\classheader{2012-10-24} Just as a reminder, the midterm is today, 4:30 to 6:15, in Eckhart 312. \begin{theorem}[Plancherel, general case] For $\phi,\psi\in\C\{G\}$, \[\sum_{g\in G}\phi(g)\overline{\psi(g)}=\sum_{\rho\in\widehat{G}} \frac{\dim(\rho)}{\# G}\tr(\rho(\phi)\rho(\psi)^*).\] \end{theorem} \begin{proof} Let $f=\phi\ast\overline{\psi^\tau}$. Apply the orthogonality relations to $f$: \[(\phi\ast\overline{\psi^\tau})(e)=\sum_{\rho\in\widehat{G}}\frac{\dim(\rho)}{\# G}\tr(\rho(\phi\ast\overline{\psi^\tau})).\] %(we proved this last time?) %Now look at the left side of the above orthogonality relation, and note that it equals the left side of the theorem statement: %jw %\[(\text{LHS of orthogonality})\quad \left.\sum_{y\in G}\phi(xy^{-1})\overline{\psi^\tau}(y)\right|_{x=e} = \sum_{y\in G}\phi(y^{-1})\overline{\psi(y^{-1})}\quad (\text{LHS of theorem}).\] %Now let's prove that the right sides are equal. The right side of the orthogonality relation is %\[\sum_{\rho\in\widehat{G}}\frac{\dim(\rho)}{\# G}\tr(\rho(\phi)\rho(\psi)^*).\] %Consider $\Psi$, defined by \[\Psi=\bigg(\bigoplus_{\rho\in\widehat{G}}\rho\bigg):\C G\to\bigoplus_{\rho\in\widehat{G}}\End_\C(L_\rho)\] %mapping $f$ to $\operatornamewithlimits{\oplus}\limits_{\rho\in\widehat{G}}\rho(f)$. By definition of convolution, the LHS of the above orthogonality relation is equal to \[\sum_{y\in G}\phi(ey^{-1})\overline{\psi^\tau}(y) = \sum_{y\in G}\phi(y^{-1})\overline{\psi(y^{-1})}\quad (\text{LHS of theorem}).\] We know that $\rho(\phi * \overline{\psi^\tau}) = \rho(\phi) \rho(\overline{\psi^\tau})$, and by the last lemma from Lecture 11, $\rho(\overline{\psi^\tau}) = \rho(\psi)^*$. Hence the RHS of orthogonality coincides with the RHS of the theorem, and we are done. \end{proof} %jw Recall from Wedderburn theory that the map \[ \Psi : \C{G} \to \operatornamewithlimits\bigoplus\limits_{\rho \in \widehat G} \End_\C(L_\rho) : f \mapsto \operatornamewithlimits{\oplus}\limits_{\rho\in \widehat{G}}\rho(f) \] is an isomorphism. The inversion theorem gives a formula for the inverse: \begin{theorem}[Inversion] For $a=\operatornamewithlimits{\oplus}\limits_{\rho\in\widehat{G}}a_\rho\in \operatornamewithlimits\bigoplus\limits_{\rho\in\widehat{G}}\End_\C(L_\rho)$, the inverse map $\Psi^{-1}$ is given by \[\Psi^{-1}(a)(g)=\sum_{\rho\in\widehat{G}}\frac{\dim(\rho)}{\# G}\tr(a_\rho\cdot\rho(g)^{-1}).\] \end{theorem} \begin{proof} WLOG we can assume $a=\Psi(f)=\operatornamewithlimits{\oplus}\limits_{\rho\in \widehat{G}}\rho(f)$ for some $f\in\C\{G\}$. We need to check\vspace{-0.1in} \[\sum_{\rho\in\widehat{G}}\frac{\dim(\rho)}{\# G}\tr(\rho(f)\rho(g)^{-1})\stackrel{?}{=}f(g).\] But the left side is just equal to \[\sum_{\rho\in\widehat{G}}\frac{\dim(\rho)}{\# G}\tr(\rho(f)\cdot\rho(\mathbf{1}_g)^*)\stackrel{\text{ Plancherel }}{=}\sum_{x\in G}f(x)\overline{\mathbf{1}_g(x)}=f(g).\qedhere\] \end{proof} Recall that the character of a representation $\rho$ is defined to be $\chi_\rho(f)=\tr(\rho(g))$. \begin{corollary} The element $e_\rho=\frac{\dim(\rho)}{\# G}\sum\limits_{g\in G}\overline{\chi_\rho(g)}\cdot g$ is a central idempotent in $\C G$. Moreover,\vspace{-0.1in} \[\rho'(e_\rho)=\begin{cases} \id_{L_\rho}&\text{ if }\rho'\cong \rho,\\ 0&\text{ if }\rho'\not\cong\rho. \end{cases}\] \end{corollary} \begin{proof} Take $a=\oplus_{\rho'}a_{\rho'}$, where $a_{\rho'}=\begin{cases} \id_{L_\rho}&\text{ if }\rho'\cong \rho,\\ 0&\text{ if }\rho'\not\cong\rho. \end{cases}$. Then \[\Psi^{-1}(a)(g)\stackrel{\text{ inversion }}{=}\frac{\dim(\rho)}{\# G}\tr(\rho(g^{-1}))\] which implies that $\Psi^{-1}(a)=\frac{\dim(\rho)}{\# G}\sum\limits_{g\in G}\tr(\rho(g)^*)$. But \[\tr(\rho(g)^*)=\tr(\overline{\rho(g)})=\overline{\tr(\rho(g))}=\overline{\chi_\rho(g)}\] so we are done. \end{proof} Let $\C\{G\}^G$ be the collection of class functions on $G$. \begin{theorem}[Classical orthogonality] The set $\{\chi_\rho\mid\rho\in\widehat{G}\}$ is an orthonormal basis of $\C\{G\}^G$, i.e. \[(\chi_\rho,\chi_{\rho'})=\begin{cases}\# G & \text{ if }\rho\cong\rho',\\ 0 & \text{ if }\rho\not\cong\rho'.\end{cases}\] \end{theorem} \begin{proof} \[(\overline{\chi_\rho},\overline{\chi_\rho})=\sum_{g\in G}\overline{\chi_\rho(g)}\chi_{\rho'}(g)=\left(\frac{\# G}{\dim(\rho)}e_\rho,\frac{\# G}{\dim(\rho')}e_{\rho'}\right)\] \[\stackrel{\text{ Plancherel }}{=} \sum_{\sigma\in\widehat{G}}\frac{\dim(\sigma)}{\# G}\tr\left(\sigma\left(\frac{\# G}{\dim(\rho)}e_\rho\right)\cdot\sigma\left(\frac{\# G}{\dim(\rho')}e_{\rho'}\right)^*\right)\] \[=\sum_{\sigma\in\widehat{G}}\frac{\dim(\sigma)}{\# G}\frac{(\# G)^2}{\dim(\rho)\dim(\rho')}\tr\left(\delta_{\sigma\rho}\id_{L_\rho}\cdot\;\delta_{\sigma\rho'}\id_{L_{\rho'}}\right)\] \[=\begin{cases} 0 & \text{ if }\rho\not\cong\rho',\\ \frac{\dim(\rho)}{\# G}\cdot\frac{(\# G)^2}{\dim(\rho)^2}\dim(\rho)=\#G & \text{ if }\rho\cong\rho'. \end{cases}\qedhere\] \end{proof} \section*{Tensor products} Let $B$ be a ring. We can consider right $B$-modules, which are equivalent to left $B^{\text{op}}$-modules. If $B$ is commutative, then left is the same as right. For example, we can think of the collection of column vectors \[\begin{pmatrix} B\\ B\\ \vdots\\ B \end{pmatrix}\] as a left $\M_n(B)$-module, and the collection of row vectors \[\begin{pmatrix} B & B & \cdots & B \end{pmatrix}\] as a right $\M_n(B)$-module. Let $A$ and $B$ be rings. An $(A,B)$-bimodule is an abelian group $M$ which is a left $A$-module and a right $B$-module such that the $A$-action and $B$-action commute. \begin{examples} $\text{}$ \begin{itemize} \item $A$ is an $(A,A)$-bimodule in the obvious way. \item The space of $m\times n$ matrices over $A$ is an $(\M_m(A),\M_n(A))$-bimodule. \end{itemize} \end{examples} \begin{definition} Let $M$ be a right $A$-module, and $N$ be a left $A$-module. Then we define \[M\otimes_A N=\frac{\{\text{free abelian group on symbols }m\otimes n\}}{\left\langle\begin{array}{c} (m_1+m_2)\otimes n-m_1\otimes n-m_2\otimes n\\ m\otimes (n_1+n_2) - m\otimes n_1-m\otimes n_2\\ ma\otimes n-m\otimes an \end{array}\right\rangle}\] \end{definition} \begin{comments} $\text{}$ \begin{itemize} \item If $A$ is a $k$-algebra, then $M\otimes_A N$ is a quotient of $M\otimes_kN$. \item $A\otimes_AN=N$ and $M\otimes_AA=M$ \item If we have rings $A$, $B$, and if $M$ is an $(A,B)$-bimodule, then for any left $B$-module $N$, there is still a left $A$-action on $M\otimes_BN$, making it into a left $A$-module. \item The tensor product $\otimes_A$ has a universal property, \[\xymatrix@!C=0.9in{ M\times N \ar[dr]_f \ar[r]^{\text{ canonical }}& M\otimes_A N\ar@{-->}[d]^{\exists ! \widetilde{f}}\\ & M}\] where $\widetilde{f}$ is a map of abelian groups and $f$ is a ``middle $A$-linear'' map. \end{itemize} \end{comments}