\classheader{2012-10-03} There are some corrections for the homework: on problem 2a, it should read \[H_0(\cal{C})=\widetilde{H}_0(\cal{C})\oplus\Z\] and on problem 3, you should show that the following diagram commutes: \[\xymatrix{\Delta^n \ar[d]_{[v_0\cdots v_n]} \ar[r] & \Delta^m\ar[r]^{\tau} & Y\\ X\ar[rru]_{f} & & }\] \subsection*{Simplices and $\Delta$-complexes} \begin{definition} The standard (ordered) $n$-simplex $[v_0\cdots v_n]$ is the convex hull of the set $\{e_1,\ldots,e_{n+1}\}$ where $e_i=(0,\ldots,1,\ldots,0)\in\R^{n+1}$. For example, when $n=2$,\vspace{0.3in} \begin{center} \begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,-0.1) [label={135:$e_0$}] {}; \node (b) at (1.1,0) [label={45:$e_1$}] {}; \node (c) at (.5,.86) [label={165:$e_2$}] {}; \end{scope} \node (d) at (.5,0.2) {}; \fill[gray,path fading=south] (a.center) -- (b.center) -- (c.center) -- cycle; \draw[thick] (a.center) -- (b.center) -- (c.center) -- cycle; \draw[shorten >=-1cm] (d.center) -- (a.center); \draw[shorten >=-1cm] (d.center) -- (b.center); \draw[shorten >=-1cm] (d.center) -- (c.center); \end{tikzpicture}\vspace{0.3in} \end{center} Equivalently, it is the set \[\left\{\textstyle\sum_{i=1}^na_ie_i\in\R^{n+1}\mid a_i\geq 0,\sum_{i=1}^na_i=1\right\}.\] We will often want to specify using coordinates. Let $v_0=0$, and $v_i=e_i$ for $i=1,\ldots,n+1$. Then \[\Delta^n=\text{ convex hull }(\{v_1-v_0,\ldots,v_{n+1}-v_0\}).\] \end{definition} For example,\vspace{-0.1in} \begin{center} \begin{tabular}{ccc} $\Delta^0\quad=\quad$ \raisebox{-0.13in}{\begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,0) [label={330:$v_0$}] {}; \end{scope} \end{tikzpicture}} & $\qquad$ & $\Delta^1\quad=\quad$ \raisebox{-0.13in}{\begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,0) [label={210:$v_0$}] {}; \node (b) at (1,0) [label={330:$v_1$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.57 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (a.center) -- node[auto,swap] {} (b.center); \end{scope} \end{tikzpicture}}\\ & & \\ $\Delta^2\quad=\quad$ \raisebox{-0.6in}{\begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,0) [label={210:$v_0$}] {}; \node (b) at (1,0) [label={330:$v_1$}] {}; \node (c) at (.5,.86) [label={90:$v_2$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.57 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (a.center) -- node[auto,swap] {} (b.center); \draw[postaction={decorate}] (b.center) -- node[auto,swap,outer sep=1pt] {} (c.center); \draw[postaction={decorate}] (a.center) -- node[auto] {} (c.center); \end{scope} \end{tikzpicture}} & $\qquad$ & $\Delta^3\quad=\quad$ \raisebox{-0.8in}{\begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (v0) at (0,0) [label={210:$v_0$}] {}; \node (v1) at (0.65,-0.4) [label={210:$v_1$}] {}; \node (v2) at (1,0.2) [label={330:$v_2$}] {}; \node (v3) at (.5,0.8) [label={90:$v_3$}] {}; \end{scope} \begin{scope}[outer sep=2pt,decoration={markings,mark=at position 0.57 with {\arrow[thin]{>}}}] \draw[thick,postaction={decorate}] (v0.center) -- node[auto,swap] {} (v1.center); \draw[dashed,postaction={decorate}] (v0.center) -- node[auto,swap] {} (v2.center); \draw[thick,postaction={decorate}] (v0.center) -- node[auto,swap] {} (v3.center); \draw[thick,postaction={decorate}] (v1.center) -- node[auto,swap] {} (v2.center); \draw[thick,postaction={decorate}] (v1.center) -- node[auto,swap] {} (v3.center); \draw[thick,postaction={decorate}] (v2.center) -- node[auto,swap] {} (v3.center); \end{scope} \end{tikzpicture}} \end{tabular} \end{center} Note that an ordered $n$-simplex has $n+1$ ``face maps''; for each $i=0,\ldots,n$, \[[v_0\cdots\widehat{v_i}\cdots v_n]=\text{ an ordered }(n-1)\text{-simplex (``subsimplex of $[v_0 \cdots v_n]$'')}.\] For example, for $n=2$, we get canonical linear maps \begin{center} \begin{tikzpicture}[>=latex,xscale=2] \node (a) at (0,0) {$[v_0v_1v_2]$}; \node (b1) at (2,2) {$[v_1v_2]$}; \node (b2) at (2,0) {$[v_0v_2]$}; \node (b3) at (2,-2) {$[v_0v_1]$}; \node (c1) at (4,2.5) {$[v_2]$}; \node (c2) at (4,1.5) {$[v_1]$}; \node (c3) at (4,0.5) {$[v_2]$}; \node (c4) at (4,-0.5) {$[v_0]$}; \node (c5) at (4,-1.5) {$[v_1]$}; \node (c6) at (4,-2.5) {$[v_0]$}; \draw[thick,->] (a) -- (b1); \draw[thick,->] (a) -- (b2); \draw[thick,->] (a) -- (b3); \draw[thick,->] (b1) -- (c1); \draw[thick,->] (b1) -- (c2); \draw[thick,->] (b2) -- (c3); \draw[thick,->] (b2) -- (c4); \draw[thick,->] (b3) -- (c5); \draw[thick,->] (b3) -- (c6); \end{tikzpicture} \end{center} \begin{definition} Let $X$ be a topological space. A $\Delta$-complex structure on $X$ is a decomposition of $X$ into simplices. Specifically, it is a finite collection $S=\{\Delta_i\}$ of simplices with continuous maps that are injective on their interiors, that also satisfies \newcommand{\interior}{\operatorname{Int}} \begin{itemize} \item $\bigcup_{i}\sigma_i(\Delta_i)=X$, \item For all $x\in X$, there is a unique $i$ such that $x\in\interior(\sigma_i(\Delta_i))$. \item If $\sigma:\Delta\to X$ is an element of $S$, then all subsimplices $\tau$ of $\sigma$ are also elements of $S$. In other words, $S$ is closed under taking faces. \end{itemize} \end{definition} \begin{example} The torus $\T^2$ can be given a $\Delta$-complex structure as follows: \begin{center} \begin{tikzpicture}[scale=3] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (ll) at (0,0) [label={225:$v$}] {}; \node (lr) at (1,0) [label={315:$v$}] {}; \node (ul) at (0,1) [label={135:$v$}] {}; \node (ur) at (1,1) [label={45:$v$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.54 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (ll.center) -- node[auto,swap] {$a$} (lr.center); % Bottom \draw[postaction={decorate}] (ul.center) -- node[auto] {$a$} (ur.center); % Top \draw[postaction={decorate}] (ll.center) -- node[auto] {$b$} (ul.center); % Left \draw[postaction={decorate}] (lr.center) -- node[auto,swap] {$b$} (ur.center); % Right \draw[postaction={decorate}] (lr.center) -- node[auto,swap,outer sep=0pt] {$c$} (ul.center); % Diagonal \end{scope} \end{tikzpicture} \end{center} \end{example} \begin{example} The Klein bottle can be given a $\Delta$-complex structure as follows: \begin{center} \begin{tikzpicture}[scale=3] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (ll) at (0,0) [label={225:$v$}] {}; \node (lr) at (1,0) [label={315:$v$}] {}; \node (ul) at (0,1) [label={135:$v$}] {}; \node (ur) at (1,1) [label={45:$v$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.54 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (ll.center) -- node[auto,swap] {$a$} (lr.center); % Bottom \draw[postaction={decorate}] (ul.center) -- node[auto] {$a$} (ur.center); % Top \draw[postaction={decorate}] (ll.center) -- node[auto] {$b$} (ul.center); % Left \draw[postaction={decorate}] (ur.center) -- node[auto] {$b$} (lr.center); % Right \draw[postaction={decorate}] (lr.center) -- node[auto,swap,outer sep=0pt] {$c$} (ul.center); % Diagonal \end{scope} \end{tikzpicture} \end{center} \end{example} \begin{example} Let $X$ be a topological space, and let $\{U_i\}$ be an open cover of $X$ (assume indexed by an ordered set, induces order for simplices). The nerve of the cover is the $\Delta$-complex specified by \begin{itemize} \item A vertex $v_i$ for each $U_i$ \item If $U_i\cap U_j\neq\varnothing$, the 1-simplex $[v_iv_j]$ \begin{center} \begin{tikzpicture}[scale=1.5] \coordinate[label=below:$v_i$] (vi) at (-0.7cm,0); \coordinate[label=below:$v_j$] (vj) at (0.7cm,0); \draw[thick] (vi) circle (1cm); \draw[thick] (vj) circle (1cm); \draw[thick] (vi) -- (vj); \node at (1.4cm,1cm) {$U_j$}; \node at (-1.4cm,1cm) {$U_i$}; \node at (vi) {$\bullet$}; \node at (vj) {$\bullet$}; \end{tikzpicture} \end{center} \item If $U_i\cap U_j\cap U_k\neq\varnothing$, the 2-simplex $[v_iv_jv_k]$ \begin{center} \begin{tikzpicture}[scale=1.5] \coordinate[label=left:$v_i$] (vi) at (-0.7cm,0); \coordinate[label=right:$v_j$] (vj) at (0.7cm,0); \coordinate[label=below:$v_k$] (vk) at (0cm,-1.2cm); \begin{scope} \clip (vi) circle (1cm); \clip (vj) circle (1cm); \fill[gray!40] (vk) circle (1cm); \end{scope} \draw[thick] (vi) circle (1cm); \draw[thick] (vj) circle (1cm); \draw[thick] (vk) circle (1cm); \draw[thick] (vi) -- (vj); \draw[thick] (vi) -- (vk); \draw[thick] (vj) -- (vk); \node at (1.4cm,1cm) {$U_j$}; \node at (-1.4cm,1cm) {$U_i$}; \node at (0cm,-2.4cm) {$U_k$}; \node at (vi) {$\bullet$}; \node at (vj) {$\bullet$}; \node at (vk) {$\bullet$}; \end{tikzpicture} \end{center} \end{itemize} \end{example} \subsection*{Simplicial Homology} We want, for any $\Delta$-complex $X$, and $i\geq 0$, an abelian group $H_i(X)$. We want this to be \begin{enumerate} \item \textbf{Computable} \item Topologically invariant: if $X$, $Y$ are $\Delta$-complexes and $X\isom Y$, then $H_i(X)\cong H_i(Y)$. \item Non-triviality: $H_n(\S^n)\neq 0$. \end{enumerate} Step 1 (topology): We input a $\Delta$-complex structure on $X$. We output, for each $n\geq 0$, \[C_n(X)=\text{free abelian group on }\{\text{(ordered) $n$-simplices in $X$}\}.\] \begin{example} Let $X$ be a 2-simplex, \begin{center} \begin{tikzpicture}[scale=2.4] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (a) at (0,0) [label={210:$v_0$}] {}; \node (b) at (1,0) [label={330:$v_1$}] {}; \node (c) at (.5,.86) [label={90:$v_2$}] {}; \end{scope} \begin{scope}[thick] \draw[postaction={decorate}] (a.center) -- (b.center); \draw[postaction={decorate}] (b.center) -- (c.center); \draw[postaction={decorate}] (c.center) -- (a.center); \end{scope} \end{tikzpicture} \end{center} Then we have \begin{itemize} \item $C_0(X)=\Z^3=\langle [v_0],[v_1],[v_2]\rangle$ \item $C_1(X)=\Z^3=\langle [v_0v_1],[v_0v_2],[v_1v_2]\rangle$ \item $C_2(X)=\Z=\langle [v_0v_1v_2]\rangle$ \item $C_n(X)=0$ for $n\geq 3$ \end{itemize} \end{example} \begin{example} Let $X$ be the torus, \begin{center} \begin{tikzpicture}[scale=3] \begin{scope}[every node/.style={fill,circle,inner sep=0pt,outer sep=1pt,minimum size=0.15cm}] \node (ll) at (0,0) [label={225:$v$}] {}; \node (lr) at (1,0) [label={315:$v$}] {}; \node (ul) at (0,1) [label={135:$v$}] {}; \node (ur) at (1,1) [label={45:$v$}] {}; \end{scope} \begin{scope}[thick,outer sep=2pt,decoration={markings,mark=at position 0.54 with {\arrow[thin]{>}}}] \draw[postaction={decorate}] (lr.center) -- node[auto] {$a$} (ll.center); % Bottom \draw[postaction={decorate}] (ur.center) -- node[auto,swap] {$a$} (ul.center); % Top \draw[postaction={decorate}] (ll.center) -- node[auto] {$b$} (ul.center); % Left \draw[postaction={decorate}] (lr.center) -- node[auto,swap] {$b$} (ur.center); % Right \draw[postaction={decorate}] (lr.center) -- node[auto,swap,outer sep=0pt] {$c$} (ul.center); % Diagonal \end{scope} \node at (barycentric cs:ll=1,ul=0.5,lr=0.5) {$T_1$}; \node at (barycentric cs:ur=1,ul=0.5,lr=0.5) {$T_2$}; \end{tikzpicture} \end{center} Then we have \begin{itemize} \item $C_0(X)=\Z=\langle [v]\rangle$ \item $C_1(X)=\Z^3=\langle a,b,c\rangle$ \item $C_2(X)=\Z^2=\langle T_1,T_2\rangle$ \item $C_n(X)=0$ for $n\geq 3$ \end{itemize} \end{example} Note that we are abusing notation and identifying simplices with their maps to the space. Step 2 (algebra): Because $C_n(X)$ is the free abelian group on the simplices, a $\tau\in C_n(X)$ is uniquely expressed as \[\tau=\sum_{i=1}^ra_i\sigma_i,\;a_i\in\Z.\] For all $n\geq 1$, we define homomorphisms $\delta_n:C_n(X)\to C_{n-1}(X)$ by specifying them on the generators of $C_n(X)$: for any $n$-simplex $\sigma:\Delta^n\to X$, we let \[\delta_n\sigma=\sum_{i=0}^n(-1)^i\sigma|_{[v_0\cdots\widehat{v_i}\cdots v_n]}.\] The key property of these homomorphisms is that $\delta_n\circ\delta_{n-1}=0$. Note that we also needed the ordering to define this. We will compute some homology next class.