\classheader{2012-10-31} The midterm will be Friday, November 2 from 11am to 12:30pm, in Ryerson 352 (the Barn). \subsection*{Cellular Homology} \begin{proposition} Let $X$ be a CW-complex. Then for all $n\geq 0$, \begin{enumerate} \item $\widetilde{H}_i(X^{(n)},X^{(n-1)})=\left.\begin{cases} \Z^d &\text{ if }i=n\!\\ 0 & \text{ if }i\neq n\! \end{cases}\right\}$ where $d$ is the number of $n$-cells in $X$. \item $\widetilde{H}_i(X^{(n)})=0$ for all $i>n$. \item The inclusion $X^{(n)}\hookrightarrow X$ induces an isomorphism $i_*:H_k(X^{(n)})\to H_k(X)$ for all $k\dim(X)$. \item $\rank(H_n(X))\leq\#$ of $n$-cells of $X$. \item $H_n^{\CW}(X)$ is a homotopy invariant. \end{itemize} \end{corollary} \begin{remark} By the topological invariance of $H_n^{\CW}$ and the Hopf trace formula, we can compute \[\chi(X)=\sum_{n\geq 0}(-1)^n\rank(C_n^{\CW}(X)).\] For example, \[\chi(\S^n)=1+(-1)^n=\begin{cases} 0 & \text{ if }n\text{ odd},\\ 2 & \text{ if }n\text{ even}. \end{cases}\] \[\chi(\R P^n)=1-1+1-\cdots+(-1)^n=\begin{cases} 0 & \text{ if }n\text{ odd},\\ 1 & \text{ if }n\text{ even}. \end{cases}\] \[\chi(\Sigma_g)=1-2g+1=2-2g.\] \end{remark} To compute $H_n^{\CW}(X)$, we need to understand the boundary maps $d_n$. We have \[C_n^{\CW}(X)=\text{$\Z$-span of }\{\sigma_\alpha:\D_\alpha^n\to X^{(n)}\}\] \[C_{n-1}^{\CW}(X)=\text{$\Z$-span of }\{\tau_\beta:\D_\beta^{n-1}\to X^{(n-1)}\}\] Consider the composition of the attaching map of an $n$-cell $\sigma_\alpha$ with the quotient map sending $X^{(n-1)}$ to $X^{(n-1)}/X^{(n-2)}$: \begin{center} \begin{tikzpicture} \node at (-1,2.3) {$\partial\D^n$}; \draw[thick] (-1,1) circle (1); \node[inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle] (a) at (3,-1) {}; \path[thick] (a.center) edge[out=0,in=100,loop,distance=2cm] node[above right] {$\tau_1(\D^{n-1})$} (a.center); \path[thick] (a.center) edge[out=120,in=220,loop,distance=2cm] node[above left] {$\tau_2(\D^{n-1})$} (a.center); \node[rotate=20] (b) at ($(3,-1)+(300:0.5)$) {$\cdots$}; \path[thick,->,>=stealth] (0.1,1) edge[out=0,in=120,shorten >=5pt] node [above right] {$\sigma_\alpha$} (2.8,-0.5); \node at (6,-1) {$=X^{(n-1)}/X^{(n-2)}$}; \end{tikzpicture}\vspace{-0.2in} \end{center} Then, for all $\beta$, consider the composition of that with the quotient map from $X^{(n-1)}/X^{(n-2)}$ to just one of the $(n-1)$-cells $\tau_\beta$: \begin{center} \begin{tikzcd}[column sep=0.9in] \S^{n-1}=\partial\D_\alpha^n \ar{r}{\sigma_\alpha|_{\partial\D_\alpha^n}} & X^{(n-1)}\ar{r}{\text{quotient}} & X^{(n-1)}/X^{(n-2)} \ar{r}{\substack{\text{more}\\\text{quotient}}} & \tau_\beta(\D^{n-1})=\S^{n-1} \end{tikzcd} \end{center} This is a map $\psi_{\alpha,\beta}=\S^{n-1}\to\S^{n-1}$. \begin{lemma}[Hatcher, p.141] For all $\alpha,\beta$, we have \[d_n(\sigma_\alpha)=\sum_{\beta}d_{\alpha,\beta}\tau_\beta\] where $d_{\alpha,\beta}=\deg(\psi_{\alpha,\beta})$. \end{lemma} Let's work out the homology of the torus this way. Let $X=\T^2$. The CW chain complex is \begin{center} \begin{tikzcd}[row sep=0.05in] C_2 & C_1 & C_0 & \\ \Z\ar{r}{d_2} & \Z^2\ar{r}{d_1} & \Z\ar{r} & 0 \end{tikzcd} \end{center} We obviously have $d_1=0$. Now let's think about $\psi_{\alpha a}$. It may be helpful to note that the map sending $\partial\D_\alpha^2$ to $\tau_a(\D^1)$ factors through the quotient collapsing the $b$ arcs: \begin{center} \begin{tikzpicture}[scale=1] \node at (-3.8,2.6) {$\partial\D_\alpha^2$}; \begin{scope}[outer sep=2pt,decoration={markings,mark=at position 0.55 with {\arrow[scale=1]{angle 90}}}] \draw[thick,red,postaction={decorate}] (-1,2) arc (0:90:1); \node at ($(-2,2)+(45:1.3)$) {$a$}; \draw[thick,blue,postaction={decorate}] (-2,3) arc (90:180:1); \node at ($(-2,2)+(135:1.3)$) {$b$}; \draw[thick,red,postaction={decorate}] (-2,1) arc (270:180:1); \node at ($(-2,2)+(235:1.3)$) {$a$}; \draw[thick,blue,postaction={decorate}] (-1,2) arc (360:270:1); \node at ($(-2,2)+(315:1.3)$) {$b$}; \draw[thick] ($(-2,2)+(0:0.93)$) -- ($(-2,2)+(0:1.07)$); \draw[thick] ($(-2,2)+(90:0.93)$) -- ($(-2,2)+(90:1.07)$); \draw[thick] ($(-2,2)+(180:0.93)$) -- ($(-2,2)+(180:1.07)$); \draw[thick] ($(-2,2)+(270:0.93)$) -- ($(-2,2)+(270:1.07)$); \end{scope} \begin{scope}[decoration={snake,amplitude=1pt}] \draw[thick,->,>=stealth,decorate] (-2,0.6) -- (-2,-0.67); \end{scope} \begin{scope}[outer sep=2pt,decoration={markings,mark=at position 0.5 with {\arrow[scale=1]{angle 90}}}] \draw[thick,red,postaction={decorate}] ($(-2,-2)+(315:1)$) arc (315:135:1); \node at ($(-2,-2)+(45:1.3)$) {$a$}; \draw[thick,red,postaction={decorate}] ($(-2,-2)+(315:1)$) arc (315:495:1); \node at ($(-2,-2)+(235:1.3)$) {$a$}; \draw[thick] ($(-2,-2)+(315:0.93)$) -- ($(-2,-2)+(315:1.07)$); \draw[thick] ($(-2,-2)+(135:0.93)$) -- ($(-2,-2)+(135:1.07)$); \end{scope} \begin{scope}[decoration={markings,mark=at position 0.5 with {\arrow[>=angle 90]{>}}}] \node[inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle] (a) at (4,0) {}; \path[thick,dashed] (a) edge[out=320,in=40,loop,distance=2cm,postaction={decorate}] node [label=right:$b$] {} (a); \path[thick] (a) edge[out=220,in=140,loop,distance=2cm,postaction={decorate}] node [label=left:$a$] {} (a); \end{scope} \path[thick,->,>=stealth] (-0.7,2) edge[out=0,in=140] (3.1,0.6); \path[thick,->,>=stealth] (-0.7,-2) edge[out=0,in=220] (3.1,-0.6); \end{tikzpicture} \end{center} We clearly have that $\deg(\psi_{\alpha a})=1-1=0$, and similarly, $\deg(\psi_{\alpha b})=0$. Therefore $d_2= 0$, and \[H_i^{\CW}(\T^2)\cong C_i^{\CW}(\T^2)=\begin{cases} \Z & \text{ if }i=0,2\\ \Z^2 & \text{ if }i=1\\ 0 & \text{ otherwise.} \end{cases}\]