Notation 0.1. We'll use the phrase: a deformation of C^{∞} map $f_0: X \to Y$ is a C^{∞} map $F: X \times S \to Y$ where S is a nbhd of 0 in \mathbb{R}^m and $F(x, 0) = f_0(x)$ for all $x \in X$. We set $f_s(x) = F(x, s)$ for all $x \in X, s \in S$.

Notation 0.2. Given $x \in A \subset M$ where A is C^{∞} submanifold of a C^{∞} manifold M we often regard T_xA as a linear subspace of T_xM . In reality, if $i : A \to M$ denotes the given inclusion, then i is a C^{∞} map and we obtain $i'(x) : T_xA \to T_xM$. The linear transformation i'(x) is one-to-one. Given $v \in T_xA$ we abuse notation by referring to the vector $i'(x)v \in T_xM$ simply as $v \in T_xM$.

In particular, if M is a finite dimensional real vector space V then we regard $T_x A$ as a linear subspace of V.

Definition 0.3. A C^{∞} map $f : X \to Y$ is a submersion (resp. immersion) if $f'(x) : T_x X \to T_{f(x)} Y$ is onto (resp. one-to-one) for all $x \in X$.

A C^{∞} map $f: X \to Y$ is an *embedding* if (a) it is an immersion and (b) $x \mapsto f(x)$ gives a homeomorphism of X with a closed subset of Y.

Definition 0.4. A continuous map $f: X \to Y$ is proper if

 $K \subset Y, K$ compact $\implies f^{-1}(K)$ compact.

If Y is locally compact and Hausdorff, and if f is proper, then

 $F \subset X$ closed $\implies f(F)$ closed

The projection $M \times Y \to Y$ is evidently proper if M is compact.

Homework problems

- (1) Let $f: X \to Y$ be a C^{∞} map of C^{∞} manifolds. Define $g: X \times X \to Y \times Y$ by g(p,q) = (f(p), f(q)) for all $(p,q) \in X \times X$. Assume that g is transverse to the diagonal ΔY . Prove that f is a submersion. (Remark: this exercise is direct from the definition).
- (2) Show that if $f: X \to Y$ is an embedding, then f(X) is a C^{∞} submanifold of Y and that f yields a diffeomorphism of X with f(X). Show that a one-to-one immersion is an embedding when X is compact (and Y is Hausdorff).
- (3) The fiber product of $f: X \to Z$ and $g: Y \to Z$, denoted $X \times_Z Y$, is given by $X \times_Z Y = \{(x, y) \in X \times Y : f(x) = g(y)\}$

Assume that X, Y, Z, f, g are all C^{∞} .

- (a) Define $F: X \times Y \to Z \times Z$ by F(x, y) = (f(x), g(y)) for all $(x, y) \in X \times Y$. Prove that if F is transverse to $\Delta(Z)$ (the diagonal of Z in $Z \times Z$) then $X \times_Z Y$ is a C^{∞} submanifold of $X \times Y$.
- (b) Prove that if $f: X \to Z$ is a submersion then
 - (i) $X \times_Z Y$ is a C^{∞} submanifold of $X \times Y$, and
 - (ii) the projection $X \times_Z Y \to Y$ is a submersion.
- (c) Is the analogous statement for $f: X \to Z$ an immersion true?
- (4) Let V, W be finite dimensional real vector spaces. Let r be an integer. Let X_r be the subset of $\operatorname{Hom}_{\mathbb{R}}(V, W)$ consisting of those linear transformations $T: V \to W$ for which $\operatorname{rank}(T) \leq r$.
 - (a) Show that X_r is a closed subset of $\operatorname{Hom}_{\mathbb{R}}(V, W)$.

- (b) Show that $Y_r = X_r \setminus X_{r-1}$ is a locally closed C^{∞} submanifold of $\operatorname{Hom}_{\mathbb{R}}(V, W)$.
- (c) Let $T \in Y_r$. Let $i : \ker(T) \to V$ denote the inclusion and let $p : W \to \operatorname{coker} T$ denote the projection, where $\operatorname{coker} T = W/T(V)$. Show that the tangent-space of Y_r at T is the kernel of the linear transformation $\operatorname{Hom}_{\mathbb{R}}(V, W) \to \operatorname{Hom}_{\mathbb{R}}(\ker(T), \operatorname{coker}(T))$ given by $S \mapsto p \circ S \circ i$.
- (5) Let $f : M \to N$ be C^{∞} . The critical locus of f, denoted by $\operatorname{Crit}(f)$ is $\{x \in M : f'(x) \text{ is not onto}\}$. Show that this a closed subset of M. Deduce that the set R of regular values of f is an open subset of N under the additional assumption that f is *proper*.
- (6) Assume that X is compact C^{∞} . Let $F : X \times S \to Y$ be C^{∞} and define $f_s : X \to Y$ by $f_s(x) = F(x, s)$ for all $x \in X, s \in S$. Assume that X is compact. Show that the subset of S consisting of the $\{s \in S : f_s \text{ has property P}\}$ is open in the four cases

P is (a) submersion, (b) immersion, (c) embedding, (d) transverse to *A*, where *A* is a closed C^{∞} submanifold of *Y*.

Show that if $f_s: X \to Y$ is transverse to A then

- (7) Let (Y,d) be a metric space. Given $f,g : Z \to Y$ we write $f \stackrel{\delta}{\sim} g$ if $d(f(z),g(z)) < \delta$ for all $z \in Z$.
 - (a) Assume that Z is compact. Let $\delta > 0$. Prove that if $f, g : Z \to Y$ are homotopic to each other, then there are continuous maps $Z \to Y$ denoted by $f = f_0, f_1, ..., f_k = g$ such that $f_{i-1} \stackrel{\delta}{\sim} f_i$ for all i = 1, 2, 3, ...k.
 - (b) Let Y be a compact C^{∞} submanifold of \mathbb{R}^n . The metric on Y is what it inherits from \mathbb{R}^n . Prove there is some $\delta(Y) > 0$ such that if f, g : $Z \to Y$ are continuous and $f \stackrel{\delta(Y)}{\sim} g$ then f is homotopic to g. (Hint: an application of the tubular nbhd thm)

Show furthermore that if the above Z, f, g are C^{∞} then the homotopy between f and g is also C^{∞} .