Syllabus: Graduate Algebra I

This is an Intro to algebra, both commutative and noncommutative. The goal is to cover basic material that any mathematician is supposed to know, regardless of his/her specific field of interest.

- Home assignments are due each **Friday**.
 - Working on a home assignment jointly with another student is OK provided you indicate the name of that person.
 - Working in groups of more than 2 people is not allowed.
- Grading Policy: Home assignments 30%, Midterm 35%, Final 35%.
- There will be a 20 minute Quiz on Friday, October 12, right after class.
- The Midterm (2 hours) is scheduled on
 - Wednesday, October 24, 4:30-6:30pm, room Eck. 312.
 - Undergraduates who get a 'C' or below for the Midterm are *strongly* recommended to drop the course right away.
- The Final exam (2 hours) will be given during the Exam week, on the date provided by the administration.
- Office hours: Monday, 2:30 (right after class), Eck. 402. Please feel free to contact me via email any time: ginzburg@math.uchicago.edu.
- GRADER: Sundeep Balaji. Email: sundeepb@math.uchicago.edu
- Prerequisites:
 - (1) Definitions of: group, ring, ideal, field, subgroup, group homomorphism, factor group, resp. ring homomorphism, factor ring.
 - These notions will be considered as 'known', and they will not be defined in class.
 - (2) Knowledge of linear algebra, especially basic properties of tensor product of vector spaces, and of the standard hermitian inner product on \mathbb{C}^n .
- Main Topics of the course
 - (not necessarily in the order they will be discussed in class):
 - (1) The algebra of Quaternions. The double covering map $SU_2 woheadrightarrow SO_3(\mathbb{R})$. The groups GL_n , SL_n and their conjugacy classes. The exponential map $\exp: \mathbb{M}_n(\mathbb{R}) \to GL_n(\mathbb{R})$. Orthogonal and symplectic groups.
 - (2) Modules: simple, semisimple, cyclic, finitely generated, and free modules. Schur's lemma. Finite length modules and the Jordan-Hölder theorem. Left, right, and two-sided ideals of a matrix algebra. Description of modules over a matrix algebra.
 - (3) The Chinese remainder theorem. Application to Lagrange's interpolation formula.
 - (4) Principal ideal domains (PID). Structure theory of finitely generated modules over PID's. Applications: finitely generated abelian groups, Jordan normal form and Jordan decomposition.
 - (5) Group representations: complete reducibility, orthogonality relations for characters, Structure of the group algebra of a finite group and the Plancherel theorem. Induced representations. Duality and Fourier transform for finite abelian groups.

- (6) Classification of irreducible representations of finite groups \mathbb{S}_n , $GL_2(\mathbb{F}_q)$, and of compact groups SU_2 , $SO_3(\mathbb{R})$. Invariant theory. Hilbert's finite generation theorem.
- (7) Applications of the Zorn lemma: equivalence of various definitions of semisimple modules, existence maximal ideals.
- (8) Jacobson's density theorem. Burnside's theorem. The double centralizer theorem. Schur-Weyl duality. The First Fundamental Theorem of Invariant theory.
- (9) The Jacobson radical: equivalence of various definitions. Nakayama lemma. Semisimple algebras. Maschke's theorem.
- (10) Spectrum of an element of an algebra; Spectral theorem. Nullstellensatz for algebras over \mathbb{C} . Relation between the notions of spectrum and Jacobson radical of a \mathbb{C} -algebra.
- (11) Wedderburn theory: structure theory of simple and semisimple finite dimensional algebras.

• Literature:

- Comprehensive reference text:
- S. Lang, *Algebra*. Revised third edition. Graduate Texts in Mathematics, 211. Springer-Verlag, New York, 2002.
- On linear algebra:
- S. Axler, *Linear Algebra Done Right*, Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1996.
- On noncommutative algebebra:
- J. Beachy, Introductory Lectures on Rings and Modules. London Mathematical Society Student Texts 47, Cambridge Univ. Press, 1999.
- On representation theory of groups and algebras:
- P. Etingof, O. Golberg, S. Hensel, T. Liu, A. Schwendner, D. Vaintrob, E. Yudovina, *Introduction to representation theory*. With historical interludes by Slava Gerovitch. Student Mathematical Library, 59. American Mathematical Society, Providence, RI, 2011. viii+228 pp.
- On geometric and topological aspects of Lie groups (Segal's contribution in):
- R. Carter, G. Segal, and I. Macdonald, *Lectures on Lie groups and Lie algebras*, London Mathematical Society Student Texts **32**. Cambridge University Press, Cambridge, 1995.