\classheader{2012-11-28} Recall that if $X$ is a path-connected topological space and $x_0\in X$, then $\pi_1(X,x_0)$ is the fundamental group of $X$ with basepoint $x_0$. It consists of homotopy classes (rel endpoints) of loops $\alpha:[0,1]\to X$ satisfying $\alpha(0)=\alpha(1)=x_0$. The group operation is $\ast$. \begin{theorem} If $f:X\to X$ is a homotopy equivalence, then $\pi_1(X,x_0)\xrightarrow{\;f_*\;}\pi_1(Y,f(x))$ is an isomorphism. \end{theorem} \begin{example} We know that $\R^2\htopequiv\text{pt}$, so $\pi_1(\R^2,(0,0))\cong\pi_1(\text{pt},\text{pt})=1$. \end{example} Today, we'll compute $\pi_1(\S^1,1)$, and introduce covering spaces. Are these two loops equivalent in $\pi_1(\S^1,1)$? \begin{center} \begin{tikzpicture}[every path/.style={thick}] \draw (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw [red,domain=0:6.28,variable=\t,smooth,samples=75,->,>=angle 60] plot ({\t r}: {1.15+0.02*\t}); \begin{scope}[shift={(3.5,0)}] \draw (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw [blue,domain=0:2*6.28,variable=\t,smooth,samples=75,->,>=angle 60] plot ({\t r}: {1.15+0.02*\t}); \end{scope} \end{tikzpicture} \end{center} No; they go around different numbers of times. It's clear intuitively that $\pi_1(\S^1,1)\cong\Z$. But how can we prove this? The right way to think about $\S^1$ is as $\R/\Z$, under the quotient $p:\R\to\S^1$ defined by $p(t)=e^{2\pi it}$. \begin{center} \begin{tikzpicture} \draw[thick] (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw[thick] (-3.5,2.1) to (3.5,2.1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-3,2.1) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-2,2.1) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-1,2.1) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (0,2.1) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,2.1) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (2,2.1) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (3,2.1) {}; \draw[shorten >=5pt,shorten <=5pt,->,>=angle 60,thick] (0,2) to node[midway,auto] {$p$} (0,1); \node at (1.5,0) {$\S^1$}; \node at (4,2.1) {$\R$}; \end{tikzpicture} \end{center} Note that we can ``lift'' paths in $\S^1$ up to $\R$, as long as we have specified where to start. \begin{theorem} For any $\alpha:[0,1]\to\S^1$ with $\alpha(0)=x_0$, and any choice of $\widetilde{x_0}\in p^{-1}(x_0)$, then there is a unique $\widetilde{\alpha}:[0,1]\to\R$ with $p\circ\widetilde{\alpha}=\alpha$ and $\widetilde{\alpha}(0)=\widetilde{x_0}$. \begin{center} \begin{tikzcd} & \R \ar{d}{p}\\ [0,1] \ar{ur}{\widetilde{\alpha}} \ar{r}[swap]{\alpha} & \S^1 \end{tikzcd} \end{center} \end{theorem} \begin{proof} We can cover $\S^1$ by open $U$, $V$ like this: \begin{center} \begin{tikzpicture} \draw[thick] (0,0) circle (1); \draw[thick,red,(-)] (260:1.2) arc (260:460:1.2); \draw[thick,blue,(-)] (80:1.4) arc (80:280:1.4); \node[red] at (1.5,0) {$V$}; \node[blue] at (-1.7,0) {$U$}; \end{tikzpicture} \end{center} Let $\{U_i\},\{V_i\}$ be the connected components of $p^{-1}(U)$ and $p^{-1}(V)$, respectively. \begin{center} \begin{tikzpicture} \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw[thick] (-3,0) to (3,0) node [label=right:$\R$] {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-2,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (2,0) {}; \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \begin{scope}[shift={(1,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(2,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(3,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(4,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \end{scope} \end{tikzpicture} \end{center} Note that, for each $U_i$ and $V_i$, the maps $p|_{U_i}:U_i\to U$ and $p|_{V_i}:V_i\to V$ are all homeomorphisms, so at least \textit{locally}, there are lifts; indeed for any space $Z$ and any map $f:Z\to U$, there is a unique lift $\widetilde{f}$, i.e. a map such that $p\circ \widetilde{f}=f$. \begin{center} \begin{tikzcd} & U_i \ar{d}{p}\\ Z\ar[dashed]{ur}{\widetilde{f}} \ar{r}[swap]{f} & U \end{tikzcd} \end{center} Now pull back $U$ and $V$ under $\alpha$ to cover $[0,1]$ (which has a finite subcover because it is compact). \begin{center} \begin{tikzpicture} \draw[thick] (-3,0) to (3,0); \draw[thick] (-2.96,-0.15) -- (-3,-0.15) -- (-3,0.15) -- (-2.96,0.15); \draw[thick] (2.96,-0.15) -- (3,-0.15) -- (3,0.15) -- (2.96,0.15); \begin{scope}[shift={(-0.7,0)}] \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-2,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (2,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (3,0) {}; \end{scope} \begin{scope}[shift={(-0.25,0)}] \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-2,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (-1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (2,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (3,0) {}; \end{scope} \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \begin{scope}[shift={(1,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(2,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(3,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(4,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope} \clip (-3,-1) rectangle (3,1); \begin{scope}[shift={(5,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(1,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(0,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \begin{scope}[shift={(-1,0)}] \draw[thick,red,(-)] (-2.4,0.5) -- (-1.6,0.5); \draw[thick,blue,(-)] (-1.9,-0.5) -- (-1.1,-0.5); \end{scope} \end{scope} \begin{scope}[shift={(0,0.5)}] \draw[thick,red] (-2.96,-0.15) -- (-3,-0.15) -- (-3,0.15) -- (-2.96,0.15); \draw[thick,red] (2.96,-0.15) -- (3,-0.15) -- (3,0.15) -- (2.96,0.15); \end{scope} \end{tikzpicture} \end{center} Thus, $\alpha$ breaks into subpaths $\alpha_i$, with $\alpha_i:[v_{i-1},v_i]\to U$ (or $V$). Therefore, there is a unique lift $\widetilde{\alpha_1}:[0,v_1]\to U_i\subseteq\R$, where this is the unique $U_i$ containing $\widetilde{x_0}$. Then there is a unique lift $\widetilde{\alpha_2}:[v_1,v_2]\to V_j\subseteq\R$ such that $\widetilde{\alpha_2}(v_1)=\widetilde{\alpha_1}(v_1)$. We then proceed inductively. \end{proof} Thus, we've shown that we can lift paths. We can also lift homotopies: \begin{theorem} For any $H_s(t):[0,1]^2\to\S^1$ such that $H_0(0)=x_0$, and any choice of $\widetilde{x}_0\in p^{-1}(x_0)$, there is a unique lift $\widetilde{H}_s(t):[0,1]^2\to\R$ such that $\widetilde{H}_0(0)=\widetilde{x_0}$ and $p\circ\widetilde{H}=H$. \end{theorem} \begin{proof} Break $[0,1]^2$ into squares small enough to guarantee that each maps into either $U$ or $V$, and lift each square inductively in the same way as our earlier proof. \begin{center} \begin{tikzpicture} \draw[thick] (0,0) circle (1); \foreach \x in {0.2,0.4,...,1.8} { \draw[gray] (-4.5+\x,-1) -- (-4.5+\x,1); \draw[gray] (-4.5,-1+\x) -- (-2.5,-1+\x);} \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (0,2.1) {}; \draw[thick] (-2.5,2.1) to (2.5,2.1); \draw[shorten >=5pt,shorten <=5pt,->,>=angle 60,thick] (0,2) to node[midway,auto] {$p$} (0,1); \node at (1.5,0) {$\S^1$}; \node at (3,2.1) {$\R$}; \draw[thick] (-4.5,-1) rectangle (-2.5,1); \node at (-3.5,-1.4) {$[0,1]^2$}; \draw[thick,-angle 60] (-2.3,0) -- (-1.3,0); \end{tikzpicture} \end{center} \end{proof} Now let's get back to $\pi_1(\S^1,1)$. Define $\gamma_n:[0,1]\to\S^1$ by $\gamma_n(t)=e^{2\pi i nt}$. \begin{center} \begin{tikzpicture}[every path/.style={thick}] \draw (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw [red,domain=0:6.28,variable=\t,smooth,samples=75,->,>=angle 60] plot ({\t r}: {1.15+0.02*\t}); \begin{scope}[shift={(3.5,0)}] \draw (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw [red,domain=0:2*6.28,variable=\t,smooth,samples=75,->,>=angle 60] plot ({\t r}: {1.15+0.02*\t}); \end{scope} \begin{scope}[shift={(-3.5,0)},yscale=-1] \draw (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,red,circle] at (1.15,0) {}; \end{scope} \begin{scope}[shift={(-7,0)},yscale=-1] \draw (0,0) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=4pt,fill,circle] at (1,0) {}; \draw [red,domain=0:6.28,variable=\t,smooth,postaction={decorate,decoration={markings,mark=at position 0.999 with {\arrow[>=angle 60]{>}}}}] plot ({\t r}: {1.15+0.02*\t}); \end{scope} \node at (-9,0) {$\cdots$}; \node at (6,0) {$\cdots$}; \end{tikzpicture} \end{center} Note that the unique lift $\widetilde{\gamma_n}$ with $\widetilde{\gamma_n}(0)=0$ is \begin{center} \begin{tikzpicture}[every path/.style={thick}] \draw[thick] (-1,0) -- (1,0); \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt] at (0,-0.25) {0}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0.5,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (-0.5,0) {}; \draw [red,->,>=angle 60] (0,0.15) -- (0.5,0.15); \begin{scope}[shift={(3.5,0)}] \draw[thick] (-1,0) -- (1,0); \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt] at (0,-0.25) {0}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0.5,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (-0.5,0) {}; \draw [red,->,>=angle 60] (0,0.15) -- (1,0.15); \end{scope} \begin{scope}[shift={(-3.5,0)},yscale=1] \draw[thick] (-1,0) -- (1,0); \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt] at (0,-0.25) {0}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0.5,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (-0.5,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,red,circle] at (0,0.15) {}; \end{scope} \begin{scope}[shift={(-7,0)},yscale=1] \draw[thick] (-1,0) -- (1,0); \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0,0) {}; \node[inner sep=0pt,outer sep=0pt] at (0,-0.25) {0}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (0.5,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (1,0) {}; \node[inner sep=0pt,outer sep=0pt,minimum size=3pt,fill,circle] at (-0.5,0) {}; \draw [red,->,>=angle 60] (0,0.15) -- (-0.5,0.15); \end{scope} \node at (-9,0) {$\cdots$}; \node at (6,0) {$\cdots$}; \end{tikzpicture} \end{center} Define $\Phi:\Z\to\pi_1(\S^1,1)$ by $\Phi(n)=[\gamma_n]$. \begin{theorem} The map $\Phi$ is an isomorphism. \end{theorem} \begin{proof} First, let's show that $\Phi$ is surjective. Given $[\alpha]\in\pi_1(\S^1,1)$, by our earlier theorem, there is a unique lift $\alpha:[0,1]\to\R$ with $\widetilde{\alpha}(0)=0$. Then $\widetilde{\alpha}(1)\in p^{-1}(1)=\Z$, so $\widetilde{\alpha}(1)=n$ for some $n\in\Z$. Obviously, we are going to want to define a homotopy between $\alpha$ and $\gamma_n$. Define $H:[0,1]^2\to\R$ by $H_s(t)=snt+(1-s)\widetilde{\alpha}(t)$. Note that \[H_0(t)=\widetilde{\alpha}(t),\quad H_1(t)=nt=\widetilde{\gamma_n}(t),\quad H_s(0)=0,\quad H_s(1)=n.\] Thus, $p\circ H$ is a homotopy $\alpha\sim\gamma_n$, so $[\alpha]=[\gamma_n]$. Now we'll show that $\Phi$ is injective. Suppose that $[\gamma_m]=[\gamma_n]$, so that there is some $H:[0,1]^2\to\S^1$ such that \[H_0(t)=\gamma_n(t),\quad H_1(t)=\gamma_m(t),\quad H_s(0)=1,\quad H_s(1)=1.\] \begin{center} \begin{tikzpicture}[scale=2] \draw[thick] (0,0) rectangle (1,1); \node at (0.5,1.15) {$1$}; \node at (0.5,-0.2) {$1$}; \node at (-0.3,0.5) {$\gamma_n$}; \node at (1.3,0.5) {$\gamma_m$}; \end{tikzpicture} \end{center} We lift this $H$ to $\widetilde{H}:[0,1]^2\to\R$, with $\widetilde{H}_0(0)=0$. Then we have $\widetilde{H}_0(t)=\widetilde{\gamma_n}(t)$ and $\widetilde{H}_1(t)=\widetilde{\gamma_m}(t)$, and note that $\widetilde{H}_s(0)$ and $\widetilde{H}_s(1)$ have to always map into $p^{-1}(1)=\Z$, and therefore they must be constant. Thus, \[m=\widetilde{\gamma_m}(1)=\widetilde{H}_1(1)=\widetilde{H}_0(1)=\widetilde{\gamma_n}(1)=n.\qedhere\] \end{proof} \begin{definition} If $\widetilde{X}$ and $X$ are topological spaces, we say that the map $p:\widetilde{X}\to X$ is a covering map when there is an open cover $\{V_i\}$ of $X$ such that $p|_U$ is a homeomorphism for any connected component $U$ of $p^{-1}(V_i)$, for any $V_i$. We say that $\widetilde{X}$ is a covering space of $X$. \end{definition}