\classheader{2012-11-14} \subsection*{Kunneth Theorem} Our goal is to compute $H^*(X\times Y;R)$ in terms of $H^*(X;R)$ and $H^*(Y;R)$. Recall that the product $X\times Y$ comes with natural projections \begin{center} \begin{tikzcd} & X\times Y \ar{rd}{P_2} \ar{ld}[swap]{P_1} & \\ X & & Y \end{tikzcd} \end{center} \begin{definition} The $\times$ product on cohomology, $\times:H^*(X;R)\times H^*(Y;R)\to H^*(X\times Y;R)$, is defined by sending $a\times b$ to $P_1^*(a)\cupprod P_2^*(b)$. \end{definition} The map $\times$ is bilinear, and $\times$ induces a homomorphism of $R$-modules \[\Psi:H^*(X;R)\tensor_R H^*(Y;R)\to H^*(X\times Y;R).\] In fact, we can make this into a homomorphism of graded rings by \textit{defining} \[(a\smalltensor b)\cdot(c\smalltensor d):=(-1)^{|b||c|}(ac\smalltensor bd)\] where $|b|$ and $|c|$ are the degrees of $b$ and $c$. \begin{theorem}[Kunneth] If $X$ and $Y$ are CW-complexes, and if $H^*(Y;R)$ is a free $R$-module, then $\Psi$ is an isomorphism. \end{theorem} \begin{example} The cohomology ring of $\T^n$ over $\Z$ is \[H^*(\T^n,\Z)\cong\Lambda^*[x_1,\ldots,x_n]=\bigoplus_{i=0}^n\Lambda^i[x_1,\ldots,x_n]\] where $\Lambda^i[x_1,\ldots,x_n]$ is the free abelian group on \[\{x_{i_1}\wedge \cdots\wedge x_{i_k}\mid i_1<\cdots