\classheader{2012-11-05} Today we'll discuss Mayer-Vietoris, which is one of the most powerful computational tools we have, and we'll be moving to cohomology soon. Let $X$ be a space and consider injective maps $i:A\hookrightarrow X$ and $j:B\hookrightarrow X$ (we may as well consider $A$ and $B$ as subsets of $X$) with the property that $A\cup B=X$, and $(X,A)$ and $(X,B)$ are good pairs. \begin{theorem}[Mayer-Vietoris] There is a long exact sequence \begin{center} \begin{tikzcd} \cdots\ar{r} & H_n(A\cap B) \ar{r} & H_n(A)\oplus H_n(B) \ar{r} & H_n(X) \ar{r}{\partial} & H_{n-1}(A\cap B) \ar{r} & \cdots \end{tikzcd} \end{center} \end{theorem} \begin{proof} There is a short exact sequence of chain complexes \begin{center} \begin{tikzcd}[row sep=0.02in,column sep=0.55in] 0 \ar{r} & C_n(A\cap B) \ar{r}{i_\#\oplus j_\#} & C_n(A)\oplus C_n(B) \ar{r}{\phi} & C_n(A+B) \ar{r} & 0\\ & z \ar[|-to]{r} & (i(z),j(z)) & & \\ & & (x,y) \ar[|-to]{r} & x-y & \end{tikzcd} \end{center} where $C_n(A+B)$ is the subgroup of $C_n(X)$ consisting of chains of the form $\sum a_i\sigma_i+\sum c_i\tau_i$ where $\sigma_i\in C_n(A)$ and $\tau_i\in C_n(B)$. The fundamental theorem of homological algebra implies that we get a long exact sequence \begin{center} \begin{tikzcd} \cdots \ar{r} & H_n(A\cap B) \ar{r} & H_n(A)\oplus H_n(B) \ar{r} & H_n(A+B) \ar{r} & H_{n-1}(A\cap B) \ar{r} & \cdots \end{tikzcd} \end{center} where $H_n(A+B)$ is the $n$th homology of the chain complex $\{C_n(A+B)\}$. The key claim is that the inclusion $h:C_n(A+B)\to C_n(X)$ induces an isomorphism on homology, $h_*:H_n(A+B)\xrightarrow{\;\cong\;} H_n(X)$ for all $n\geq 0$. The idea of the proof of this key claim is as follows. If $X$ is a $\Delta$-complex and we can triangulate $X$ such that the triangulation restricts to triangulations on $A$, $B$, and $A\cap B$, then the key claim is easy since $C_n^\Delta(A+B)\xrightarrow{\;\cong\;} C_n^\Delta(X)$. In general, we need to subdivide $X$ (use simplicial approximation), because for example, we'd run into trouble with a simplex like this:\vspace{-0.2in} \begin{center} \begin{tikzpicture} \draw[thick] (0,0) circle (1); \draw[thick] (1.25,0) circle (1); \node at (0,1.3) {$A$}; \node at (1.25,1.3) {$B$}; \begin{scope}[every node/.style={fill,circle,outer sep=0pt,inner sep=0pt,minimum size=5pt}] \node (a) at (-0.1,0) {}; \node (b) at (1.25,0.58) {}; \node (c) at (1.25,-0.58) {}; \end{scope} \draw[thick] (a) -- (b) -- (c) -- (a); \end{tikzpicture}\vspace{-0.2in} \end{center}\qedhere \end{proof} \begin{applications} $\text{}$ \begin{itemize} \item Let $X=\S^n$, $A=\D^n_+$, $B=\D^n_{-}$, so that $A\cap B=\S^{n-1}$ (really, we mean a little regular neighborhood around these subsets). \begin{center} \begin{tikzpicture}[scale=0.7,every node/.style={minimum size=1cm},>=latex] \fill[ball color=white!60] (0,0) circle (1.3); \begin{scope} \path[clip] (-1.32,-0.2) to (-1.28,-0.2) arc (180:360:1.28 and 0.6) to (1.3,1.4) to (-1.3,1.4) to (-1.32,-0.2) to (-1.28,-0.2); \fill[ball color=blue!60] (0,0) circle (1.3); \end{scope} \fill[color=gray!80,opacity=0.4] (0,-0.2) ellipse (1.28 and 0.6); \draw[dashed] (1.3,0) arc (0:180:1.3 and 0.6); \draw[] (-1.3,0) arc (180:360:1.3 and 0.6); \node[myblue!50!black,inner sep=0pt,outer sep=0pt] (x) at (1.3,1) {$A$}; \end{tikzpicture} \raisebox{-0.1in}{\begin{tikzpicture}[xscale=0.7,yscale=-0.7,every node/.style={minimum size=1cm},>=latex] \fill[ball color=white!60] (0,0) circle (1.3); \begin{scope} \path[clip] (-1.32,-0.2) to (-1.28,-0.2) arc (180:360:1.28 and 0.6) to (1.3,1.4) to (-1.3,1.4) to (-1.32,-0.2) to (-1.28,-0.2); \fill[ball color=blue!60] (0,0) circle (1.3); \end{scope} \fill[color=gray!80,opacity=0.4] (0,-0.2) ellipse (1.28 and 0.6); \draw[] (1.3,0) arc (0:180:1.3 and 0.6); \draw[dashed] (-1.3,0) arc (180:360:1.3 and 0.6); \node[myblue!50!black,inner sep=0pt,outer sep=0pt] (x) at (-1.3,1) {$B$}; \end{tikzpicture}} \end{center} Then we get in the Mayer-Vietoris sequence \begin{center} \begin{tikzcd}[row sep=0.02in] H_n(A\cap B)\ar{r} & H_n(A)\oplus H_n(B) \ar{r} & H_n(X)\ar{r} & H_{n-1}(A\cap B)\\ & =0\oplus 0 & & \end{tikzcd} \end{center} So, there are exact sequences for all $n\geq 2$ \begin{center} \begin{tikzcd}[row sep=0.02in] 0 \ar{r} & H_n(X)\ar{r} & H_{n-1}(A\cap B) \ar{r} & 0 \end{tikzcd} \end{center} so we get that $H_n(\S^n)\cong H_{n-1}(\S^{n-1})$ for all $n\geq 2$. \item Given $n$-manifolds $M$ and $N$ for $n\geq 2$, the connect sum $M\mathbin{\#} N$ is the $n$-manifold obtained via picking $\D_1^n\subset M$ and $\D_2^n\subset N$, and \[M\mathbin{\#} N=\frac{(M-\operatorname{int}(\D_1^n))\sqcup (N-\operatorname{int}(\D_2^N))}{\partial\D_1^n\sim \partial\D_2^n}\] We can apply Mayer-Vietoris to $M\mathbin{\#} N$ by letting $X=M\mathbin{\#} N$, $A=M-\operatorname{int}(\D_1^n)$, $B=N-\operatorname{int}(\D_2^n)$, so that $A\cap B=\partial \D_1^n=\partial\D_2^n\cong\S^{n-1}$. We get\vspace{-0.1in} \begin{center} \begin{tikzcd}[row sep=0.02in] H_n(\S^{n-1})\ar{r} & H_n(M-\operatorname{int}(\D_1^n))\oplus H_n(N-\operatorname{int}(\D_2^n)) \ar{r} & H_n(X)\ar{r} & H_{n-1}(M\# N) \end{tikzcd} \end{center} and we can compute e.g. $H_n(M-\operatorname{int}(\D_1^n))$ using Mayer-Vietoris in terms of homology of $M$. We can use this to get another computation of the homology of $\Sigma_g$, because $\Sigma_g\cong \Sigma_{g-1}\mathbin{\#}\T^2$. \newcommand{\myskip}{0.5} \newcommand{\mynewskip}{0.2} \begin{center} \begin{tikzpicture}[xscale=1] \begin{scope} \clip (-0.6,-1.1) rectangle (3.5,1.1); \draw [thick,fill=gray!40] plot [smooth,tension=0.8] coordinates { (4.5,1) (3.5,0.5) (2.5,1) (1.5,0.5) (0.4,1) (-0.5,0) (0.4,-1) (1.5,-0.5) (2.5,-1) (3.5,-0.5) (4.5,-1)}; \begin{scope} \clip (0.5,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (0.5,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (0.5,0) ellipse (0.4 and 0.2); \end{scope} \begin{scope} \clip (2.5,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (2.5,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (2.5,0) ellipse (0.4 and 0.2); \end{scope} \end{scope} \node at (4.03,0) {$\cdots$}; \begin{scope} \clip (4.5,-1.1) rectangle (6.6,1.1); \draw [thick,fill=gray!40] plot [smooth,tension=0.8] coordinates {(3.5,1) (4.5,0.5) (5.7,1) (6.5,0) (5.7,-1) (4.5,-0.5) (3.5,-1)}; \end{scope} \begin{scope} \clip (5.6,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (5.6,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (5.6,0) ellipse (0.4 and 0.2); \end{scope} \draw[very thick,red,fill=white,rotate around={45:(6.05,-0.5)}] (6.05,-0.5) ellipse (0.3 and 0.1); \draw [thick,fill=gray!40] (8.7,0) ellipse (1.2 and 1); \begin{scope} \clip (8.7,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (8.7,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (9.3,-1); \draw[thick] (8.7,0) ellipse (0.4 and 0.2); \end{scope} \draw[very thick,red,fill=white,rotate around={315:(7.95,-0.5)}] (7.95,-0.5) ellipse (0.3 and 0.1); \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt}] \node (al) at ($(6.05,-0.5)+(0.3*0.707,0.3*0.707)$) {}; \node (bl) at ($(6.05,-0.5)-(0.3*0.707,0.3*0.707)$) {}; \node (ar) at ($(7.95,-0.5)+(-0.3*0.707,0.3*0.707)$) {}; \node (br) at ($(7.95,-0.5)-(-0.3*0.707,0.3*0.707)$) {}; \end{scope} \path[thick,<->,>=stealth,red,dashed] (al) edge[out=315,in=235] (ar); \path[thick,<->,>=stealth,red,dashed] (bl) edge[out=315,in=235] (br); \end{tikzpicture} \end{center} \begin{center} \begin{tikzpicture}[xscale=1] \node at (-1.3,0) {$\cong$}; \begin{scope} \clip (-0.6,-1.1) rectangle (3.5,1.1); \draw [thick,fill=gray!40] plot [smooth,tension=0.8] coordinates { (4.5,1) (3.5,0.5) (2.5,1) (1.5,0.5) (0.4,1) (-0.5,0) (0.4,-1) (1.5,-0.5) (2.5,-1) (3.5,-0.5) (4.5,-1)}; \begin{scope} \clip (0.5,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (0.5,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (0.5,0) ellipse (0.4 and 0.2); \end{scope} \begin{scope} \clip (2.5,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (2.5,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (2.5,0) ellipse (0.4 and 0.2); \end{scope} \end{scope} \node at (4.03,0) {$\cdots$}; \end{tikzpicture} \begin{tikzpicture}[xscale=-1] \begin{scope} \clip (-0.6,-1.1) rectangle (3.5,1.1); \draw [thick,fill=gray!40] plot [smooth,tension=0.8] coordinates { (4.5,1) (3.5,0.5) (2.5,1) (1.5,0.5) (0.4,1) (-0.5,0) (0.4,-1) (1.5,-0.5) (2.5,-1) (3.5,-0.5) (4.5,-1)}; \begin{scope} \clip (0.5,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (0.5,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (0.5,0) ellipse (0.4 and 0.2); \end{scope} \begin{scope} \clip (2.5,0) ellipse (0.4 and 0.2); \draw[thick,fill=white] (2.5,-0.1) ellipse (0.35 and 0.25); \end{scope} \begin{scope} \clip (-0.7,0) rectangle (6.3,-1); \draw[thick] (2.5,0) ellipse (0.4 and 0.2); \end{scope} \end{scope} \end{tikzpicture} \end{center} \end{itemize} \end{applications} Note that $M\mathbin{\#}\S^n\cong M$ for any $n$-manifold $M$. \begin{definition} A manifold $M$ is prime when $M\cong A\mathbin{\#} B$ for $n$-manifolds $A$, $B$, we must have $A\cong\S^n$ or $B\cong\S^n$. \end{definition} \begin{theorem}[Kneser, 1920's] Every closed 3-manifold $M$ can be expressed as a connect sum of prime closed 3-manifolds, \[M\cong M_1\mathbin{\#}\cdots\mathbin{\#} M_r,\] and this is unique up to ordering, i.e. if $M\cong N_1\mathbin{\#}\cdots\mathbin{\#} N_s$, then $r=s$ and we can permute the indices so that $M_i\cong N_i$. \end{theorem} \begin{theorem}[Schoenflies] $\S^2-\S^1$ has 2 components, each homeomorphic to $\operatorname{int}(\D^2)$. \end{theorem}