\classheader{2012-10-05} \newcommand{\dcomplex}{$\Delta$-complex} Let $X$ be a \dcomplex. This is essentially a simplicial complex with extra structure, namely, an ordering of the vertices compatible with $\sigma$-maps. For each $n$, \[\Delta_n(X)=C_n(X)=\text{free abelian group on the set of ``allowable'' maps } \Delta^n\to X.\] For each $n$-simplex in $X$ (i.e. $\Delta^n\xrightarrow{e_\alpha}X$), there are several $\Delta$-maps \[\xymatrix{\Delta^n \ar[r]^{e_\alpha} & X\\ \Delta^{n-1} \ar[u] \ar[ur]_{e_\beta}}\quad(\text{these are the faces of }e_\alpha)\] Given $e_\alpha(v_0,\ldots,v_n)$, we define \[\partial e_\alpha=\sum_{i=0}^n (-1)^ie_\alpha|_{(v_0,\ldots,\widehat{v_i},\ldots,v_n)}.\] The key property of this construction is that $\partial\circ\partial=0$. Now we do some pure algebra. \begin{definition} A chain complex is a collection of abelian groups $C_i$ and homomorphisms $\partial_i:C_i\to C_{i-1}$ such that $\partial_{i-1}\circ \partial_i=0$. We write this as \[\xymatrix{\cdots \ar[r] & C_{n+2} \ar[r]^{\partial_{n+2}} & C_{n+1} \ar[r]^{\partial_{n+1}} & C_n \ar[r]^{\partial_n} & C_{n-1} \ar[r]^{\partial_{n-1}} &\cdots}\] We say that $\alpha\in C_n$ is a cycle if $\partial_n(\alpha)=0$ and $\beta\in C_n$ is a boundary if there is some $\gamma\in C_{n+1}$ such that $\partial_{n+1}(\gamma)=\beta$. In other words, \[n\text{-cycles} = \ker(\partial_n),\quad n\text{-boundaries} = \im(\partial_{n+1}).\] \end{definition} All boundaries are cycles, but not all cycles are boundaries. Letting $Z_n$ be the subgroup of cycles in $C_n$, and $B_n$ the subgroup of boundaries in $C_n$, we have $B_n\subseteq Z_n$, and we define \[H_n = Z_n/B_n.\] Applying this to topology, we define \[H_n(X) = \text{$n$th homology group of }(\Delta_n(X),\partial_n).\] \begin{example} Consider the triangle \begin{center} \begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,0) [label={210:$a$}] {}; \node (b) at (1,0) [label={330:$b$}] {}; \node (c) at (.5,.86) [label={90:$c$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.57 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (a.center) -- node[auto,swap] {$x$} (b.center); \draw[postaction={decorate}] (b.center) -- node[auto,swap,outer sep=1pt] {$y$} (c.center); \draw[postaction={decorate}] (c.center) -- node[auto,swap] {$z$} (a.center); \end{scope} \end{tikzpicture} \end{center} We have that \[\Delta_0=\langle a,b,c\rangle \cong \Z^3,\quad \Delta_1 = \langle x,y,z\rangle\cong \Z^3.\] The map $\partial_1$ sends \[x\longmapsto b-a, \quad y\longmapsto c-b, \quad z\longmapsto c-a\] or expressed as a matrix, \[\partial_1=\begin{pmatrix}-1 & 0 & 1\\ 1 & -1 & 0\\ 0 & 1 & 1\end{pmatrix}.\] Thus, \[\ker(\partial_1)=\langle x+y-z\rangle\cong\Z.\] Of course, we have $\ker(\partial_0)=\Z^3$, and $\im(\partial_1)$ is the set of things which sum to zero, so $H_0\cong\Z$. \end{example} \begin{example} Consider the 2-simplex \begin{center} \begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,0) [label={210:$a$}] {}; \node (b) at (1,0) [label={330:$b$}] {}; \node (c) at (.5,.86) [label={90:$c$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.57 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (a.center) -- node[auto,swap] {$x$} (b.center); \draw[postaction={decorate}] (b.center) -- node[auto,swap,outer sep=1pt] {$y$} (c.center); \draw[postaction={decorate}] (c.center) -- node[auto,swap] {$z$} (a.center); \end{scope} \node at (barycentric cs:a=0.5,b=0.5,c=0.5) {$T$}; \end{tikzpicture} \end{center} We have that \[\Delta_0=\langle a,b,c\rangle \cong \Z^3,\quad \Delta_1 = \langle x,y,z\rangle\cong \Z^3,\quad \Delta_2=\langle T\rangle.\] The map $\partial_1$ is the same as before, and $\partial_2(T)=y-z+x$. In this case we get \[H_0\cong\Z,\quad H_1\cong 0, \quad H_2\cong 0.\] \end{example} \begin{example} Consider the torus \begin{center} \begin{tikzpicture}[scale=3] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (ll) at (0,0) [label={225:$v$}] {}; \node (lr) at (1,0) [label={315:$v$}] {}; \node (ul) at (0,1) [label={135:$v$}] {}; \node (ur) at (1,1) [label={45:$v$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.54 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (lr.center) -- node[auto] {$y$} (ll.center); % Bottom \draw[postaction={decorate}] (ur.center) -- node[auto,swap] {$y$} (ul.center); % Top \draw[postaction={decorate}] (ll.center) -- node[auto] {$x$} (ul.center); % Right \draw[postaction={decorate}] (lr.center) -- node[auto,swap] {$x$} (ur.center); % Left \draw[postaction={decorate}] (lr.center) -- node[auto,swap,outer sep=0pt] {$z$} (ul.center); % Diagonal \end{scope} \node at (barycentric cs:ll=1,ul=0.5,lr=0.5) {$A$}; \node at (barycentric cs:ur=1,ul=0.5,lr=0.5) {$B$}; \end{tikzpicture} \end{center} We have that \[\Delta_0=\langle v\rangle,\qquad \Delta_1=\langle x,y,z\rangle,\qquad \Delta_2=\langle A,B\rangle\] with $\partial_0=0$, $\partial_1=0$, and \[\partial_2(A)=y+z-x,\quad \partial_2(B)=y-x+z\] which implies that $\ker(\partial_2)=\langle A-B\rangle$ and $\im(\partial_2)=\langle y+z-x\rangle$. Thus, \[H_1=\langle x,y,z\rangle/\langle y+z-x\rangle\cong \Z^2,\quad H_2=\langle A,B\rangle/\langle A-B\rangle\cong\Z.\] \end{example}