that an orientation of V is a continuous section s : B → Q.

Part 2 of the Thom isomorphism theorem says that the natural map Hk(V, V ′)→ Γ(B,OrV ). An
orientation according to our definition lives in Γ(B,OrV ), but an equivalent definition (now that
the theorem has been proved) is that an orientation of V is an element θ ∈ Hk(V, V ′) such that for
all x ∈ B, the image of θ under the map Hk(V, V ′)→ Hk(V (x), V (x)′) is a generator.

The Thom isomorphism theorem for Z/2Z coefficients states that there is a θ ∈ Hk(V, V ′;Z/2Z)
such that its image in Hk(V (x), V (x)′;Z/2Z) is non-zero for all x ∈ B, and part 2 in this case says
that the map

H i(B;Z/2Z) H i+k(V, V ′;Z/2Z)

α p∗α` θ

is an isomorphism for all i ∈ Z.

Let’s recall that the tubular neighborhood theorem. Given a closed C∞ submanifold A ⊂ Y , and
letting i : A ↪→ Y be the inclusion, then the map TA ↪→ i∗TY is given by i′(a) : TaA→ TaY .

Depending on whether or not you’re an algebraist or a . . . something else, you will use the quotient,
or the orthogonal complement. I will think of myself as an algebraist for today.

We define N1 = i∗TY/TA, which is a vector bundle on A. The tubular neighborhood theorem says
that there is a neighborhood U1 of 0N1(A) and a neighborhood U2 of A in Y such that there is a
diffeomorphism ϕ : U1 → U2 such that ϕ(0N1(a)) = a for all a ∈ A.

Remark. Let P and Q be C∞ manifolds, and let ϕ : P → Q be a C∞ map. Suppose that A ⊂ P is
a closed set (need not be a submanifold) such that ϕ|A : A→ ϕ(A) is a homeomorphism, and ϕ(A)
is closed. Also, suppose that ϕ′(a) : TaP → Tϕ(a)Q is an isomorphism for all a ∈ A. Then there exist
neighborhoods U1 of A in O, and U2 of ϕ(A) in Q, such that ϕ|U1 : U1 → U2 is a diffeomorphism.

Proof. We will assume without proof the result that any second-countable, Hausdorff manifold Y
can be realized as a closed submanifold of Rn for some n. Thus, we have

A ↪→ Y ↪→ Rn,

and for any a ∈ A,
TaA ⊆ TaY ⊆ TaRn = Rn.

Then N1(a) = TaY ∩ (TaA)⊥, and N2 = (TaY )⊥ (note that all ⊥’s are taken in Rn). These are both
C∞ bundles on A, and N1×N2 = N is the normal bundle of A in Rn. (When A is compact) the
old tubular neighborhood theorem states that there is some ε > 0 such that there is a diffeomorphism
f : Nε → U , where U is an open subset of Rn, A ⊂ U , and f(0N (a)) = a for all a ∈ A. We have
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p = U ∩ Y U Nε N Q = N1

A 0N1(A)

f−1 projection

On tangent space at all a ∈ A, check that the above is an isomorphism.

We have a decomposition

TaU = TaA⊕ Ta(a+N1(a) ∩ U)

= TaA⊕N1(a)

Now, if Y is a C∞ manifold and A ⊂ Y is a closed C∞ submanifold of codimension k, by excision
we have

Hk(Y, Y −A) Hk(U2, U2 −A) Hk(U1, U1 − 0N1(A))

Hk(N1, N
′
1)

∼=
excision

∼=

∼= excision

Given an orientation θ of the normal bundle of A in Y , by pushing it up and left, we get a canonical
element (which we’ll also call θ) of Hk(Y, Y −A). We’d like to characterize this θ in a choice-free
way. I claim that it has the property that for any locally closed submanifold Z of dimension k in Y
such that Z ∩A is a singleton and the intersection is transverse, the image of θ under

Hk(Y, Y −A)→ Hk(Z,Z − (Z ∩A))

is a generator.

The Thom-Gysin sequence is

· · · Hm−1(A) Hk(Y ) Hm(Y −A) Hm−k+1(A) · · ·

Given C∞ manifolds X and Y , a C∞ map f : X → Y , and a closed C∞ submanifold A ⊂ Y such
that f is transverse to A, then we have a commutative diagram

θ(f−1(A)) ∈ Hk(X,X − f−1(A)) Hk(X)

θ(A) ∈ Hk(Y, Y −A) Hk(Y )

The class θ(A) is denoted cl(A). We have f∗(cl(A)) = cl(f−1(A)).
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Lecture 14 (2013-02-08)

Finding invariants for the tangent and normal bundles will be important even for solving some
classical problems. Today, we’ll talk about some generalities on vector bundles.

Let p : V → B be an oriented real vector bundle of rank k. Recall that one way of defining an
orientation, after having proved the Thom isomorphism, was a class θ ∈ Hk(V, V ′) such that its
image under the map Hk(V, V ′)→ Hk(V (x), V (x)′) is a generator for all x ∈ B.

Because p : V → B is a homotopy equivalence (all fibers are Euclidean spaces which vary smoothly),
the induced map on cohomology p∗ : Hk(B)→ Hk(V ) is an isomorphism. A homotopy inverse for
p is any section s : B → V .

θ(V ) ∈ Hk(V, V ′) Hk(V )

Hk(B)

MV

s∗p∗

We define the Euler class of p : V → B to be

e(V ):=(p∗)−1MV θ(V )

=s∗MV θ(V )

Thus, e(V ) is an element of Hk(B).

Proposition.

1. If V1 and V2 are oriented vector bundles on B that are isomorphic to each other (as oriented
bundles), then e(V1) = e(V2).

2. (Functoriality) Given h : C → B and a vector bundle p : V → B, an orientation θ(V ) of V
induces an orientation of h∗V , the pullback bundle:

h∗V V

C B

h̃

p

h

and h∗e(V ) = e(h∗V ).

3. (Direct sums) If V1 and V2 are oriented vector bundles over B, then V1 ⊕ V2 is as well, and
e(V1)` e(V2) = e(V1 ⊕ V2). More generally, if V1 is an oriented vector bundle on B1 and V2

is an oriented vector bundle on B2, then we can construct the product bundle

V = V1 × V2

B = B1 ×B2

p=p1×p2

Note that (V1, V
′

1) × (V2, V
′

2) = (V, V ′), and define θ(V ) = θ(V1) × θ(V2), where θ(Vi) ∈
Hki(Vi, V

′
i ) for i = 1, 2. We claim that e(V1 × V2) = e(V1)× e(V2) ∈ Hk1+k2(B1 ×B2).
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Exercise: Prove that e(V ) = (−1)ke(V ).

Proof. We have a commutative diagram for any x ∈ B and y ∈ C with h(y) = x:

θ(V ) ∈ Hk(V, V ′) Hk(h∗V, (h∗V )′)

generator ∈ Hk(V (h(x)), V (h(x))′) Hk((h∗V )(y), (h∗V )(y)′)

h∗

∼=

Thus, h∗θ(V ) is an orientation of h∗V , proving claim 1. Observe that a section s : B → V induces
a section of the pullback:

h∗V V

c B

ph∗s

h

s

To prove claim 2 (functoriality), consider the following diagram:

Hk(V, V ′) Hk(h∗V, (h∗V )′)

Hk(V ) Hk(h∗V )

Hk(B) Hk(C)

h̃∗

MV Mh∗V

s∗ (h∗s)∗

h∗

Proof of claim 3: By the functoriality of cross product, we are done - we have the following
commutative diagram:

B1 × B2 B1 ×B2

V1 × V2 V

(V1, V
′

1) × (V2, V
′

2) (V, V ′)

s1 s2 s1×s2

For V1 ⊕ V2, we have B1 = B2 above, and

V1 ⊕ V2 = ∆B∗(V1 × V2) V1 × V2

B B ×B
∆B

and

e(V1 ⊕ V2) = ∆B∗(e(V1 × V2))

= (∆B)∗(e(V1)× e(V2))

= e(V1)` e(V2)
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Interpretation for C∞ bundles V on C∞ manifolds B

Recall that we stated without proof that there exists a C∞ section s of V that is transverse to the
zero section.

zero section 0V (B)

fibers

s

Define Z(s) = {x ∈ B | s(x) = 0}, which is a C∞ submanifold. For any x ∈ Z(s), there is a
canonical identification

TxB/TxZ(s)
∼=−−→ TxV/Tx0V (B) ∼= V (x).

We have

θ(V ) ∈ Hk(V, V ′) Hk(V ) Hk(B) 3 e(V )

Hk(B,B − Z(s))

∈

θ(Z(s))

s∗

MV s∗

Thus e(V ) = cl(Z(s)) for any section s which meets the zero section 0V (B) transversely.

For example, if B = Sk for k odd, and V = TB is the tangent bundle, then we have a section

s(x1, . . . , xk+1) = (x2,−x1, x4,−x3, . . .)

This is nowhere-vanishing, so we have that e(TSk) = 0 for k odd. Similarly, for k even, we have
e(TSk) = 2.

Theorem (Hopf). If X is a compact manifold, then e(TX) = the Euler characteristic of X.

Steenrod’s Topology of Fiber Bundles section on obstruction theory is a good reference for this.

Theorem. If B is a CW complex, with successive skeleta

B(0) ⊂ B(1) ⊂ · · ·

and V is an oriented real vector bundle on B of rank k, then e(V ) = 0 ∈ Hk(B) if and only if there
is a section of V ′|B(k),

V

B(k) B

s
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Complex Vector Bundles

The main difference between complex and real vector spaces is that complex vector spaces have a
canonical orientation.

Exercise: Let V be a complex vector space of dimension k. If v1, . . . , vk is a C-basis for V , then
we can define a map detC(V )→ detR(V ), i.e. a map ΛkC(V )→ Λ2k

R (V ), by

Sv(v1 ∧ · · · ∧ vk) = v1 ∧ iv1 ∧ · · · ∧ vk ∧ ivk.

To check that this is well-defined, show that if we map T ∈ Mk(C) to the corresponding element of
M2k(R), then |detC(T )|2 = detR(T ).

The canonical orientation on V is determined by the connected component which contains the
image of the map

ΛkC(V )′ Λ2k
R (V )′

C \ {0} R \ {0}

If V1 and V2 are complex vector spaces, then SV1 × SV2 → SV1⊕V2 , considering SV ∈ π0(detR(V )′).

Theory of Chern Classes

For every complex vector bundle V on a topological space B, we define a Chern class ci(V ) ∈ H2i(B)
for i = 0, 1, . . . , rankC(V ), where c0(V ) = 1 ∈ H0(B), and then define the total Chern class to be

c(V ) = c0(V ) + · · ·+ ck(V ).

There are several reasonable properties we should check:

Proposition.

1. If V1
∼= V2, then c(V1) = c(V2).

2. If p : V → B is a complex vector bundle and f : C → B is smooth, then f∗(ci(V )) = ci(f
∗V ).

3. (Whitney sum formula) We have c(V1 ⊕ V2) = c(V1)c(V2) (the product is the cup product),
and specifically,

cm(V1 ⊕ V2) = cm(V1)c0(V2) + cm−1(V1)c1(V2) + · · ·+ c0(V1)cm(V2).

4. Let L be the tautological line bundle on Pn(C). Then c1(L ∗) = t, where t ∈ H2(Pn(C)) is
the canonical generator, i.e. t = cl(Pn−1(C)).

The tautological line bundle L on Pn(C) is defined to be

L = {(L, v) ∈ Pn(C)× Cn+1 | v ∈ L}.

Then L ∗ denotes the (C-)dual bundle.
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Theorem (Existence and uniqueness of the theory of Chern classes).

Facts:

1. c1(V ) = c1(detC(V ))

2. {isomorphism classes of complex line bundles on B} c1−−−→∼= H2(B;Z).

3. If V is a complex vector bundle of rank k, then e(V ) = ck(V ) ∈ H2k(B;Z).

Proof of existence. Given a complex vector bundle V of rank k on B, then we can form

V �L ∗ = p∗1V ⊗C p
∗
2L
∗,

which is a complex vector bundle on B × Pn(C). We have

e(V �L ∗) = p∗1ck(V )p∗21 + p∗1ck−1(V )p∗2t+ · · ·+ p∗1ck−i(V )p∗2t
i + · · · ∈ H2k(B × Pn(C);Z),

where we have used the Kunneth formula to make the identification

Hm(B × Pn(C);Z) ∼=
⊕

p+q=m

Hp(B)⊗Hq(Pn(C)) = Hm(B)⊕Hm−2(B)⊕ · · · .

In this identification, we’re claiming that

e(V �L ∗) 7→ (ck(V ), ck−1(V ), . . .).

For part 3, when V = V1 ⊕ V2, we have

V �L ∗ = V1 �L ∗ ⊕ V2 �L ∗,

and
e(V �L ∗) = e(V1 �L ∗)` e(V2 �L ∗).

Given a C∞ map X → Y , and a ∈ Y a regular value of f , let M = f−1(a). For every x ∈M , we
have an identification

TxX/TxM
f ′(x)−−−→∼= TxY.

c(C⊗R V is the Pontryagin class of V .

The normal bundle i∗TX/TM is trivial, so i∗TX = trivial bundle⊕ TM , and

c(C⊗ i∗TM) = 1 · c(C⊗ TM).

If, for example, X = Rn, then we would have

TM ⊕ trivial bundle = some other trivial bundle,

which doesn’t imply that TM is trivial, but this is the definition of stably trivial. Trivial bundles
will never affect the Chern class, so

c(C⊗ TM) = 1, i.e. ci(C⊗ TM) = 0 for all i > 0.
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The Chern class of the tangent bundle of Pn(C) is

c(TPn(C)) = (1 + t)n+1,

and for n ≥ 2, we have c2 = −(n+ 1)t2.

c(C⊗R TPn(C)) = (1 + t)n+1(1− t)n+1 = (1− t2)n+1.

Thus, for n ≥ 2, the tangent bundle of Pn(C) cannot be the pullback of the tangent bundle of a
manifold.

Last edited
2013-08-06

Math 318 - Geometry/Topology 2 Page 49
Lecture 14



Lecture 15 (2013-02-11)

I’ll be following Warner’s book from now on, so I won’t have to type up notes and so you’ll have
something to refer to. We’ll be talking about flows and vector fields soon.

Continuous Variants of C∞ Theorems

Theorem 1. Let X and Y be C∞ manifolds, and assume that X is compact. Let f0 : X → Y be
continuous. Then f0 can be approximated by C∞ functions; you could either use a metric on Y , or
use the compact-open topology. Either way, there are C∞ functions fn : X → Y that converge to
f0.

Proof. We will assume the Stone-Weierstrass theorem. Choose an embedding X ↪→ Rn. Because
X is compact, the Stone-Weierstrass theorem says that C∞(X) is dense in C(X,R) in the ‖ · ‖∞
norm. Thus, the statement is true if Y = R. It will then follow for Y = Rn, then for Y = an open
subset of Rn, and then for any Y = any C∞ retract of an open subset of Rn. But from the tubular
neighborhood theorem, this last case includes any Y ; there is an embedding i : Y ↪→ Rn and a
retract r : U → Y for some open U ⊃ i(Y ).

Theorem (Partitions of unity). Let M be a C∞ manifold, and let U be an open cover of M . Then
for any U ∈ U , there is a C∞ function ϕU : M → R such that

(a) supp(ϕU ) ⊂ U
(b) ϕU ≥ 0

and such that the collection {ϕU | U ∈ U} satisfies the condition

for all x ∈M, there is some neighborhood U(x) of x such that {U ∈ U | ϕU |U(x) 6= 0} is finite

and
∑

U∈U ϕU (x) = 1 for all x ∈M .

Theorem 2. Let X, Y , and f0 be as in Theorem 1. The set

U := {x ∈ X | f0|some nbhd of x is C∞}

is open in X. Let K ⊂ U be a closed subset. Then the sequence of fn’s from Theorem 1 can be
chosen so that fn|K = f0|K .

Proof. We have a C∞ map ϕ with supp(ϕ) ⊂ U , and a C∞ map ψ with supp(ψ) ⊂ X −K, so that
ψ(x) = 0 for all x ∈ K, and hence ϕ(x) = 1 for all x ∈ V , where V is a neighborhood of K.

When Y = Rn, we have the fn’s as in Theorem 1: the fn’s are C∞ and converge to f0.

Let gn = ϕf0 + ψfn for all n ∈ N. Then ϕf0 → f0 on U , f0 is C∞ on U , and ψfn is a C∞ map,
so gn is C∞ on X and gn(x) = f0(x) for all x ∈ K. Then we deal with open subsets of Rn, C∞

retracts of open subsets, etc.

Theorem 3. Let X, Y , and f0 be as in Theorem 1. Let Ω be a tubular neighborhood of Y , i.e.

Y Ω Rn
i

r
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Let A ↪→ Y be a closed C∞ submanifold. Then the set

U = {x ∈ X | there is some neighborhood U(x) such that f0|U(x) is transverse to A}

is open. Let K ⊂ U be closed. Then there is a sequence fn : X → Y of functions such that

(i) fn → f0 in the compact-open topology

(ii) the fn’s are C∞ and transverse to A

(iii) fn|K = f0|K for all n ∈ N

Remark. By Theorem 2, we have C∞ maps fn : X → Y such that fn → f0 uniformly and
fn|K = f0|K . Thus, it suffices to prove that the fn’s can be approximated by f ′n which are C∞,
transverse to A, and f ′n|K = fn|K . Thus, it suffices to prove Theorem 3 when f0 is C∞.

Proof. Recall our proof that C∞ functions can be approximated by functions transverse to a given
submanifold; we will modify this proof. We had our tubular neighborhood

Y Ω Rn
i

r

and considered the map X × S → Rn defined by F (x, s) = f0(x) + s, where S = Rn. But then we
restrict S to be a neighborhood of 0 so that the image of F is entirely contained in Ω, and then
redefine F (x, s) = r(f0(x) + s).

We have a partition of unity (ϕ,ψ) for the open cover (U,X −K). Now we define F (x, s) as

F (x, s) = r(ϕ(x)f0(x) + ψ(x)s)

for x ∈ X, s ∈ a neighborhood of 0 in Rn. Let fs(x) = F (x, s). Then we have V = {x ∈ X | ψ(x) 6=
0} and clearly F ′(x, 0) is surjective for all x ∈ V , so it will be transverse to absolutely anything,
and fs(x) = f0(x) for all x ∈ X − V , and we assumed that f0 was transverse to A. Thus, we can
conclude that F : X × S → Y is transverse to A on X × {0}. Because X is compact, shrinking the
neighborhood S if necessary we can assume that F : X × S → Y is transverse to A everywhere.
Thus F−1(A) is a manifold, we have F−1(A) ↪→ X × S → S, and now apply Sard’s theorem.

Given an element ξ ∈ [X,Y ] (this denotes the set of homotopy classes of continuous maps from X
to Y ) and a closed C∞ submanifold A ⊂ Y , pick an f ∈ ξ that is C∞ and transverse to A. Suppose
that f0, f1 : X → Y are both C∞ and transverse to A, and that they are homotopic to each other
via some h.

Define F : X × S1 → Y by

f1f0

h

h

Assume that dim(X) > 0.

Let U = X × U ′ where U ′ is a neighborhood of the regions where F is either f0 or f1, as follows:
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and let K = X × {±1}. Apply Theorem 3 to F : X × S1 → Y , get F̃ : X × S1 → Y which is C∞,
transverse to A, and for all x ∈ X, we have

F̃ (x,−1) = f0(x), F̃ (x, 1) = f1(x).

Then F̃−1(A) = B is a C∞ submanifold of X × S1. We have B −t X × {1} = f−1
1 (A) × {1} and

B −t X × {−1} = f−1
0 (A)× {−1}.

The symbol −t means ‘‘is transverse to’’.

However, this use of S1 was really an artificiality on my part. We really should have said everything
for manifolds with boundary, which I’ll define now.

Consider the closed lower half plane

H = {(x1, . . . , xn) ∈ Rn | xn ≤ 0},

with its sheaf C∞H . An n-manifold with boundary is a topological space X such that for all
x ∈ X there is a neighborhood U(x) of x in X and a neighborhood U(h) of some h ∈ H, and a
homeomorphism U(x)→ U(h), and these homeomorphisms are compatible.

A closed subset A of a C∞ manifold with boundary (M,∂M) if, for all a ∈ A, either a /∈ ∂M
(this is just the old definition), or if a ∈ A ∩ ∂M , then we require that (M,∂M) has a chart to H,
(x1, . . . , xn) with xn ≤ 0, such that in the chart, A is the set where x1 = · · · = xk = 0 for some
k 6= n, and such that A ∩ ∂M = ∂A.

Submanifold with boundary? Examples

Yes

No

Closed submanifolds B0 and B1 of a C∞ manifold X are concordant if there is a closed submanifold
B with boundary of X × I such that B ∩X × {0} = B0 × {0} and B ∩X × {1} = B1 × {1}. This
is an equivalence relation; let C denote the set of equivalence classes. The content of what we’ve
proved is that there is a well-defined map

[X,Y ]× C(Y )→ C(X)

taking closed submanifolds in Y to their preimage in X.
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Lecture 16 (2013-02-13)

Theorem (Ehresmann fibration theorem). Let f : X → Y be a C∞ proper submersion. Then f is
a C∞ fiber bundle.

Proof. Let y0 ∈ Y , and let F = f−1(y0), which is compact because f is proper. We may regard X
as a closed submanifold of Rk for some k. Thus, we have F ⊂ X ⊂ Rk, and we apply the tubular
neighborhood theorem to i : F ↪→ Rk. Thus, we get an open neighborhood U of F in Rk and a C∞

retraction r : U → F . Now replace (U, r) by (U ∩X, r|U∩X).

We now have that U is a neighborhood of F in X, and r : U → F is still C∞. Consider the
map (f |U × r) : U → Y × F . We claim that this induces an isomorphism on tangent space at all
x ∈ F ⊂ U . We see that the sequence

0 Tx(f−1(f(x))) Tx(U) Tf(x)(Y ) 0
f ′(x)

is exact for all x ∈ X because f is a submersion, and in particular, for x ∈ F = f−1(y0), we have
that the sequence

0 TxF TxU Ty0Y 0

is exact. Thus, the claim is now equivalent to the claim that

TxF TxF
r′(x)|TxF

is an isomorphism. Why? If we have a map of vector spaces

V A⊕B(α,β)

and we know that α is onto, then (α, β) is an isomorphism if and only if β|ker(α) : ker(α)→ B is an
isomorphism. But r′(x)|TxF is the identity, so this is true in our case.

Note that the set

V = {z ∈ U | f |U × r is an isomorphism of tangent spaces TzX → (· · · )}

is open, so X \V is closed. Thus f(X \V ) is closed, because f is proper. Its complement necessarily
contains f−1(Uy0), where Uy0 is a neighborhood of y0 in Y . In other words,

f−1(Uy0) Uy0 × F
f |×r

induces an isomorphism of tangent space and is injective on F ⊂ f−1(Uy0). It follows that f × r is
injective on f−1(U ′y0) for some neighborhood U ′y0 ⊂ Uy0 of y0.

Here is a variant of the theorem.

Theorem. Let (X, ∂X) be a C∞ manifold with boundary. Suppose that f : X → Y is a C∞ proper
submersion such that f |∂B is also a submersion. Then f is a C∞ fiber bundle.
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Existence and uniqueness of solutions of ODEs

A reference for this is Warner’s Foundations of Differentiable Manifolds and Lie Groups.

Definition. Let M be a C∞ manifold. We say that A is a continuous vector field on M when A is
a continuous section A : M → TM the tangent bundle map p : TM → M . A C∞ vector field is
just a C∞ section.

Definition. An integral curve of a vector field v on M is a C1 curve γ : (a, b) → M such that
γ′(t) = v(γ(t)) for all t ∈ (a, b).

Theorem (Existence and uniqueness). Let v be a C1 vector field on M . Let x0 ∈M . Then there
exists an integral curve γ : U →M for some connected open neighborhood U ⊆ R of 0 such that
γ(0) = x0. If γi : Ui →M for i = 1, 2 are integral curves of v such that γ1(0) = γ2(0) = x0, then
there is some open neighborhood U ⊂ U1 ∩ U2 of 0 such that γ1|U = γ2|U .
Corollary. In fact, γ1|U1∩U2 = γ2|U1∩U2.

Proof of corollary. Both U1 and U2 are connected open neighborhoods of 0 so it suffices to check
the claim on the positive side and on the negative side. Let Ui ∩ [0,∞) = [0, bi) for i = 1, 2. We
may assume WLOG that b1 ≤ b2. Let

c = sup{t ≥ 0 | γ1(t) = γ2(t)}.

If c = b1, then we are done. If c < b1, then continuity implies that γ1(c) = γ2(c). Consider the
curves γ1(t+ c) and γ2(t+ c), which are both integral curves for v with the same initial value, i.e.
they agree when t = 0. But the theorem implies that, for any integral curve δ of v with initial value
γ1(c) = γ2(c), we have that δ(t) = γ1(t+ c) for all t in a neighborhood of 0, and δ(t) = γ2(t+ c) for
all t in a neighborhood of 0, and therefore γ1(t) = γ2(t) for all t ∈ (c− ε, c+ ε) for some ε > 0. But
this contradicts the construction of c; thus c = b1 and γ1|U1∩U2∩[0,∞) = γ2|U1∩U2∩[0,∞). Now do the
same for (−∞, 0].

Now consider the set of all pairs

Z =

{
(U, γ)

∣∣∣∣ U is an open connected neighborhood of 0 in R,
γ is an integral curve of v and γ(0) = x0

}
.

This partially ordered set has a greatest element; let V =
⋃{U | there is some (U, γ) ∈ Z}, we have

γ : V →M , apply Zorn’s lemma as usual, etc.

Examples.

• Let M = Rn, and let v be a constant vector field. Then for any x ∈M , the curve γ : R→M
defined by γ(t) = x+ tv is an integral curve.

• Let M = Rn, and let S : Rn → Rn be a linear transformation. Define the vector field
v(x) = Sx for all x ∈ Rn. As you’ve seen in Victor Ginzburg’s class, for any A ∈Mn(R) we
can define

exp(A) =

∞∑
k=0

Ak

k!
,

which satisfies exp(A+B) = exp(A) exp(B) when AB = BA, and ‖ exp(A)‖ ≤ exp(‖A‖). In
particular, exp(A) ∈ GLn(R), and exp((t1 + t2)A) = exp(t1A) exp(t2A).

The integral curve of v(x) = Sx with γ(0) = x is simply the curve γ(t) = (exp(tS))x.
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Proof of existence and uniqueness. We use the contraction principle, which states that if X is
a complete metric space and 0 ≤ λ < 1, and T : X → X is a continuous function such that
d(Tx1, Tx2) ≤ λd(x1, x2) for all x1, x2 ∈ X, then there is a unique fixed point of T (this follows
simply by observing that {Tnx}n∈N is a Cauchy sequence for any x ∈ X).

WLOG, let x0 = 0, and let M = an open set Ω ⊆ Rn which is a neighborhood of 0. We have our
C1 vector field v on M .

We want to construct a γ : (−c, c) → Ω such that γ(0) = 0 and such that γ′(t) = v(γ(t)) for all
t ∈ (−c, c). Thus, we want

γ(t) =

∫ t

0
v(γ(t)) dt.

Let r > 0 such that Br(0) = {x ∈ Rn | ‖x‖ ≤ r} ⊂ Ω.

Let X be the space of continuous functions [−c, c] → Br(0) such that γ(0) = 0. We give X the
metric induced by the sup norm.

For any γ ∈ X, define

(Tγ)(t) =

∫ t

0
v(γ(t)) dt.

We want T to be a well-defined map X → X, and to be a contraction.

Because Br(0) is compact and v is continuous, we have that v(Br(0)) ⊆ BC(0) for some C.

(i) By taking c to be sufficiently small, we have cC ≤ r. This implies that T is a well-defined
map T : X → X, because t ∈ [−c, c] and v(γ(t)) ∈ Br(0) implies that

|(Tγ)(t)| =
∣∣∣∣∫ t

0
v(γ(t)) dt

∣∣∣∣ ≤ cC ≤ r,
so that Tγ ∈ X.

(ii) Now we want to show that T is a contraction. For any γ1, γ2 ∈ X, we have

|(Tγ1)(t)−(Tγ2)(t)| =
∣∣∣∣∫ t

0
v(γ1(h))− v(γ2(h)) dh

∣∣∣∣ ≤ ∫ t

0
‖v′‖∞‖γ1(h)−γ2(h)‖ dh ≤ cM‖γ1−γ2‖.

By shrinking c further if necessary, we can make cM ≤ λ < 1, where M is defined by

M = sup
x∈Rn
‖x‖≤r

{‖v′(x)‖},

where ‖v′(x)‖ denotes the operator norm of v′(x) : Rn → Rn.
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Lecture 17 (2013-02-15)

Today we’ll talk about a method for reducing nth order differential equations to first order differential
equations. Thus, for example, we can express acceleration as a function of position and velocity.

Let Ω ⊂ Rn be open, and let a : Ω×Rn → Rn be a given function (representing acceleration). Then
given (x0, y0) ∈ Ω × Rn, there is a unique γ : (−ε, ε) → Ω such that γ(0) = x0, γ′(0) = y0, and
γ′′(t) = a(γ(t), γ′(t)) for all t ∈ (−ε, ε).
The trick was to introduce the space Ω× Rn. Put M = Ω× Rn, and let δ(t) = (γ(t), γ′(t)). Any
vector field on M can be thought of as a function M → Rn × Rn; let ṽ : M → Rn × Rn be the
vector field defined by

ṽ(x, y) = (y, a(x, y)).

If γ is as above, then we have δ(0) = (x0, y0) ∈M , and δ′(t) = (γ′(t), γ′′(t)) = ṽ(δ(t)). Thus, curves
γ satisfying our requirements are precisely integral curves of the vector field ṽ on M .

Theorem. Let M be a C∞ manifold and let v be C∞ vector field on M . Let p ∈M . Then there is
a neighborhood U(p) of p in M , some a > 0, and a C∞ function γ : U(p)× (−a, a)→M such that
for all x ∈ U(p), γx(t) is the (unique) integral curve of v such that γx(0) = x, where γx(t) := γ(x, t).

A reference for this theorem is Hurewicz’s Lectures on Ordinary Differential Equations.

Remark 1. Let γ be an integral curve of a C∞ vector field. Then it is clear that γ is C∞, because
we have that

γ′(t) = v(γ(t)),

so that if γ is Ck, then v ◦ γ is Ck, hence γ′ is Ck, so that γ is Ck+1.

Remark 2. Assume that v is a C1 vector field. The contraction principle shows that (x, t) 7→ γx(t)
is continuous in (x, t) and defined on some neighborhood U(p)× (−a, a), as follows:

WLOG, let p = 0, and let M = Ω, an open subset of Rn. Then the space of continuous functions

{x ∈ Rn | ‖x‖ ≤ α} × [−c, c] −→ {x ∈ Rn | ‖x‖ ≤ R}

with the ‖ · ‖∞ norm is a complete metric space.

Remark 3. Assume that v is a C2 vector field on Ω, an open subset of Rn. We want to show that
the partial derivatives

∂

∂xi
(γx(t))

exist. We can simply check that the differential equation defining them is satisfied. Let v : Ω→ Rn
be a vector field on Ω, and so that for any x ∈ Ω we have v′(x) : Rn → Rn.

We introduce the (standard) notation φt(x) = γx(t). Thus, φt is defined at all t ∈ (−a, a), and φt is
a function φt : U(p) → Ω, so that we have φ′t(x) : Rn → Rn for any x ∈ U(p), where φ′t(x) is the
derivative of x 7→ v(φt(x)).

Let ṽ : M → Rn ×Mn(R) be the vector field on M = Ω× Rn defined by

ṽ(x, S) = (v(x), v′(x)S).

We claim that, for any fixed t, the map x 7→ (φt(x), φ′t(x)) is an integral curve for ṽ.
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We have that
d

dt
φt(x) = v(φt(x)),

so that

ṽ(φt(x), φ′t(x)) =
d

dt
(φt(x), φ′t(x)) = (v(φt(x)), v′(φt(x))φ′t(x)).

This ‘‘reduces’’ the question to integral curves of ṽ on Ω×Mn(R) (?).

Corollary. Let M be a C∞ manifold, and let v be a C∞ vector field on M . For all x ∈M , we’ve
shown that there is a maximal integral curve γx : Ix →M such that γx(0) = x. Let

D = {(x, t) ∈M × R | t ∈ Ix},

and write γx(t) = γ(x, t) for all (x, t) ∈ D.

1. D is an open subset of M × R.

2. If φt(x) is defined, then φs(x) is defined for all 0 ≤ s ≤ t (or all t ≤ s ≤ 0).

3. If φt(x) is defined and if φs(φt(x)) is defined, then φt+s(x) is defined and

φt+s(x) = φs(φt(x)).

4. Assume M is compact. Then the theorem implies that there is an open interval (−a, a) such
that (−a, a) ⊂ Ix for all x ∈M , so that D ⊇M×(−a, a); statement 3 then implies D = M×R.
Furthermore, for a fixed t, the map x 7→ φt(x) is C∞ and induces an isomorphism on tangent
spaces.

5. Observe that given a vector field v on M , if a constant path γ(t) = p is an integral curve of v,
then v(p) = 0. Conversely, if v(p) = 0, then the constant curve to p is an integral curve.

Proof of 3. We know γx is defined on [0, t+ ε), and that γφt(x) is defined on [0, s+ ε′). Now define

δ(z) =

{
γx(z) for all z ∈ [0, t],

γφx(t)(z − t) for all z ∈ [t, s+ ε).

Note that δ is an integral curve of v.

Exercise. Let R h−−→ Diffeo(M) be a group homomorphism such that the map M×R→M defined
by (x, t) 7→ h(t)(x) is C∞. Prove that there is a C∞ vector field v on M such that h(t) = φt for
the vector field v. This does not require M to be compact, just that the support of v is compact.

Remark. If v is a vector field on a manifold M and v(p) 6= 0, then there is a neighborhood U(p) of
p in M and a diffeomorphism f : U(p)→ Ω, where Ω is an open subset of Rn, such that the vector
field v (restricted to U(p)) is carried by f to the constant vector field ∂

∂x1
on Ω.

Proof of Remark. Let’s say that Z is a slice of M when TpZ ⊕ Rv(p) = TpM . The hypotheses of
the inverse function theorem hold at (p, 0), so that we can find coordinates in which the map from
Z × (−ε, ε)→M defined by φt(z) = γz(t) sends the vector field v to a constant vector field, such
as for example ∂

∂x1
.

Next time, we’ll start with Lie brackets. It’s motivated from two points of view; maybe 100 in fact.
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Lecture 18 (2013-02-18)

Though it’ll seem like we’re leaving integral curves, we’ll return to them in the middle of the lecture.

Recall that given a C∞ manifold M , a point p ∈ M , and a tangent vector v ∈ TpM , there is an
R-linear functional v : C∞(M) → R, sending a C∞ function f : M → R to v(f) ∈ R. It satisfies
the Leibniz rule,

v(fg) = f(p)v(g) + g(p)v(f).

This is a generalization of the notion of directional derivative in Euclidean space.

Now let v be a vector field on M . Let R = C∞(M). Now we have an R-linear map v : R→ R, defined
by v(f)(p) = v(p)(f) for all p ∈ M . For example, if M = Rn and v = (a1, . . . , an) =

∑n
i=1 ai

∂
∂xi

,
we have that

v(f) =
n∑
i=1

ai
∂f

∂xi
.

For any ring S, a function D : S → S is a derivation when D(fg) = D(f) · g + f · D(g). Very
often, we are given a subring T ⊂ S contained in the center of S, that we require to satisfy
D(t) = 0 for all t ∈ T . Note that the map v : R → R sending f 7→ v(f) is a derivation, and
v(any constant function) = 0 (observe that we can R is a subring of R).

The following is an easy lemma.

Lemma. If D1, D2 : R→ R are derivations, then (D1 ◦D2)− (D2 ◦D1) is also a derivation.

In particular, if v, w are C∞ vector fields on M , U is an open subset of M , and C∞(U) is the ring
of C∞ functions on U , the map f 7→ v(w(f))− w(v(f)) is a derivation of C∞(U). If we fix a point
p ∈M , we can consider neighborhoods U of p ∈M , and the map

f 7→ (v(w(f))− w(v(f)))(p)

induces an R-linear map on germs C∞M,p → R. Being a derivation, this is equal to h(p)(f) for a
unique h(p) ∈ TpM . It is true (though we won’t check) that p 7→ h(p) is a C∞ vector field on M ,
and we define the Lie bracket of v and w to be this h. We write h = [v, w]. Thus,

[v, w](f) = v(w(f))− w(v(f))

for all C∞ maps f : U → R.

Lemma. Let Ω be an open subset of Rn, and let v, w be C∞ vector fields on Ω. Then

[v, w] = Dvw −Dwv,

where

(Dvw)(x) =
d

dt
w(x+ tv)

∣∣∣∣
t=0

.

Proposition. The R-vector space of C∞ vector fields on M , together with the bracket, satisfies
the axioms of a Lie algebra:

1. [v, w] = −[w, v] for all C∞ vector fields v and w.

2. [v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0 for all C∞ vector fields v1, v2, v3.

3. [tv, w] = t[v, w] for all t ∈ R.
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Definition. Let M and N be C∞ manifolds, and let φ : M → N be a C∞ map. Given vector fields
v on M and w on N , we say that v and w are φ-related if for all x ∈M ,

φ′(x)v(x) = w(φ(x)).

Lemma 1. Given vector fields v on M and w on N , they are φ-related if and only if φ(γ) is an
integral curve of w for any integral curve γ of v.

Proof. Assume that v and w are φ-relted. Let γ : (a, b)→M be an integral curve for v, so that for
all t ∈ (a, b), we have

γ′(t) = v(γ(t)).

Let δ = φ ◦ γ. Then
δ′(t) = φ′(γ(t))γ′(t) = w(δ(t)).

Everything is reversible, so we are done.

Last time, I mentioned that if a vector field is non-zero at a point, then in some neighborhood it
looks like ∂

∂x1
. There is a proof of this in Warner’s book on page 40.

Example. Let w be a vector field on N and suppose that w(p) 6= 0. Then there is a chart centered
at p such that w is transformed to ∂

∂xn
.

Proof. Let Zbe a codimension 1 closed submanifold of N containing p, and suppose that it is
transverse, i.e. that TpZ ⊕ Rw(p) = TpN . Let δy(t) be an integral curve of w with initial value y,
i.e. δy(0) = y. Let M = Z × (−c, c), and let φ : M → N be the map defined by

φ(z, t) = δz(t).

This is a diffeomorphism in a neighborhood of Z × {0} by the inverse function theorem, and the
curves t 7→ (z, t) on M are sent by φ to the curves δz(t) on N , which are integral curves of w. Thus,
t 7→ (z, t) is an integral curve for ∂

∂xn
.

Lemma 2. Let M and N be C∞ manifolds, and let φ : M → N be C∞.

(a) If v on M and w on N are φ-related, then v(φ∗f) = φ∗w(f)) for any C∞ map f : N → R;
this is just a restatement of the definition.

(b) If v1 is φ-related to w1 and v2 is φ-related to w2, then [v1, v2] and [w1, w2] are φ-related.

Proof of (b). We have

v1(v2(φ∗(f))) = v1(φ∗(w2(f))) = φ∗(w1(w2(f))).

Now interchange and subtract.

Remark. This has an important consequence. If M is a locally closed submanifold of N , φ : M → N
is the inclusion, and w is a vector field on N , then to say that there is some v on M that is φ-related
to w is equivalent to saying that w(x) ∈ TxM for all x ∈M (because w(x) = v(x)). Thus, Lemma
2 is saying something about vector fields that are tangent to submanifolds; if w1 and w2 are vector
fields on N such that w1(x), w2(x) belong to TxM for all x ∈ M , then [w1, w2] has the same
property.

Definition. Let M be a C∞ manifold, and let W be a C∞ subbundle of TM of rank r. A locally
closed submanifold A of M is a leaf if for all x ∈ A, TxA = W (x).
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(The notion of leaf can defined in more generality than what is given here.)

Suppose that there is a leaf of W through every point of M . If w1, w2 are C∞ sections of W , then
[w1, w2] is necessarily also a section of W ; we can see this easily as follows. Let p ∈M and let Z be
a leaf through p. Because Z is a leaf, w1 and w2 are tangential to Z, so [w1, w2] is tangential to Z,
i.e. [w1, w2](p) ∈ TpZ = W (p) for all p ∈M .

Definition. A C∞ subbundle W of TM is said to be involutive (alternatively, integrable) if for all
C∞ sections w1, w2 of W , [w1, w2] is also a section of W .

We have already proven one piece of the following theorem:

Theorem (Frobenius). Let W be a subbundle of TM . The following are equivalent:

1. W is involutive.

2. There is a leaf of W through every point.

3. For all p ∈M , there is a diffeomorphism h from a neighborhood of p to U1 × U2, where Ui
is an open subset of Rni for i = 1, 2, such that h(W ) is the constant Rn1 × {0} bundle on
U1 × U2.

Proof. It is clear that 3 =⇒ 2, and we have already proven that 2 =⇒ 1, so it remains to prove
that 1 =⇒ 3. This proof is taken from Narasimhan (the proof is originally due to Volterra).

Step 1. Let W be an involutive subbundle of rank r. Then in a neighborhood of any p ∈M , we can
find vector fields w1, . . . , wr which are a frame for W , i.e. w1(x), . . . , wr(x) are a basis for W (x) for
all x in the neighborhood, and such that [wi, wj ] = 0 for all i, j.

Let me make a linear algebra observation: given a vector space V = V1 ⊕ V2, subspaces W ⊂ V
such that the projection to V1 is an isomorphism, i.e.

W V V1

∼=

p1

can be identified with graphs of linear transformations S : V1 → V2.

Now write RN = V1 × V2, where N = dim(M), where V1 and V2 have been chosen such that
p|W (p) : W (p)→ V1 is an isomorphism (p is the projection RN → V1), so that W (x) ∼= V1 for all x
in some neighborhood of p. Thus, for each x, we get S(x) : V1 → V2, and

W (x) = {(v1, S(x)v1) | v1 ∈ V1}.

Let Ω ⊂ V1 × V2 = RN be open. WLOG we have V1 = Rr, where e1, . . . , rr are the standard basis
of Rr. We have S(x)ei = ui(x), where ui : Ω→ V2 is some C∞ function. Thus W (x) is the linear
space of the ei + ui. For any i, j, we have that [ei + ui, ej + uj ] is a section of W , and using the
formula

[α, β] = Dαβ −Dβα

on Euclidean space, we have that [ei + ui + ej + uj ] is a section of V2 (i.e. a function Ω→ V2); but
it also has to be a section of W , so it has to be 0 since V2 ∩W (x) = 0 for all x ∈ Ω.

We’ll finish the proof of this with Step 2 next time.
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Lecture 19 (2013-02-20)

Everything we’re talking about today will be C∞.

To finish the proof of the Frobenius theorem from last time, it remains to show the following result:

Lemma 1. If w1, . . . , wr are linearly independent, commuting vector fields (commuting in the sense
that their pairwise Lie brackets are 0), then there is a chart centered at any given point where the
wi are transformed to the coordinate vector fields ∂

∂xi
for i = 1, . . . , r.

Remark. Let v and w be vector fields on M . Let φt and ψs denote the one-parameter groups for v
and w respectively (i.e. the flows). Then for all p ∈M , there is some neighborhood U(p) of p and
(−ε, ε) such that φt(ψs(x)) and ψs(φt(x)) are defined for all x ∈ U(p) and t, s ∈ (−ε, ε).
Lemma 2. With notation as above, if [v, w] = 0, then φt(ψs(x)) = ψs(φt(x)) for any x ∈ U(p) and
s, t ∈ (−ε, ε).
Proof that Lemma 2 =⇒ Lemma 1. Let’s assume the result of Lemma 2 in the case that v(p) 6= 0.
Let φit denote the one-parameter groups with respect to wi for each i = 1, . . . , r. Let p ∈M , and select
a locally closed C∞ submanifold Z ⊂M with p ∈ Z such that TpZ⊕Rw1(p)⊕ · · ·⊕Rwr(p) = TpM .
Note that by assuming this is true at p, we can assume this is true in a neighborhood of p.

Let h : (−ε, ε)r × (Z ∩ U(p))→M be defined by

h(x1, . . . , xr, z) = φ1
x1φ

2
x2 · · ·φrxr(z).

We see that h induces an isomorphism from the tangent space at (0, . . . , 0, z) to TzM for all
z ∈ Z ∩ U(p). Note that h(t, x2, . . . , xr, z) is an integral curve for w1, so that h′(?) ∂

∂x1
= w(h(?))

for all ? in the domain of h (this is not a ? in the sense of ‘‘I didn’t get down what was on the
board’’, but rather ‘‘?’’ itself what was written on the board). This is

φ2
x2φ

1
x1 · · · ,

and thus we see that h′(?) ∂
∂x2

= w2(h(?)), etc. (not sure I understand this part).

Proof of Lemma 2. We have that w1(p) 6= 0, so (as we have shown earlier) we can assume WLOG
that w = ∂

∂x1
. For any vector v =

∑
ai

∂
∂xi

, we have that

[w, v] =
∑ ∂ai

∂x1
· ∂
∂xi

.

By assumption, this is zero, so the ai’s are (in some neighborhood) functions of (x2, . . . , xn). Because
the statement is local, we can assume that we are working on (−ε, ε)×Ω for an open subset Ω ⊂ Rn−1.
Let c ∈ (− ε

2 ,
ε
2). Let hc : (− ε

2 ,
ε
2)→ (−ε, ε)× Ω be defined by

hc(x1, x2, . . .) = (x1 + c, x2, . . .).

Then v and v|(− ε
2
, ε
2

) are hc-related.

Therefore, if δ is an integral curve of v, then hc ◦ δ is also an integral curve. Let φt denote the
one-parameter group associated to v. Then we have that

hc ◦ φt = φt ◦ hc.

But hc = ψc where ψc is the one-parameter group associated to w.
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Theorem (Thom’s ambient isotopy lemma). Let I = [0, 1], let A and B be C∞ manifolds where A
is compact, and let F : A× I → B be a C∞ map. Let ft : A→ B be defined by ft(a) = F (a, t) for
all a ∈ A and t ∈ [0, 1]. If ft is an embedding for all t ∈ I, then there is a C∞ map G : B × I → B
such that gt is a diffeomorphism for all t ∈ I, and ft = gt ◦ f0 for all t ∈ I, where gt(b) = G(b, t).

Recall that if A is an arbitrary subset of a C∞ manifold M , then given a map f : A→ R, we say
that it is C∞ map when there exist open sets Uλ ⊂ M for all λ ∈ Λ such that f |A∩Uλ = fλ|A∩Uλ
and W :=

⋃
Uλ contains A. Then {Uλ}λ∈Λ is an open cover of W , so there is a partition of unity

subordinate to this cover. Let ϕλ : W → R be subordinate to Uλ.

Consider ϕλ|Uλ ◦ fλ : Uλ → R, which has support contained in Uλ, and extends by zero to a C∞

function on W denoted by ϕλfλ. If we then define f̃ =
∑

λ∈Λ ϕλfλ, then f̃ is a C∞ function defined
on W that extends f . More generally, if we have a C∞ bundle

V

A M

ps

where A is arbitrary, then what we’ve shown is that it extends to a C∞ section on an open W ⊃ A.

A variant of this result is that if A is a closed set, then note that {Uλ | λ ∈ Λ} ∪ {M −A} is also an
open cover, so we can create a partition of unity {ϕλ | λ ∈ Λ}∪{ϕ0}. If we define f0 : (M −A)→ R
to be zero, then let

f̃ =
∑
λ

ϕλfλ + ϕ0f0.

Once again, f̃ : M → R and f̃ |A = f . Finally, if A is compact, then we see that f̃ can be chosen to
have compact support.

Proof of Thom’s lemma. WLOG, we can assume that B ⊂ RN , so that F : A × I → B can be
extended to a C∞ map F : A×(−ε, 1+ε)→ B. This is because we can extend to a map A×R→ RN ,
and letting U be a tubular neighborhood around B in RN , we can find an open neighborhood V
around A× I in A× R that maps into U , and because A is compact we can take V to be of the
form A× (−ε, 1 + ε), and then we can use the retraction from U to B to map everything into B.

A× I V A× R

B U RN

⊂ ⊂

⊂ ⊂

Because A is compact, we can assume that ft is an embedding for all t ∈ (−ε, 1 + ε). Define
F̃ : A × (−ε, 1 + ε) → B × (−ε, 1 + ε) to be the map sending (a, t) 7→ (F (a, t), t). Then F̃ sends
(0, ddt) to a vector field (w, ddt). Let C = F̃ (A× (−ε, 1 + ε)).

We have that C ↪→ B×(−ε, 1+ε) is closed and a section w of p∗1TB|C, where p1 : B×(−ε, 1+ε)→ B.
There exists a global C∞ section w̃ that extends w. Consider v = (w̃, ddt), which is a vector field on
B × (−ε, 1 + ε). Let φt be the flow associated to v.

Fact 1: We know that for all a ∈ A, the map t 7→ (ft(a), t) is an integral curve.

Fact 2: We may assume that supp(w̃)
p2−−→ (−ε, 1 + ε) is proper. This implies that for all

z ∈ (−ε, 1 + ε), the flow φt(B × z) is defined for all t with |t| < δ, say. In particular, φt(B × z) is
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defined for all z ∈ I and fro all t with |t| < δ.

Fact 3: We have that φt(B × z) ⊂ B × {z + t}, from which it follows that for all 0 ≤ z ≤ 1, φt is
defined on B × z for all −z ≤ t ≤ 1− z.

From these facts, we have that φt|B×0
∼=−−→ B × t is a diffeomorphism for all 0 ≤ t ≤ 1. Now define

gt = φt and we are done.
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Lecture 20 (2013-02-22)
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Lecture 21 (2013-02-25)
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Lecture 22 (2013-02-27)

Let M be a C∞ manifold and v a C∞ vector field on M . Let φt(x) = γx(t) be the integral curve
for v with γx(0) = x. Let ω be any object attached to the manifold, such as for example a section
of TM⊗m ⊗ T ∗M⊗n. Then the Lie derivative of ω with respect to v makes sense:

Lvω =
d

dt
φ∗tω

∣∣∣∣
t=0

In particular, Lvw is defined when w is a vector field.

Proposition. For all vector fields v, w on M , we have Lvw = [v, w].

Lemma (Leibniz rule for sections of bundles). Let v be a vector field.

1. Lv(ω ∧ η) = (Lvω) ∧ η + ω ∧ Lv(η), where ω is a k-forma and η is an `-form

2. Lviwθ = iLv(w)θ + iwLvθ¡ where w is a vector field, and θ is a k-form

3. v(θ(w)) = θ(Lv(w) + (Lvθ)(w), where θ is a 1-form (this is just a special case of 2)

Proof. Let V1, V2, V3 be vector bundles on M , and let B be a bilinear map

V1 ×M V2 V3

M

B

i.e. B(x) : V1(x)× V2(x)→ V3(x) is bilinear for all x ∈M . Let s1
t , s

2
t be families of C∞ sections of

V1 and V2 respectively, indexed by t ∈ (−ε, ε). Let p1 be the projection p1 : M × (−ε, ε)→M , so
that each si is a secton of p∗1Vi. Then

d

dt
B(s1

t , s
2
t ) = B

(
d

dt
s1
t , s

2
t

)
+B

(
s1
t ,
d

dt
s2
t

)
.

How will we apply this - we want to choose si = φ∗t (?).

Let V1 = TM , V2 = ΛkT ∗M , V3 = Λk−1T ∗M , and let B(x) : TxM × ΛkT ∗xM → Λk1−T ∗xM be
defined by B(x)(ω, θ) = iω(θ).

Part 2 is then an application of the Leibniz rule

iv∗(ω ∧ η) = iv∗(ω) ∧ η + (−1)deg(ω)ω ∧ iv∗(η)

where v∗ ∈ V ∗ and ω ∈ ΛkV , and 3 is just 2 for k = 1.

Given θ = df , where f : M → R is a C∞ map, then

θ(w) = (df)(w) = w(f)

That v(θ(w)) = v(w(f)) is just the left side of 3. But

θ(Lvw) = (Lvw)(f),

hence
Lv(θ) = Lv(df) = dLvf = d(v(f)),
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hence
(Lvθ)(w) = w(v(f)).

Now 3 reads as
v(w(f)) = w(v(f)) + (Lvw)(f),

i.e.
(Lvw)(f) = v(w(f))− w(v(f)) = [v, w](f)

for all C∞ maps f : M → R.

Corollary (Special case of Cartan’s formula). Let ω be a 1-form, and let v1 and v2 be vector fields.
Then

dω(v1, v2) = v1(ω(v2))− v2(ω(v1))− ω([v1, v2])

Remark. Note that we can identify ΛkT ∗xM with (ΛkTxM)∗ as follows: given ω ∈ ΛkT ∗xM , we
define

ω(v1, v2, . . . , vk) = ivkivk−1
· · · iv1ω ∈ ΛkT ∗xM ∈ R

for v1, . . . , vk ∈ TxM .

Proof. We have that Lv = ivd+ div. Thus,

iv1dω = Lv1ω − d(iv1ω),

so that

dω(v1, v2) = (iv1dω)v2 = (Lv1ω)v2 − v2(ω(v1))

= Lv1(ω(v2))− ω(Lv1v2)− v2(ω(v1))

= v1(ω(v2))− ω([v1, v2])− v2(ω(v1)).

Remark. We defined

Lvω =
d

dt
φ∗tω

∣∣∣∣
t=0

.

It is more generally true that
d

dt
φ∗t (ω)

∣∣∣∣
t=t0

= φ∗t0(Lvω).

Note that we haven’t said what kind of thing ω is; it only makes sense for certain natural bundles.
But this works in particular when ω is some vector field w. Then φt is the flow associated to v;
also, let ψs be the flow associated to w. Then

[v, w] = 0 ⇐⇒ Lv(w) = 0 ⇐⇒ d

dt
(φ∗tw) = 0 for all t ⇐⇒ φ∗tw = w for all t.

Assume that [v, w] = 0, so that φ∗tw = w, and thus φt(integral curve of w) is an integral curve of w.
This is equivalent to saying that φt ◦ ψs = ψs ◦ φt. Thus, we have established the following:

Corollary. [v, w] = 0 ⇐⇒ φt ◦ ψs = ψs ◦ φt
Theorem (Ehresmann’s theorem). Let f : X → Y be a proper submersion. Then f is a C∞ fiber
bundle.

We will give a second proof of this using flows.
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Proof. Let X ↪→ Rm be an embedding of X in Euclidean space. Thus, for any x ∈ X, TxX gets an
inner product. We have a short exact sequence

0 Txf
−1(f(x)) TxX Tf(x)Y 0

f ′(x)

where we have used that f is a submersion. Let W (x) = Txf
−1(f(x))⊥, so that we get a subbundle

W of TX such that f ′(x) : W (x)
∼=−−→ Tf(x)Y .

Assume that Y = (−1, 1)n ⊂ Rn. Thne ∂
∂y1

, . . . , ∂
∂yn

are vector fields on Y , i.e. sections of TY , and

so we get corresponding sections w1, . . . , wn of W such that f ′(x)(wi) = ∂
∂yi

for all i. Note that

even though the ∂
∂yi

all commute with each other, we need not have that the wi all commute with
each other.

Let φit denote the flow associated to wi. One sees that for any compact K ⊆ X, there is an ε > 0
such that φ1

t1 · · ·φntn(x) are defined for all x ∈ K and ti ∈ (−ε, ε).
Let K = f−1(0), which is compact because f is proper. Then we have a commutative diagram

K × (−ε, ε)n X

(−ε, ε)n (−1, 1)n

h

p2 f

and h induces isomorphisms on tangent spaces at K × 0, so it must do so in a neighborhood of
K × 0. Because p2 is proper, it follows that by shrinking ε if necessary, we may assume that h
induces isomorphisms on tangent spaces everywhere, and that h is one-to-one. Then h is then a
diffeomorphism onto its image U , which is open in X. We want to show that U = X; thus, let
F = X \U . Then F is closed in X, and because f is proper, we have that f(F ) is a closed set (we’re
using Hausdorffness here). Then F ∩ f−1(0) = ∅, because 0 /∈ f(F ), and now replace (−1, 1)n by
the complement of f(F ).

We can now state a refinement of Ehresmann’s theorem.

Theorem. Let f : X → Y be a proper submersion, and let A ⊆ X be a closed C∞ submanifold.
Assume also that f |A : A→ Y is a submersion. Then f : (X,A)→ Y is a fiber-bundle pair.

2
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Lecture 23 (2013-03-01)

Last time, we were discussing the Ehresmann theorem for fiber bundles of pairs. There was just
one thing left to prove.

In the notation of the last lecture, we had C∞ manifolds X and Y , a closed C∞ submanifold A ⊆ X,
and a C∞ map f : X → Y such that both f and f |A are submersions. (Note that for the Ehresmann
theorem, we would assume properness, but for now we just want to extract the subbundle W which
did not need that hypothesis.)

Proposition. There exists a subbundle W ⊂ TX such that

(i) For all x ∈ X, the derivative f ′(x)|W (x) : W (x)→ Tf(x)Y is an isomorphism.

(ii) For all x ∈ A, we have W (x) ⊂ TA (both interpreted as subspaces of TxX).

This proposition implies the Ehresmann theorem for pairs.

The secret code phrase here is that

H1(any sheaf of modules over the sheaf of C∞ functions) = 0

Proof. For the first step, note that the problem makes sense on any open U ⊂ X, so it will suffice
to show that W exists locally, i.e. that for all x ∈ X, there is a neighborhood U(x) where the
theorem holds.

If x /∈ A, then we’re done, so suppose that x ∈ A. WLOG, we can take X = Rn, A = {x ∈ Rn |
xm+1 = · · · = xn = 0}, and f : X → Y the map f(x1, . . . , xn) = (x1, . . . , xr) where r ≤ m. In this
case, we can just take W to be the span of ∂

∂x1
, . . . , ∂

∂xr
.

Now to Step 2; we want to provide an algebraic description of W . This is essential. We can’t add
subbundles, but we can add / do other linear things to sections of bundles.

For each x ∈ X, let s(x) be the inverse of the isomorphism described in (i); in other words, we want
to demonstrate the existence of a map of bundles s : f∗TY → TX such that

(i’) f ′(x) ◦ s(x) : Tf(x)Y → Tf(x)Y is the identity for all x ∈ X
(ii’) For all x ∈ A, we have s(x)(Tf(x)Y ) ⊆ TxA.

Step 3: Suppose that s1 and s2, both maps f∗TY → TX, satisfy conditions (i’) and (ii’). Then
h = s2 − s1 : f∗TY → TX satisfies

(i’’) f ′(x) ◦ h(x) = 0 for all x ∈ X
(ii’’) h(x)(Tf(x)Y ) ⊆ TxA for all x ∈ A
so that

Z = {h : f∗TY → TX | (i’’) and (ii’’) hold}
is a module over the ring of C∞ functions on X. Note that this is a characterization; in other words,
if s1 satisfies (i’) and (ii’), then s1 + h satisfies them if and only if h ∈ Z.

As a corollary of Step 3, we see that if s1, . . . , sm are as in Step 2, and ϕ1, . . . , ϕm : W → R are a
C∞ partition of unity (so that

∑
ϕi = 1), then

∑
ϕisi also satisfies the conditions of step 2, because∑

ϕisi =
∑

ϕi(si − s1)︸ ︷︷ ︸
∈Z

+
(∑

ϕi

)
︸ ︷︷ ︸

= 1

s1.
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Now we come to the proof of the proposition itself. Let {Uλ}λ∈Λ be an open cover equipped with
sλ : f∗TY |Uλ → TX|Uλ all satisfying (i’) and (ii’). There is a partition of unity ϕλ subordinate to Uλ;
then ϕλsλ (originally defined only on Uλ) can be extended by 0 to a C∞ map ϕλsλ : f∗TY → TX.
Now let s =

∑
ϕλsλ : f∗TY → TX; the corollary above implies that s satisfies (i’) and (ii’).

Existence of inner products on vector bundles

Given a C∞ vector bundle f : V →M , we want to construct a map B : V ×M V → R such that
B : V (x)× V (x)→ R is a positive definite, symmetric, bilinear form.

If W is a vector space, and B : W ×W → R is symmetric and bilinear, we say that B is positive
semi-definite if B(w,w) ≥ 0 for all w ∈W , and positive definite if it is positive semi-definite and
B(w,w) = 0 implies w = 0.

Proof. Step 1. Assume that V |U is a trivial bundle, i.e. there exist sections s1, . . . , sk of V |U such
that s1(x), . . . , sk(x) form a basis for V (x) for all x ∈ U .

Define BU (si(x), sj(x)) = δij(x). Given an open cover U , and a partition of unity ϕU subordinate to
U , then

∑
ϕUBU is a symmetric bilinear positive semi-definite form. But for any x ∈ X, if v ∈ V (x)

is non-zero, then there is some U such that ϕU (x) > 0, so that x ∈ U and moreover BU (v, v) > 0,
hence B(v, v) ≥ ϕU (x)BU (v, v) > 0. Thus, this is in fact positive definite.

Existence of connections on a vector bundle

A good reference for this is Milnor’s Morse Theory.

Let p : V →M be a C∞ vector bundle. A connection is essentially a way of taking a derivative of
a section s of a vector bundle v with respect to a vector field on M .

Suppose that x ∈ U and that V |U is trivial, and that s1, . . . , sk are sections of V |U that give a basis
for V (x) for each x ∈ U . For any v ∈ TxM , we define

v
(∑

fisi

)
=
∑

v(fi)si.

A connection, or a covariant derivative, ∇ on V is a map taking in a vector field v on M , and a
section s of V , and outputting ∇vs, another section of V . We also require that a connection satisfy
certain properties: for any C∞ map f : M → R,

1. ∇v(s1 + s2) = ∇v(s1) +∇v(s2)

2. ∇v(fs) = v(f)s+ f∇v(s) (this is the Leibniz rule)

3. ∇fv(s) = f∇v(s)
We could have stated this definition sheaf-theoretically, which is after all necessary to do it on
analytic manifolds, but for C∞ manifolds, they are equivalent.

We want to show that any C∞ vector bundle V →M has a connection.

The argument is the same as we’ve been doing. Step 1 is to show that they exist locally (this is just
the trivial connection). Step 2 is to take two connections ∇1,∇2 and define h via ∇2 = ∇1 + h, i.e.
∇2
v(s) = ∇1

v(s) + hvs for all sections s, and note that h satisfies three properties: h is additive in s,

hv(fs) = fhv(s)
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for all C∞ functions f , and hfv(s) = fhv(s).

Then, if ∇1 is a connection and ∇2 = ∇1 + h, then ∇2 is a connection if and only if h satisfies the
above three properties. The collection of all such h can be thought of being comprised of precisely
the sections of Hom(TM,End(V )), which is a module over C∞ functions M → R.

We then conclude by using a partition of unity and noting that
∑
ϕU∇U gives a connection.

Let’s examine connections in a basic case; let M be an open interval (a, b). By the properties of a
connection, all we have to look at is ∇ d

dt
(s). In particular, what is

{sections s : M → V | ∇ d
dt

(s) = 0} ?

We know that V is trivial because we’re working on an interval; choose a specific trivialization, so
that we will think of sections as maps s : (a, b)→ Rk. Define vectors of C∞ functions mi by

∇ d
dt

(ei) = mi,

where

ei =


0
...
1
...
0

 ,

the 1 being in the ith position. Then
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Lecture 24 (2013-03-04)

Let M = (−a, a) and consider a vector bundle V = M ×Rk on M . If s is a section of V , i.e. a map
s : (−a, a)→ Rk, then ∇ d

dt
(s) = ds

dt +Gs where G.

We want to solve ∇ d
dt
si = 0, where si(0) = ei. If this is defined for all t ∈ (−ai, ai), let ε = min{ai}.

It follows that for all w ∈ Rk, w =
∑k

i=1wiei, we have that ∇ d
dt

(
∑
wisi) = 0 and (

∑
wisi)(0) = w.

By the compactness of an interval [p, q], it follows that for all w ∈ V (p) there is a unique section s
of V on [p, q] such that ∇ d

dt
(s) = 0 and s(p) = w.

This yields the notion of parallel translation. Suppose we are given M , a vector bundle V on M
equipped with a connection ∇, and a C∞ path γ : [0, 1]→M with γ(0) = p and γ(1) = q. Given a

w ∈ V (p), we then get P (γ) : V (p)
∼=−−→ V (q), by considering the unique section s

V

[0, 1] M

s

γ

with ∇ d
dt

(s) = 0 and s(0) = w. We then put P (γ)(w) = s(a).

Note that if γ1, γ2 : [0, 1]→M are paths from p to q that are homotopic, then it need not be the
case that P (γ1) = P (γ2).

Take a look at the section on connections on principal bundles in Kobayashi and Nomizu.

Given a vector bundle π : V → M equipped with a connection ∇, we get a subbundle H of TV

such that π′(ξ) : Hξ

∼=−−→ Tπ(ξ)M .

Non-canonically, we can get it like this. Let M = open ω ⊂ Rn, and let V be a trivial bundle on M
of rank k. Define maps Gi by ∇∂i(ej) = Gi(ej), where e1, . . . , ek is the standard basis of Rk. The
maps Gi are really maps from Ω to Mk(R). The subbundle H = H(∇) of T (Ω× Rk) is the linear
span of the sections θi, given by (x, s) 7→ (ei,−Gi(x)s), for i = 1, . . . , n. In particular, θi is a vector
field on Ω× Rk. The integral curves of the θi are of the type t 7→ (x+ tei, s(t) where ∇∂i(s) = 0.

Definition. Given a vector bundle V and connection ∇, a section s

V

U M

πs

γ

we say that s is horizontal if ∇X(s) = 0 for all vector fields X on U .

Definition. A connection ∇ is trivial if there exists horizontal sections s1, . . . , sk such that
s1(x), . . . , sk(x) is a basis for V (x) for all x ∈M .

Definition. A vector bundle V with connection ∇ is integrable (a.k.a. flat) if M has an open cover
{Uλ}λ∈Λ such that (V,∇)|Uλ is trivial.

Our previous results about the Frobenius theorem demonstrate that

(V,∇) is integrable ⇐⇒ H(∇) is a trivial subbundle ⇐⇒ [θi, θj ] = 0 for all 1 ≤ i, j ≤ n
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⇐⇒ [∇ ∂
∂xi

,∇ ∂
∂xj

] = 0 for all 1 ≤ i, j ≤ n

Now the issue is, how can we put these criteria in a usable form?

Remark. Consider a map L of vector bundles

V1 V2

M

L

π1 π2

Then for any open U ⊆M , L induces a map C∞(U, V1)→ C∞(U, V2), so that L is a homomorphism
of sheaves of C∞M -modules, i.e. for any f : U → R and s : U → V1, we have that L(fs) = fL(s). The
remark is that the converse is true: given vector bundles V1, V2 and T : C∞(M,V1)→ C∞(M,V2)
with T (fs) = fT (s) for all f : M → R, then there is a unique bundle homomorphism L : V1 → V2

such that T (s) = L ◦ s for all sections s.

Example. Let S be a subbundle of TM and let Q = TM/S be the quotient bundle. Let p : TM → Q
be the projection map. Let s1, s2 be sections of S. Then [s1, s2] is a section of S if and only if
p([s1, s2]) = 0. Define the map B : C∞(M ;S)×C∞(M ;S)→ C∞(M ;Q) by B(s1, s2) 7→ p([s1, s2]).

As a lemma, we claim that B(fs1, s2) = fB(s1, s2) for all f : M → R, and B(s1, s2) = −B(s2, s1).
This follows from the fact that

[fv1, v2] = −[v2, fv1] = −v2(f)v1 − f [v2, v1] = f [v1, v2]− v2(f)v1,

and that v2(f)v1 is a section of S so that p of it is 0.

Definition. Let (V,∇) be a vector bundle with connection on M . Define

R(X,Y )(s) = ∇X∇Y s−∇Y∇Xs−∇[X,Y ](s),

where s is a section of V , and X and Y are sections of TM . The lemma we proved above implies
that

R(f1X, f2Y )(f3s) = f1f2f3R(X,Y )(s)

for all fi : M → R and X,Y .

Corollary. The function R defines a homomorphism R : Λ2TM → End(V ).

When Ω is an open subset of Rn,

R = 0 ⇐⇒ R(∂i, ∂j) = 0 for all i, j ⇐⇒ ∇∂i∇∂j = ∇∂j∇∂i for all i, j.

Grassmannians

Let V be a fixed vector space over R. We define M = Grass(r, V ) to be the collection of rank-r
subspaces of V . We can define the tautological bundle on M to be the subbundle S of M × V to be

{(W, v) |W ∈ Grass(r, V ), v ∈W}.

Define Q = (M × V )/S, and let p : M × V → Q. The bundle M × V has the trivial connection ∇,
so ∇(v) = 0 for all constant sections v.
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Lecture 25 (2013-03-06)

Lie Groups

A Lie group G is a C∞ manifold G equipped with a C∞ binary operation B : G × G → G that
turns the set G into a group. As usual, we just write xy for B(x, y).

For any g ∈ G, there is a C∞ map `g : G → G defined by `g(x) = gx for all x ∈ G. We can see
that this is C∞ because it is the composition

G G×G G

x (g, x) gx

B

Clearly, `g ◦ `g−1 = idG for all g ∈ G. Thus `g : G→ G is a diffeomorphism.

Let A : G×G→ G×G be defined by A(x, y) = (x, xy) = (x,B(x, y)). We then have a commutative
diagram

G×G G×G

G G

A

p1 p1

id

Clearly A is a bijection, and its inverse is F , defined by F (x, y) = (x, x−1y). Observe that A is C∞,
and furthermore that A induces isomorphisms on all tangent spaces; we can see the latter as follows:
identifying T(x,y)(G×G) ∼= TxG⊕ TyG, we have

A′(x, y)(0, a) = (0, `′x(y)a),

so that A′(x, y) maps 0⊕ TyG isomorphically to 0⊕ TxyG, and similarly

A′(x, y)(a, 0) = (a, something)

which already suffices to show that A′(x, y) is an isomorphism. It follows from these observations
that A is a diffeomorphism, so that its inverse F is C∞. In particular, setting y = e, we see that
x 7→ (x, e) 7→ F (x, e) = (x, x−1) is a C∞ function. Thus x 7→ x−1 is a C∞ fucntion from G to G.

Definition. The Lie algebra of G is defined to be

Lie(G) = {vector fields v on G | `∗gv = v for all g ∈ G}.

In other words, it is the collection of left-invariant vector fields on G.

Observe that v 7→ v(e) gives an isomorphism IG : Lie(G) → TeG of real vector spaces. We can
see this as follows. For any v ∈ Lie(G), left-invariance implies that v(g) = `′g(e)v(e) for all g ∈ G,
where v(e) ∈ TeG. This shows that I is injective.

To show that I is surjective, we note that for any a ∈ TeG, setting v(g) = `′g(e)a defines a C∞

vector field v on G.

Proposition. If v, w ∈ Lie(G), then [v, w] ∈ Lie(G).

Last edited
2013-08-06

Math 318 - Geometry/Topology 2 Page 74
Lecture 25



Proof. This is straightforward. Because Lie bracket respects diffeomorphisms,

[v, w] = [`∗gv, `
∗
gw] = `∗g[v, w]

for all g ∈ G.

Recall that for a C∞ map f : M → N , vector fields X and Y on M and N , respectively, are said
to be f -related when

f∗X(x) = Y (f(x))

for all x ∈M .

Proposition. Let f : M → N be a C∞ map.

1. γ is an integral curve of X =⇒ f ◦ γ is an integral curve of Y

2. If X and X ′ are f -related to Y and Y ′ respectively, then [X,X ′] is f -related to [Y, Y ′].

We say that f : H → G is a homomorphism of Lie groups when f is C∞ and also a group
homomorphism. There is a corresponding map df obtained as the composition

Lie(H) TeH TeG Lie(G)
IH
∼=

df

f ′(e) I−1
G

∼=

Lemma. For all X ∈ Lie(H), we have

1. X is f -related to df(X).

2. df : Lie(H)→ Lie(G) is a homomorphism of Lie algebras.

Proof. For all h ∈ H, we have a commutative diagram

H H

G G

`h

f f

`f(h)

which proves claim 1. To see claim 2, just note that df is R-linear and

df [X1, X2] = [df(X1), df(X2)]

by part 2 of the earlier proposition.

Let X ∈ Lie(G). Let γ : (−ε, ε)→ G be an integral curve of X. The fact that `∗gX = X implies that
`g ◦ γ : (−ε, ε)→ G is also an integral curve of X. We know that an integral curve γe : (−ε, ε)→ G
can be defined for some ε > 0, so that γg : (−ε, ε)→ G given by γg(t) = gγe(t) is the unique integral
curve of X with γg(0) = g.

Thus, (x, t) 7→ γx(t) = φt(x) is defined on G× (−ε, ε). This implies that (x, t) 7→ φt(x) is defined
on all of G× R. Thus, we see that

• φt(x) = xφt(e) for all x ∈ G and t ∈ R.

• φt ◦φs = φt+s for all t, s, which implies that φt(e)φs(e) = φt+s(e) for all t, s, or in other words,
γe(t)γe(s) = γe(t+ s) for all t, s.
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Corollary. For all X ∈ Lie(G), there is a unique homomorphism of Lie groups f : R→ G such
that f ′(0) ddt = X(0), or equivalently, that d

dt is f -related to X.

Proof. To see existence, just take f = γe. For uniqueness, note that if we have a homomorphism
f : R→ G such that f ′(0) ddt = X(0), then d

dt and x are f -related, so that t 7→ f(t) is an integral
curve of f by part 1 of our earlier proposition. The uniqueness of integral curves of a vector field
through a point gives uniqueness of f .

We will denote the above map f : R→ G be fX , for each X ∈ Lie(G).

Definition. We define the exponential map exp : Lie(G)→ G by exp(X) = fX(1). This is a C∞

map, because it varies smoothly on its parameters, and also

exp′(0) : Lie(G)→ TgG
I−1
G−−−→ Lie(G)

is the identity map.

Observe that if v is a vector field on M and γ is an integral curve of v, then for all c ∈ R, the map
t 7→ γ(ct) is of course an integral curve of cv. Thus, fX(t) = exp(tX) for all t ∈ R and X ∈ Lie(G).
This shows that exp′(0) = idLie(G).

We’ve seen that a Lie group gives rise to a Lie algebra. In general you can’t go back from Lie algebras
to Lie groups, because you have things like covering spaces for example sharing the same Lie algebra.
However, there is a correspondence between simply-connected Lie groups and finite-dimensional
R-Lie algebras.

Let M be a C∞ manifold and let S be a subbundle of TM . Let’s say that S is involutive, which
is also sometimes called being a foliation. We give M a new topology, which we’ll denote Mnew,
which has as a basis

{N ⊆M | N is a locally closed submanifold and TxN = S(x) for all x ∈ N}.

The Frobenius theorem implies that the requirements of a basis are met.

Definition. A leaf of S is a connected component of Mnew (this is obviously a C∞ manifold of
dimension r where r = rank(S)).
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Lecture 26 (2013-03-08)

Let us start with the following data: M is a C∞ manifold, S ⊂ TM is an involutive subbundle, and

B = {N ⊆M | N is a locally closed submanifold of M, and TxN = S(x) for all x ∈ N}.

The set B forms a basis for a topology on M , which we’ll denote Mnew. Then Mnew is a C∞

manifold. A leaf of S is defined to be a connected component of Mnew.

Exercise. If M is second-countable and Hausdorff, then every leaf is second-countable. Note that
because Mnew →M is continuous and M is Hausdorff, we have that Mnew is Hausdorff.

Here is an application of this.

Let G be a Lie group, and let W ⊂ Lie(G) be a Lie subalgebra (i.e. W is closed under taking Lie
brackets). Let 〈W 〉 be the subbundle spanned by W , so that if X1, . . . , Xk are an R-basis of W , then
〈W 〉(g) is the span of X1(g), . . . , Xk(g) for all g ∈ G. Note that 〈W 〉 is involutive; this is because
any section of W is of the form

∑i
i=1 fiXi, and just using the rule [X, fY ] = X(f)Y + f [X,Y ].

Let H be the connected component of Gnew containing the identity e ∈ G. From the definition of
Gnew (which, recall, depends on the W we initially chose), it is clear that the tangent space of H at
e is

TeH = {X(e) ∈ TeG | X ∈W}.
Because `∗gX = X for all X ∈ Lie(G) and g ∈ G, we see that for any linear subspace W ⊂ Lie(G),
we have `∗g〈W 〉 = 〈W 〉. It follows that the leaves are permuted amongst each other, and thus
`g : Gnew → Gnew is continuous. Thus, for any a ∈ H, it follows that a−1H is also a leaf; but
e ∈ a−1H, and a−1H is a connected component, so we must have H = a−1H. Thus H is a subgroup.

Corollary. Let W and G be as above. Then there is a Lie group H and Lie group homomorphism
f : H → G such that

Lie(H) Lie(G)

W

df

∼=

Lemma. Let G be a connected Lie group. Let p : G̃→ G be a universal covering space. Let ẽ ∈ G
be an element of p−1(e). Then G̃ with its natural C∞ structure has the structure of a Lie group
with ẽ as its identity and p : G̃→ G a homomorphism of Lie groups.

Proof. G̃ × G̃ is simply connected and p is a covering map, so by covering space theory, in the
following diagram

G̃× G̃ G

G×G G

p×p p

B

(ẽ, ẽ) ẽ

(e, e) e

there is a unique lift B̃ : G̃ × G̃ → G̃ such that B̃(ẽ, ẽ) = ẽ and p ◦ B̃ = B ◦ (p × p). The binary
operation that B defines on G will just be written as juxtaposition.

We can define maps P and Q
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G̃× G̃× G̃ G̃

G

P

Q
p

by P (a, b, c) = a(bc) and Q(a, b, c) = (ab)c, and the diagonal is just p(a)p(b)p(c). It follows taht
there is a covering transformation γ : G̃→ G̃ of p such that Q = γ ◦ P . But P (ẽ, ẽ, ẽ) = Q(ẽ, ẽ, ẽ).
The rest of the arguments are similar and are omitted.

Theorem. The functor G 7→ Lie(G) from the category of simply connected Lie groups and Lie group
homomorphisms to the category of Lie algebras and Lie algebra homomorphisms is an equivalence
of categories.

In particular, given Lie groups G1 and G2, then Mor(G1, G2)→ Mor(Lie(G1),Lie(G2)) is a bijection.
To see that it is injective, note that we know this is true when G1 = R, i.e. that Mor(R, G) →
Lie(G) = Mor(R,Lie(G)) is injective, so when given f, g : G1 → G2 such that df = dg : Lie(G1)→
Lie(G2), let X ∈ Lie(G1); the maps γ : t 7→ f(exp(tX)) and δ : t 7→ g(exp(tX)) satisfy

γ′(0) = df(X)(e) = dg(X)(e) = δ′(0),

so that f(exp(tX)) = g(exp(tX)) for all X ∈ Lie(G1) and t ∈ R.

Now note that M = {z ∈ G1 | f(z) = g(z)} is clearly a subgroup of G1. The set {exp(X) | X ∈
Lie(G)} contains a neighborhood U of e ∈ G. Because G is connected, we therefore must have that
M = G. Thus f = g.

Now we prove that the map Mor(G1, G2)→ Mor(Lie(G1),Lie(G2)) is surjective.

Given a homomorphism L : Lie(G1)→ Lie(G2) of Lie algebras, we want to show it comes from a
Lie group homomorphism. Let G = G1 ×G2, so that Lie(G) = Lie(G1)× Lie(G2). If p1, p2 are the
projections, then for any vector fields v1, v2 on G1, G2, we have that p∗i vi is a section of p∗iTGi, and
there is a natural inclusion p∗iTGi ↪→ TG, so we may regard each p∗i vi as a section of TG.

We claim that [p∗1v1, p
∗
2v2] = 0. Let W = {(α,L(α)) | α ∈ Lie(G)} ⊂ Lie(G). Because L is a Lie

algebra homomorphism, W is a Lie subalgebra. It follows that there is a connected H and map
ρ : H → G such that the image of dρ : Lie(H) → Lie(G) is W . We claim that the map σ, in the
diagram

H G1 ×G2

G1

ρ

σ
p1

is an isomorphism. Note that, if this is so, then p2 ◦ ρ ◦ σ−1 is the desired map G1 → G2.

Let’s prove the claim. We know that dσ : Lie(H)→ Lie(G1) is an isomorphism, so it suffices to show
that σ is a covering map (because G1 is simply connected). We make the following observations:

1. The image im(σ) is a subgroup, im(σ) contains a non-empty open subset, and G1 connected
=⇒ im(σ) = G1

2. The map σ : H → G1 is a group homomorphism and surjective. It now suffices to check that
there is a neighborhood U of e ∈ G1 that is evenly covered.
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We have a neighborhood P of e ∈ H such that σ|P : P → σ(P ) is a homeomorphism. By continuity,
there is a neighborhood Q of e such that Q · Q ⊂ P . Assume that Q = Q−1 in addition. Let
Γ = ker(σ); we claim that Γ×Q→ σ−1(σ(Q)), (γ, q) 7→ γq is a homeomorphism.

Next time we’ll finish this proof.
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Lecture 27 (2013-03-11)
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Lecture 28 (2013-03-13)

Let G be a Lie group. A tangent vector at the identity can be extended uniquely to a left-invariant
vector field on G, i.e. an element of Lie(G). Similarly, it can be extended in a unique way to a
right-invariant vector field on G. Let us call the collection of these Lier(G). If i : G → G is the
inverse map i(g) = g−1, then we clearly see that X ∈ Lie(G) if and only if i∗X ∈ Lier(G). Because
i induces −1 on the tangent space TeG, we have a commutative diagram

Lie(G) Lier(G)

TeG TeG

i∗

evg evg

−1

where eve is evaluation at the identity (we’ve previously called this map IG).

Given a C∞ homomorphism σ : G→ Diffeo(M), we get a C∞ group action G×M →M given by
(g,m) 7→ σ(g)m.

Let m ∈M . Define fm : G→M by fm(g) = σ(g)m. We have the derivative f ′m(e) : TeG→ TmM .
For all v ∈ TeG, we get a vector field ṽ on M defined by m̃ = f ′m(e)v. This is a map from TeG to
C∞ vector fields on M .

For all v ∈ TeG, let [v] be the unique right-invariant vector field with [v](e) = v. Then [v](g) = r′g(e)v
for all g ∈ G, where rg is right multiplication by g.

Lemma.

1. Let m ∈M . Let v ∈ TeG. Then for fm : G→M , [v] is fm-related to ṽ.

2. If v, w ∈ TeG, then [[v], [w]] is fm-related to [ṽ, w̃].

3. To rephrase the above, the map Lier(G) → vector fields on M defined by [v] 7→ ṽ is a Lie
algebra homomorphism.

Proof. Let’s prove 1 first. Let g ∈ G. We have ṽ(gm) = f ′gm(e)v = f ′m(g)r′g(e)v (we are now
neglecting to write the σ). But also

fgm(g) = hgm = fm(hg) = (fm ◦ rg)(h) = f ′m(g)[v](g),

which is the same.

Proposition (Converse). There is also a converse: a Lie algebra homomorphism h : Lier(G)→
C∞ vector fields on M yields an action of G on M , if we assume that (a) G is simply connected
and (b) M is compact.

Proof. Each w ∈ Lier(G) produces a vector field θ(w) on G×M defined by

θ(w)(g,m) = (w(g), h(w)(m)).

We claim that w 7→ θ(w) is a homomorphism of Lie algebras. Note that the map Vect(M) ×
Vect(N) → Vect(M ×N) defined by (v, w) 7→ (p∗1v, p

∗
2w) is a Lie algebra homomorphism. Thus,

we have an involutive subbundle S(g,m) = {θ(w)(g,m) | w ∈ Lier(G)} (observation 1). Observe
(2) that
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S(g,m) T(g,m)(G×M) TgG

∼=

It follows that a leaf is, locally, the graph of a function U → M for some U ↪→ G. We get the
following observation (3): for all m ∈M , there is a neighborhood U of e ∈ G, a neighborhood Um
of m ∈M , and a map f : U × Um →M such that for all m′ ∈ Um, the image of g 7→ (g, f(g,m′))
has tangent space S, and f(e,m′) = m′ for all m′ ∈ Um.

Observation 4: Assuming that M is compact, we get a neighborhood U of e ∈ G and f : U×M →M
with f(e,m) = m for all m ∈M , and a leaf g 7→ (g, f(g,m)) of S, for all m ∈M .

Observation 5: Giving G×M the topology it gets as a disjoint union of leaves, we have a commutative
diagram

(U ×M)new (G×M)new

U G

open

covering
map

where we know this map is a covering map by 4.

The adjoint representation

Let G be a Lie group. For any g ∈ G, there is the conjugation map Cg : G → G defined by
Cg(h) = ghg−1. Clearly Cg1 ◦ Cg2 = Cg1g2 . The derivative C ′g(e) : TeG → TeG is denoted by
Ad(g) : TeG→ TeG. We have that Ad is an action of G on Lie(G). As an exercise, compute d(Ad),
which is an action of Lie(G) on itself.

Let G be a Lie group and H a closed Lie subgroup. We say that π : G→ G/H is a homogeneous
manifold. A homogeneous vector bundle on G/H is just a vector bundle W on G equipped with an
action of G such that the diagram

W W

G/H G/H

σ(g)

p p

`g

commutes, and such that σ(g) : W (x)→W (x) is a linear transformation for all g ∈ G and x ∈ G.

Observe that `he = e for all h ∈ H, where e = eH ∈ G/H. It follows that σ(h)(We) = We. We see
that h 7→ σ(h)|We is a representation on H on W (e). Conversely, given M and a representation
of H, we can construct W as the quotient of G ×M by (gh,m) ∼ (g, hm) for all g ∈ G, h ∈ H,
m ∈M .
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Lecture 29 (2013-03-15)

This lecture is really an apology for not having done any examples.

Classical groups over R and C, and their maximal compact subgroups

There’s a paper by Andre Weil, from around 1955, titled Algebras with Involution, which says what
we’ll do today but over all fields. Another good reference is Helgason’s Differential Geometry and
Symmetric Spaces.

Let V be a finite-dimensional vector space over K, where K = R, K = C, or K = H (the
quaternions). In each case, we have an involution K → K denoted by z 7→ z, which is additive and
reverses multiplication, i.e.

zw = w z.

Given a (left) finite-dimensional vector space V over K, we say that B : V × V → K is sesquilinear
if it is additive in each variable separately, and

B(λv, µw) = λB(v, w)µ

for all λ, µ ∈ K and v, w ∈ V .

We say that a sesquilinear form B is positive definite when for all non-zero v ∈ V , we have that
B(v, v) ∈ R, and that B(v, v) > 0.

This B is essentially unique, as we will now see. If e1, . . . , en is a K-basis for V , then a standard
example of such a B is

B
(∑

λiei,
∑

µjej

)
=

n∑
i=1

λiµi.

An easy exercise is that GLK(V ) acts transitively on the space of sesquilinear, positive definite
forms B : V × V → K.

We won’t prove this, but any compact group G has a left-invariant measure which is unique up to
scaling. Thus, there is a unique left-invariant measure µ such that µ(G) = 1. This lets us treat G
as if it were finite.

Corollary 1. If ρ : G→ GL(V ) is a representation of a compact group G, then for all v ∈ V , we
can define

Pv =

∫
G
ρ(g)v dµ(g),

and the map P is a projection of V onto the subspace

V G = {v ∈ V | ρ(g)v = v for all g ∈ G}.

In other words, Pv ∈ V G for all v ∈ V , and if v ∈ V G, then Pv = v.

Corollary 2. If ρ : G→ GL(V ) is a representation of a compact group G, then there is a unique
positive definite sesquilinear form B : V × V → K such that

B(ρ(g)v, ρ(g)w) = B(v, w)

for all g ∈ G and v, w ∈ V .
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Proof. Let B be any positive definite sesquilinear form on V . Define B̃ by

B̃(v, w) =

∫
G
B(ρ(g)v, ρ(g)w) dµ(g).

It is clear that B̃ has the desired properties.

Let A be a finite-dimensional associative algebra over R. The units of A, denoted A×, form an open
subset of A. A× is a Lie group, with Lie algebra Lie(A×) = A, and for all X,Y ∈ Lie(A×), we have
[X,Y ] = XY − Y X.

Now assume that A is simple, which forces that A = EndK(V ) where V is some finite-dimensional
K-vector space, where K = R, C, or H. We have that A× = GLK(V ).

Observe that, given a positive definite, sesquilinear form B on V , the set

M = {g ∈ GLK(V ) | B(gv, gw) = B(v, w) for all v, w ∈ V }.

is a compact group; indeed, every maximal compact subgroup of GLn(R), GLn(C), GLn(H) is a
conjugate of On(R), Un(C), or Spn(H) respectively.

Theorem. Let G be a Lie group with finitely many connected components. Then there exist
maximal compact subgroups of G, and they are all conjugate to each other.

Definition. Given an associative ring A, an involution on A is a map i : A→ A that is additive,
i(ab) = i(b)i(a) for all a, b ∈ A, and i(i(a)) = a for all a ∈ A.

Let
G = {a ∈ A | ai(a) = 1 = i(a)a},

i.e. the subset consisting of a ∈ A such that i(a) = a−1. Note that

i(ab) = i(b)i(a) = b−1a−1 = (ab)−1 = i(ab),

so that G is a subgroup. As an exercise, you can show using the implicit function theorem on
the map A → A+ = {a ∈ A | a = i(a)} defined by a 7→ ai(a), that G is a Lie group and that
Lie(G) = A− (A+ and A− are the eigenspaces of i for +1 and −1, respectively).

Let B : V × V → R be a non-degenerate bilinear form. When we require that B is symmetric, we
write O(B) for the stabilizer of B in GLR(V ). When we require that B is antisymmetric, we write
Sp(B) for the stabilizer of B in GLR(V ).

Let’s suppose that B is symmetric for now. Then there is a basis e1, . . . , en of V such that
B(ei, ej) = 0 for i 6= j, and for some p+ q = n, we have

B(ei, ei) =

{
1 if i = 1, . . . , p,

−1 if i = p+ 1, . . . , n.

By Sylvester’s law of inertia, p depends only on B. We write O(B) = O(p, q).

Let H be a compact subgroup of O(B), where B is a non-degenerate symmetric bilinear form on
V . We know that H preserves a positive definite form 〈 · , · 〉. It follows that the map T : V → V
defined by B(x, y) = 〈Tx, y〉 for all x, y ∈ V satisfies T = T ∗, and because H preserves B, we have
that T commutes with the H action. Because B is non-degenerate, we have that T is invertible.
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Let V =
⊕

λ∈R Vλ be the eigenspace decomposition of T : V → V (note that the Vλ’s are 〈 · , · 〉
orthogonal). We have that H(Vλ) ⊆ Vλ for all λ.

Let V + =
⊕

λ>0 Vλ and V − =
⊕

λ<0 Vλ, so that V = V + ⊕ V −. We see that B|V + is positive
definite, and −B|V − is positive definite, and B(v, w) = 0 for all v ∈ V + and w ∈ V −.

Thus, we have

H︸︷︷︸
compact

O(V +, B|V +)×O(V −, B|V −) O(V,B)

For any W ⊆ V such that B|W is positive definite and B|W⊥ is negative definite, we have that

{g ∈ O(V,B) | gW = W}

is a maximal compact subgroup. Thus, maximal compact subgroups are in bijection with

{W ⊆ V | B|W is positive definite, and B|W⊥ is negative definite}.

This completes the symmetric case. Now suppose that B is skew-symmetric, and let G = Sp(V,B).
Let V = W , where W is a k-dimensional C-vector space, and n = 2k. Let H : W ×W → C
be a positive definite Hermitian form, so that U(H) = U(k) is a compact subgroup of GLC(W ).
If g ∈ U(H), then Im(H(gv, gw)) = Im(H(v, w)). Let B = ImH. We conclude that U(H) is a
subgroup of Sp(V,B).

Let A = EndR(V ). Here is how to pass from the general description, involving the arbitrary
involution i, to the specific case of symmetric / skew-symmetric forms. By Wedderburn theory, the
map L in this diagram must be an isomorphism of R-algebras:

EndR(V ) EndR(V )

EndR(V ∗)

i

T
L

Thus, Wedderburn etc. gives an isomorphism h : V → V ∗ such that i(T ) = h−1TTh, and thus

i(i(T )) = h−1i(T )Th = h−1hTT (· · · )−1.

There is a λ ∈ R such that hT = λh and h = λhT, so that λ2 = 1.

Now suppose that A = EndC(V ). First, we let i : C→ C be the identity, and we get G = O(V,B)
when B is symmetric (in which case B = Idn), and Sp(V,B) when B is anti-symmetric.

Second, let us take i : C → C be i(z) = z. We get that H : V × V → C is a non-degenerate
Hermitian form, and G = U(V,H). Choosing a basis, we have that for some p+ q = n, the matrix
of H is [

Idp 0
0 −Idq

]
The compact subgroups are similar to the O(p, q) case.

Remark. U(p, q)/U(p)×U(q) is a Hermitian symmetric space.
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Lastly, we come to the case K = H. Let B : V × V → H be a non-degenerate sesquilinear form.
We have two cases, where B(v, w) = B(w, v) or B(v, w) = −B(w, v). In the first case, the matrix
is again of the form [

Idp 0
0 −Idq

]
and in the second case, the matrix is i · · · 0

...
. . .

...
0 · · · i


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