
Geom/Top: Homework 1 (due Monday, 10/08/12)

1. Read Farb notes.

2. Read Hatcher, Intro to Chapter 2 and Section 2.1.

3. (Do not hand this in) Let φ : A→ B and ψ : B → A be group homomor-
phisms. Suppose that φ ◦ ψ = IdB . Prove that φ is surjective and ψ is
injective.

——————————–

1. Give a ∆-complex structure and use it to compute the homology of the
following spaces.

(a) The annulus/cylinder S1 × [0, 1].

(b) The Mobius band.

(c) RP2.

(d) The closed, connected (oriented) surface Σ2 of genus 2.

Remark. Computing for any g ≥ 2 the simplicial homology of the closed
surface Σg of genus g is possible, but it is rather cumbersome. We will
later have various methods for which that computation is very easy.

2. (Reduced homology groups) For various formulas in topology and ho-
mological algebra, it is convenient to use a slight variation of homology.
Let X be any nonempty ∆-complex. The reduced complex of simpli-
cial chains on X is the chain complex C̃ := {Cn(X), ∂n}, where we set
C−1(X) = Z, we define ∂−1 := 0, and we define ∂0 : C0(X)→ C−1(X) =
Z by

∂0(
∑
i

aivi) :=
∑
i

ai

This is in contrast to the (unreduced) complex chain complex on X, where
we defined C−1(X) := 0. Thus the complex of reduced simplicial chains
on X is

· · · ∂4→ C3(X)
∂3→ C2(X)

∂2→ C1(X)
∂1→ C0(X)

∂0→ Z→ 0

Define the reduced homology H̃i(X) of X by

H̃i(X) := Hi(C̃)

(a) Let X be any nonempty ∆-complex. Prove that

H0(X) ≈ H̃0(X)⊕ Z

and that H̃i(X) ≈ Hi(X) for all i > 0. In particular, the effect of using
reduced homology of a space is that connected spaces X have H̃0(X) = 0
instead of H0(X) ≈ Z.
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(b) Here is an example of a formula that is cleaner using reduced homology.
Let X and Y be connected ∆-complexes. Pick x ∈ X and y ∈ Y . Denote
the wedge X ∨ Y to be the quotient space given by the quotient of the
disjoint union of X and Y by the relation x ∼ y. Prove that

H̃i(X ∨ Y ) = H̃i(X)⊕ H̃i(Y )

for all i ≥ 0.

3. (Simplicial Maps) Let X and Y be ∆-complexes. A map f : X → Y
is called a simplicial map if it maps simplices to simplices (perhaps of
lower dimension): for each simplex σ : [v0 · · · vn]→ X, there is a simplex
τ : [vi0 · · · vim ]→ Y, 0 ≤ m ≤ n so that f ◦σ is the composition τ ◦L, where
L : [v0 · · · vn]→ [vi0 · · · vim ] is the linear (“collapse”) map of [v0 · · · vn] that
projects it onto its subsimplex [vi0 · · · vim ], taking each vi+0 to itself.

(a) Fix n ≥ 0. For any n-simplex σ, we have f(σ) is an m-simplex for
some m ≤ n. Define f#(σ) to be 0 if m < n, and to be the element
f(σ) ∈ Cn(X) otherwise. f# has a unique linear extension f# : Cn(X)→
Cn(Y ). Prove that f# is a chain map, and so induces homomorphisms
f∗ : Hn(X)→ Hn(Y ). Note that by the general “chain maps” theorem in
homological algebra, the association f 7→ f∗ is functorial.

(d) Deduce that a simplicial homeomorphism f : X → Y induces an
isomorphism of simplicial homology groups.

4. (Simplicial complexes) Let X be a ∆-complex, and assume (as usual)
that every subsimplex of a simplex in X is a simplex in X. Prove that the
following are equivalent:

(a) Each simplex of X is uniquely determined by its vertices.

(b) The intersection of any two simplices in X is a subsimplex of each.

A ∆-complex satisfying any (hence all) of these properties is called a
simplicial complex.

5. Prove that any ∆-complex is homeomorphic to a simplicial complex.

6. (a) Find a simplicial complex X that is homeomorphic to the torus, using
as few 2-simplices as you can.

(b) Use Euler’s Formula V − E + F = 0 for the Torus and the definition
of simplicial complex to prove your number is minimal. Note that the
minimal number is much bigger than the two 2-simplices required for the
∆-complex structure on T 2 given in class.

(c) Do the same for RP2.

7. (Infinite ∆-complexes and simplicial complexes) The definition of
a (not necessarily finite) ∆-complex X is the same as that for finite ∆-
complexes except now the set of simplices {fα : ∆α → X}α∈I is indexed
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by a set I of arbitrary cardinality, and one must specify a topology. We
will endow X with the weak topology, where a subset Y ⊆ X is declared
to be open if and only if f−1α (Y ) is open in ∆α for every α ∈ I. One can
define infinite simplicial complexes in the same way.

Now let X be a ∆ complex.

(a) Prove that X is compact if and only if it has finitely many simplices.

(b) Let Y be any topological space. Prove that any map h : X → Y is
continuous if and only if for every simplex σ : ∆n → X, the composition
h ◦ σ is continuous.

(c) Suppose that X has countably many simplices, is locally finite and
that every simplex of X has dimension at most n <∞. Prove that X can
be embedded in R2n+1. Prove that 2n+ 1 is sharp.

Extra credit problems

1. Let f(g) be the minimal number of triangles in any triangulation of the
closed, orientable surface of genus g. Find f(g). The correct lower bound
is elementary (although the answer is rather strange-looking), and can be
deduced from obvious relations among V,E and F , together with Euler’s
formula V −E + F = 2− 2g. The correct upper bound, where one needs
“only” construct an efficient enough triangulation, , is significantly more
difficult, and wasn’t known until the 1960’s. It would be nice to find a
simpler proof. Also, is there an easy way to see that f is a monotone
increasing function of g?

2. Research problem: Let h(g, n) be the number of triangulations of the
closed, orientable surface Sg of genus g which have exactly n triangles.
Here we consider two triangulations to be the same if there is a homeo-
morphism of Sg taking one triangulation to the other. Describe h(g, n)
as much as possible. How does it grow as a function of g and n as one is
fixed and the other goes to infinity? Compute h for small values of g and
n.

3. Do triangulations with greater or fewer triangles have bigger or smaller
automorphism group? Can you bound the order of the automorphism
group of any triangulation on a closed surface of genus g, i.e. can you give
a bound depending only on g and not on the triangulation?

4. Research Problem: Let Sg be the (connected, compact, boundaryless)
genus g ≥ 0 surface. For any triangulation T of Sg, we can get a new
triangulation T ′ by performing an elementary move: pick an edge of T ,
remove it so that you get a quadralateral consisting of the union of the
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two triangles intersecting at your edge, then add back the other diagonal
to this quadrilateral. This clearly gives a triangulation T ′ of Sg.

Let Γg(n) be the graph whose vertices are the triangulations of Sg and
where two vertices T, T ′ are connected by an edge when they differ by an
elementary move.

GENERAL PROBLEM: What does Γg(n) look like as a function of g
and n? For example, Γg(n) is empty whenever n < f(g), where f is
the function defined in Problem 2 above. Here are some sample prob-
lems/questions:

• Try to determine Γg(n) explicitly for all n ≥ 1 for g = 0 and g = 1.
Same for small g and n.

• If Γg(n) is connected, must Γg(n+ 1) be connected?

• For a given g, what is the minimal N so that Γg(n) is connected for
all n ≥ N (if such an N exists)?

• Study other graph-theoretic properties of Γg(n) (many can be found
via google, and also via any graph theory book).
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Geom/Top: Homework 2 (due Monday, 10/15/12)

1. Read Farb notes.

2. Read Hatcher, Section 2.1.

3. (Don’t hand in): Check that chain homotopy is an equivalence relation on
the set of chain maps.

——————————–

1. Some problems on contractibility:

(a) The Dunce Hat is the quotient space obtained from the standard
2-simplex [v0v1v2] by identifying [v0v1] with [v0v2] with [v1v2] (note that
the ordering matters!). Prove that the Dunce Hat is contractible.

(b) Prove that the retract of a contractible space is contractible.

(c) Prove that S∞ is contractible.

(d) Prove that the torus minus one point deformation retracts to S1 ∨S1.

(e) Prove that a space Y is contractible if and only if for every space X,
any two continuous maps f, g : X → Y are homotopic. Prove the same
theorem but replacing f : X → Y with f : Y → X.

2. Let f, g : Sn → Sn, n > 0 be continuous maps with the property that f(x)
and g(x) are not antipodal for any x. Prove that f and g are homotopic.

3. Hatcher page 19, Problem 20.

4. Let X be a space. The suspension SX is defined as the quotient space

SX :=
X × [0, 1]

(X × {0}) t (X × {1})

(a) Let X be a ∆-complex. Prove that SX is a ∆-complex.

(b) Prove that H̃i(X) ≈ H̃i+1(SX) for all i ≥ 0.

5. Think of S1 as the unit circle in the complex plane. Let f, g : S1 → S1 be
the maps f(z) = z and g(z) = z2.

(a) Prove that f is not homotopic to g.

(b) Let F (z, t) : S1 × [0, 1]→ S1 be defined by F (z, t) = zt+1. Why isn’t
F a homotopy from f to g?

(c) Classify all continuous maps f : S1 → S1 up to homotopy.

6. Let X be any topological space.

(a) Prove that for any element c ∈ H1(X) (singular homology) there is a
continuous map f : S1 → X so that c = f∗([S

1]), where [S1] is a generator
of H1(S1).
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(b) Let X be a ∆-complex (for simplicity). Prove that for any c ∈ H2(X)
(use simplicial or singular homology, as you like), there is a closed surface
S and a continuous map f : S → X so that c = f∗([S]), where [S] denotes
a generator of the cyclic (by previous homework) group H2(S).

The problem of representing homology classes by manifolds is deep and
important. It was studied by Rene Thom in his Fields Medal work (see
his paper in Comment. Math. Helv. You just did dimensions i = 1, 2,
but the problem gets harder for i > 2. Amazingly, cycles of dimension
i < 8 can be represented by manifolds, but in general this is not true in
dimension i ≥ 8. But, Thom proved that it is true in rational homology
(to be discussed later) up to a rational multiple.

7. Let X be a ∆-complex and let G be any abelian group. We define
the simplicial homology of X with coefficients in A as follows. Let
{Cn(X), ∂n} denote the complex of simplicial chains on X. The complex
of G-valued simplicial chains is defined to be the collection of abelian
groups Cn(X;G) := Cn(X)⊗G with boundary homomorphisms

∂n ⊗ Id : Cn(X)⊗G→ Cn−1(X)⊗G

Thus any element of Cn(X;G) can be written as a finite sum
∑
σ gσσ

where gσ ∈ G and the sum is taken over all n-simplices σ of X. It is easy
to check that (∂ ⊗ Id)2 = 0, so that {Cn(X;G), ∂n} is a chain complex.
One defines the simplicial homology of X with coefficients in G, denoted
Hi(X;G), as the homology of this chain complex.

(a) Compute the homology of the Klein bottle with coefficients in G =
Z/2Z.

(b) Compute the homology of the Klein bottle with coefficients in G =
Z/3Z.

(c) Compute the homology of the Klein bottle with coefficients in G = Q.

Extra credit problems

1. You can still hand in any extra credit problems from Homework 1.

2. For any n ≥ 1, give a ∆-complex structure on Sn, and compute its sim-
plicial homology groups.
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Geom/Top: Homework 2 (due Monday, 10/15/12)

1. Suppose we have a homomorphism of short exact sequences of abelian
groups:

0→ A→ B → C → 0
↓ f ↓ g ↓ h

0→ A′ → B′ → C ′ → 0

Prove that there is an exact sequence

0→ ker(f)→ ker(g)→ ker(h)→ cok(f)→ cok(g)→ cok(h)→ 0

2. Let X be any topological space, and let A ⊆ X be a nonempty subspace.

(a) Prove directly (i.e. not using any long exact sequences, but only the
definitions), that if x ∈ X is any point, then

Hi(X,x) ≈ H̃i(X) for all i ≥ 0

(b) Suppose that there is a retraction r : X → A. Show that

Hi(X) ≈ Hi(A)⊕Hi(X,A)

for all i ≥ 0.

(c) Prove that if the inclusion i : A→ X is a homotopy equivalence then
then Hi(X,A) = 0 for all i ≥ 0.

(d) Prove that the inclusion A→ X induces isomorphisms on all homology
groups if and only if Hi(X,A) = 0 for all i ≥ 0.

3. Give an example of pairs of spaces (X,X0) and (Y, Y0) where Hi(X) ≈
Hi(Y ) and Hi(X0) ≈ Hi(Y0) but Hi(X,X0) 6≈ Hi(Y, Y0).

4. Compute the following examples of relative homology groups of the fol-
lowing pairs (X,A) using the long exact sequence of a pair. Note how the
answer compares to the homology of the quotient X/A.

(a) An annulus relative to its boundary (union of 2 circles).

(b) A Mobius band relative to its boundary. Give a generator for relative
H1 in this case.

(c) (Sn, Sn−1) for each n ≥ 0.

5. Prove for an n-manifold (n ≥ 1), and any point x ∈ X, that

Hi(X,X − x) =
{

Z i = 0, n
0 i 6= 0, n
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6. Let γ ⊂ S2 be a subset homeomorphic to [0, 1], and let x ∈ γ be any
point. Prove that the inclusion of pairs (S2 − x, γ − x) → (S2, γ) is not
an excision.

7. Check that the “connecting homomorphism” ∂ : Hn(X,A) → Hn(A) in
the long exact sequence of a pair (X,A), defined purely via homological
algebra, has a geometric meaning: if c ∈ Zn(X,A) is a cycle representing
an element of Hn(X,A), then the element ∂[c] ∈ Hn−1(A) is represented
by the cycle ∂c ∈ Zn−1(A).

8. Assuming that G is abelian, what can you say about the isomorphism
type of G if

(a) 0→ Zn → G→ Zm → 0 is exact?

(b) 0→ Z/4Z→ G→ Z/4Z→ 0 is exact?

9. Let X be any space, and let

0→ G→ G′ → G
′′
→ 0

be a short exact sequence of abelian groups.

(a) Prove that there is a short exact sequence of chain complexes (with
varying coefficients):

0→ Cn(X;G)→ Cn(X;G′)→ Cn(X;G
′′
→ 0

By the Fundamental Theorem of Homological Algebra one gets the in-
duced long exact sequence of homology groups. Denote the associated
“connecting homomorphism” by

β : Hn(X;G
′′
)→ Hn−1(X;G)

(b) Compute β when X is the Klein bottle and the coefficient sequence is

0→ Z→ Z→ Z/2Z→ 0

(c) Do the same for the coefficients

0→ Z/2Z/→ Z/4Z→ Z/2Z→ 0

Extra Credit Problems

1. You can still hand in any extra credit problems from Homeworks 1 and 2.
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Geom/Top: Homework 4 (due Monday, 10/29/12)

1. Read Farb notes.

2. Read along in Hatcher.

——————————–

1. Let X be a connected space which is a finite union of polygons {Pi} with
the property that the intersection of any two polygons is either empty,
a common edge, or a common vertex. Let V,E and F denote the total
number of vertices, edges, and faces of these polygons (so e.g. a face is
precisely the interior of some polygon).

(a) Prove that χ(X) = V − E + F .

(b) The space X is called a regular polytope if all the Pi have the same
number r of edges, if each edge in X lies in exactly two faces, and if each
vertex in X lies in some fixed number s of faces. Prove that there are
precisely five regular polytopes homeomorphic to S2.

(c) What are the possibilities for r and s when X is homeomorphic to the
torus T 2?

2. Let X be any finite, connected ∆-complex. Prove that f∗ : H0(X) →
H0(X) is the identity homomorphism for any continuous map f : X → X.

3. Let Σg denote the closed, connected, genus g ≥ 0 surface.

(a) For each g 6= 1, find a homeomorphism f : Σg → Σg with no fixed
point.

(b) Prove that for g 6= 1 any homeomorphism f : Σg → Σg has a periodic
point, i.e. some power fn, n > 0, has a fixed point.

4. Let G be a path-connected, compact topological group. That is, G is a
group and also a compact topological space, such that the mapsG×G→ G
with (a, b) 7→ ab and G → G with g → g−1 are continuous. Assume that
G has some ∆-complex structure.

(a) For any g ∈ G, let Lg : G→ G be “left translation by g”, i.e. Lg(h) =
gh. Prove that Lg is homotopic to the identity.

(b) Conclude that χ(G) = 0.

(c) Prove that S2n, n > 0 cannot be given the structure of a topological
group.

(d) Prove that the only compact surface which is a topological group is
the torus; in particular rule out the Klein bottle. [Warning: I am not
100% sure the Klein bottle part can be solved at this point.]

5. Give an example of a finite ∆-complex X and a continuous self-map f :
X → X such that f has a fixed point but the Lefschetz number Λ(f) = 0.
Thus the converse of the Lefschetz Fixed Point Theorem does not hold.
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6. Vector fields {Vi} on Sn are linearly independent if for each z ∈ Sn the
vectors {Vi(z)} are linearly independent in the vector space TSn

z .

(a) Recall that in class we found a nonvanishing vector field on S2n+1.
Adapt this construction to give 3 linearly independent nonvanishing vector
fields on S4n+3.

(b) Construct 7 linearly independent vector fields on S7.

(c) Generalize these constructions to produce the maximal number of pos-
sible linearly independent vector fields on Sn for each n, where the upper
bound is given by Adams’s Theorem.

7. Think of Sn as the set of unit vectors v in Rn+1. Consider the question:
when does there exist a continuous map f : Sm → Sn satisfying f(−v) =
−f(v), that is, preserving the property of points being antipodal to each
other. Note that when m < n this is trivial: just let f : Sm → Sn be a
standard inclusion.

Theorem (Borsuk-Ulam): When m > n there does not exist any
continuous map f : Sm → Sn satisfying f(−v) = −f(v) for all v ∈ Sm.

Assume for now this theorem.

(a) Prove that any continuous map f : Sn → Rn there exists v ∈ Sn with
f(v) = f(−v). This statement is the more frequently stated “Borsuk-
Ulam Theorem”. Deduce that Sn does not embed in Rn.

(b) Use (a) to prove invariance of dimension: Rm ≈ Rn implies m = n.

(c) Prove the following: Let {X1, . . . , Xn+1} be a covering of Sn, n > 0
by closed sets. Then some Xi contains a pair of antipodal points. [Hint:
Consider the map f : Sn → Rn given by

f(v) = (d(v,X1), . . . , d(v,Xn))

where d(v,Xi) denotes the closest distance in Sn from v to some any point
in the set Xi. ]

8. Recall the Fundamental Theorem of Algebra: Every polynomial P (x) =
zn + an−1z

n−1 + · · · + a1z + a0 with ai ∈ C has a zero in C. Prove this
theorem as follows: Let Sr denote the circle of radius r in C. Suppose P
has no zero inside Sr. Then we can think of the restriction f = P |Sr

of P
to Sr as a continuous map f : Sr → C− 0.

(a) Prove that f∗ : H1(Sr)→ H1(C− 0) is trivial.

(b) Prove that for r sufficiently large, f is homotopic to to the map z 7→ zn.
[ Hint: Let Ft(z) = zn + t(an−1z

n−1 + · · ·+ a0).]

(c) Derive a contradiction.

Extra Credit Problems
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1. Let X be any finite ∆-complex with χ(X) 6= 0. Prove that any homeo-
morphism f : X → X has a periodic point, i.e. some power fn, n > 0, has
a fixed point.

2. Prove that if M is a closed manifold that admits a nonvanishing vector
field, then χ(M) = 0.
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Geom/Top: Homework 5 (due Monday, 11/12/12)

1. Read Farb notes.

2. Read along in Hatcher.

——————————–

1. Let {Gn} be any sequence of finitely generated abelian groups. Prove
that there is a CW complex X, with finite n-skeleton for each n, so that
Hn(X) = Gn for n ≥ 1.

2. Find spaces X = A ∪B and X ′ = A′ ∪B′ so that for all n ≥ 0:

Hn(A) ≈ Hn(A′) and Hn(B) ≈ Hn(B′) and Hn(A∩B) ≈ Hn(A′ ∩B′)

but with some j > 0 for which Hj(X) not isomorphic to Hj(X ′). Thus the
“connecting homomorphism” in the Mayer-Vietoris sequence does matter
when computing the homology of X.

3. Solve the bonus problem on the exam.

4. (a) Compute the homology groups of R2 minus k-points, for any k ≥ 1.

(b) Compute the homology of R3 minus k non-intersecting lines.

5. Let U(2) denote the group of complex 2×2 unitary matrices. Endow U(2)
with the subspace topology U(2) ⊂ C4.

(a) Let SU(2) be the subgroup (and topological subspace) of U(2) consist-
ing of those matrices of determinant 1. Prove that SU(2) is homeomorphic
to S3.

(b) Consider the determinant det : U(2)→ S1 map. Let A ⊂ U(2) (resp.
B) be the subset of elements with determinant eiθ,−π < θ < π (resp.
0 < θ < 2π). Compute Hn(U(2)) for all n ≥ 2 by applying Mayer-Vietoris
to X = A ∪B.

6. Hatcher, §3.1, Problems 4,5,

Extra Credit Problems

1. Let Confn(C) be the set of (unordered) configurations of n distinct points
in C, topologized as a subset of Cn.

(a) Prove that Confn(C) is the space of monic, square-free, polynomials
of degree n. [Worth 2 points.]

(b) Prove that Confn(C) is the complement in Cn of a collection of hy-
perplanes. [Worth 2 points.]

(c) Compute the homology of Confn(C). [Worth 30 points.]
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Geom/Top: Homework 5 (due Monday, 11/19/12)

1. Read Farb notes.

2. Read along in Hatcher.

——————————–

1. Hatcher, Section 3.2, Problems 3, 12, 15 (compute the Poincaré series of
Sn,RPn,RP∞ only).

2. Compute the cohomology ring of RP2 ×RP2.

3. Prove that the Klein bottle and the space X = RP2∨S1 have isomorphic
cohomomology rings with Z coefficients, but not with Z/2Z coefficients.

4. Let L1 ⊂ S3 be the union of two disjoint round circles that link each other
once. Let L2 be the union of two disjoint , unlinked round circles . Prove
that S3−L1 and S3−L2 has isomorphic integral cohomology groups, but
not isomorphic cohomology rings.
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Geom/Top: Homework 7 (due Monday, 11/26/12)

1. Read Farb notes.

2. Read along in Hatcher.

——————————–

1. Recall that a bilinear pairing of groups or vector spaces is a linear map
V ×W → R which is nondegenerate in the sense that for each nonzero
v ∈ V , the map v 7→< v,− > is an isomorphism V →W ∗.

Give another proof of (an equivalent form of) Poincaré Duality by proving
that cup product gives a nondegenerate pairing

Hi(M)×Hn−i
c → Hn

c (M)

so that Hn−i
c ≈ (Hi)∗.

2. Let Sg denote the closed, orientable surface of genus g. Prove that if g < h
then any continuous map f : Sg → Sh has degree 0. [Hint: Measure degree
via the action on H2(Sg; Z). Prove that there exists a ∈ H1(Sh; Z) with
f∗a = 0. On the other show that there exists b with a ∪ b 6= 0.]

3. Let M be a compact, connected, nonorientable 3-manifold. Prove that
H1(M) is infinite.

4. Look up Poincaré Duality for manifolds with boundary. Prove that if M
is the boundary of some compact connected manifold, then χ(M) is even.
Give an example of a closed manifold that is not the boundary of any
compact manifold.
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Geom/Top: Homework 8 (due Monday, 12/03/12)

1. Read Farb notes.

2. Read along in Hatcher.

——————————–

1. Hatcher, §1.1, Problems 5, 6, 7, 16(c)(f).

2. Let X be a path-connected space, and let x ∈ x. Let φ : π1(X,x) →
H1(X,Z) be the map φ([γ]) := γ∗(S1), where we think of γ : S1 →
X. Prove that φ is surjective, and that the kernel of φ is precisely the
commutator subgroup of π1(X,x).

3. Let G be a path-connected topological group, and suppose that π1(G) = 0.
Let Γ be a discrete normal subgroup of G. Prove that π1(G/Γ) ≈ Γ. Note
that the case G = R,Γ = Z gives another proof that π1(S1) ≈ Z.

4. Now let G be any connected topological group, and let Γ be any discrete
normal subgroup. Prove that Prove that Γ is central in G (i.e. each g ∈ Γ
commutes with every element of G). Deduce that π1(G/Γ) is abelian. In
particular this proves that π1(G) is abelian.

5. Let p : Sn → RPn be the standard quotient map sending v to {±v}. Prove
by hand, just as in the proof that π1(S1) ≈ Z, that π1(RP2) ≈ Z/2Z.
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Geom/Top: Homework 9 (due Monday, 12/10/12)

1. Read Farb notes.

2. Read along in Hatcher.

——————————–

1. Hatcher, §1.2, Problems 4,10, 22.

2. Hatcher §1.3 Problems 4,9,10, 14.

3. Let Sg be a surface of genus g ≥ 0. Let ∆ ⊂ Sg × Sg be the image of
the diagonal embedding x 7→ (x, x). Let X be the complement of ∆ in
Sg × Sg. Compute π1(X).
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