\classheader{2012-10-29} \subsection*{CW-Complexes and Cellular Homology} \begin{definition} CW-complexes are built up in an inductive process. The base of the inductive process is $X^{(0)}$, the 0-skeleton, consisting of discrete points. The inductive step is as follows: assuming we have constructed $X^{(n-1)}$, we are given \begin{itemize} \item a collection of $n$-balls $\{\D_\alpha^n\mid \alpha\in I\}$, \item maps $\{\phi_\alpha:\partial \D_\alpha^n\to X^{(n-1)}\}$ attaching the boundaries of the balls to the $(n-1)$-skeleton. \end{itemize} Then we define \[X^{(n)}=\frac{X^{(n-1)}\sqcup\coprod_{\alpha\in I}\D_\alpha^n}{x\sim\phi_\alpha(x)\text{ for all }\alpha\in I, x\in\partial \D_\alpha^n}.\] The space $X=\bigcup_{n\geq 0}X^{(n)}$ built in this manner is called a CW-complex. When $X\cong X^{(N)}$, we say that $X$ is $N$-dimensional. Note that we give $X$ the weak topology, i.e. we declare $A\subseteq X$ to be open precisely when $\phi_\alpha^{-1}(A)\subseteq \D_\alpha^n$ is open for all cells $\phi_\alpha:\D_\alpha^n\to X$. \end{definition} \begin{examples} $\text{}$ \begin{itemize} \item A 1-dimensional CW-complex is equivalent to a graph. Here is an example: \begin{center} \begin{tikzpicture}[>=stealth,scale=1.5] \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle}] \node (a) at (-4,0) {}; \node (b) at (-3.5,0.86) {}; \node (c) at (-3,0) {}; \end{scope} \node at (-2.8,0.86) {$X_0$}; \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle}] \node (a) at (0,0) {}; \node (b) at (0.5,0.86) {}; \node (c) at (1,0) {}; \end{scope} \begin{scope}[thick,green!60!black] \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle}] \node (d) at (-0.8,0.4) {}; \node (e) at (-0.3,1.26) {}; \end{scope} \path (d.center) edge (e.center); \node at (-0.85,1) {$\D_\alpha^1$}; \path[dashed,thick,->,shorten >=4pt,shorten <=4pt] (e) edge (b); \path[dashed,thick,->,shorten >=4pt,shorten <=4pt] (d) edge (a); \path[thick,->,white] (-0.4,0.8) edge node[auto,pos=0.3,green!60!black] {$\phi_\alpha$} (0.16,0.54); \end{scope} \begin{scope}[thick,red!60!black] \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle}] \node (f) at (0,2) {}; \node (g) at (1,2) {}; \end{scope} \path (f.center) edge (g.center); \node at (0.5,2.3) {$\D_\beta^1$}; \path[dashed,thick,->,shorten >=4pt,shorten <=4pt] (f) edge[out=270,in=120] (b); \path[dashed,thick,->,shorten >=4pt,shorten <=4pt] (g) edge[out=270,in=60] (b); \path[thick,white,->] (0.5,1.9) edge node[auto,pos=0.5,red!60!black] {$\phi_\beta$} (0.5,1.5); \end{scope} \begin{scope}[thick,blue!60!black] \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle}] \node (h) at (0,-0.7) {}; \node (i) at (1,-0.7) {}; \end{scope} \path (h.center) edge (i.center); \path[dashed,thick,->,shorten >=4pt,shorten <=4pt] (h) edge[out=90,in=270] (a); \path[dashed,thick,->,shorten >=4pt,shorten <=4pt] (i) edge[out=90,in=270] (c); \node at (0.5,-1) {$\D_\gamma^1$}; \path[thick,white,->] (0.5,-0.6) edge node[auto,swap,blue!60!black,pos=0.5] {$\phi_\gamma$} (0.5,-0.1); \end{scope} \begin{scope}[every node/.style={inner sep=0pt,outer sep=0pt,minimum size=5pt,fill,circle}] \node (aa) at (4,0) {}; \node (ba) at (4.5,0.86) {}; \node (ca) at (5,0) {}; \end{scope} \begin{scope}[thick] \path (ba.center) edge[out=45,in=135,loop,distance=1cm] (ba.center); \path (aa.center) edge (ba.center); \path (aa.center) edge (ca.center); \end{scope} \node at (5.2,0.86) {$X_1$}; \end{tikzpicture} \end{center} \item The $n$-sphere $\S^n$ can be given a CW-complex structure with one 0-cell $p$ and one $n$-cell $\phi$, by letting $\phi:\D^n\to\{p\}$ be the constant map. \begin{center} \begin{tikzpicture}[scale=1.5] \node[fill,circle,inner sep=0pt,outer sep=0pt,minimum size=5pt] [label=285:$p$] at (-4,1) {}; \colorlet{blah}{blue!90!white} \colorlet{myblue}{blah!80} \node[fill,circle,inner sep=0pt,outer sep=0pt,minimum size=5pt] [label=285:$p$] at (0,1) {}; \begin{scope} \fill[color=myblue] (0,-0.8) ellipse (1.3 and 0.6); \clip (0,-0.8) ellipse (1.3 and 0.6); \end{scope} \draw[color=myblue!50!black,ultra thick] (0,-0.8) ellipse (1.3 and 0.6); \fill[ball color=blue!60] (4,0) circle (1.3); % 3D lighting effect \begin{scope}[every label/.style={white}] \node[fill,circle,inner sep=0pt,outer sep=0pt,minimum size=5pt,white] [label=285:$p$] at (4,1) {}; \end{scope} \begin{scope}[thick,myblue!50!black,>=stealth] \path[dashed,thick,->,shorten >=6pt,shorten <=12pt] (-1.3,-0.8) edge[out=90,in=180] (0,1); \path[dashed,thick,->,shorten >=6pt,shorten <=12pt] (1.3,-0.8) edge[out=90,in=0] (0,1); \end{scope} \end{tikzpicture} \end{center} \item The surface $\Sigma_g$ of genus $g\geq 1$ can be given a CW-complex structure with one 0-cell $v$, $2g$ 1-cells $a_1,b_1,\ldots,a_g,b_g$, and one 2-cell $\phi:\partial\D^2\to X^{(1)}$ defined by the word $a_1b_1a_1^{-1}b_1^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}$. The 1-skeleton just looks like \begin{center} \tikz[>=stealth,scale=0.5]{ \begin{scope}[every node/.style={inner sep=0pt,outer sep=2pt,minimum size=5pt,fill,circle}] \node (a) at (0,0) {}; \end{scope} \path[thick,->] (a) edge[out=0,in=20,loop,distance=3cm] node[above right] {$a_1$} (a); \path[thick,->] (a) edge[out=40,in=60,loop,distance=3cm] node[above right] {$b_1$} (a); \path[thick,->] (a) edge[out=80,in=100,loop,distance=3cm] node[above] {$a_2$} (a); \path[thick,->] (a) edge[out=120,in=140,loop,distance=3cm] node[above left] {$b_2$} (a); \path[thick,->] (a) edge[out=280,in=300,loop,distance=3cm] node[below right] {$a_g$} (a); \path[thick,->] (a) edge[out=320,in=340,loop,distance=3cm] node[below right] {$b_g$} (a); \node[rotate=340] (b) at (210:0.5) {$\ddots$}; } \end{center} We attach $\partial\D^2$ to the 1-skeleton $X^{(1)}$ as follows. We break up $\partial\D^2$ into $4g$ arcs of angle $\frac{2\pi}{4g}$, \begin{center} \begin{tikzpicture}[scale=2] \fill[gray!30] (0,0) circle (1); \node at (0,0) {$\D^2$}; \draw[thick] (0,0) circle (1); \draw[thick] (0:0.95) -- (0:1.05); \draw[thick] (25:0.95) -- (25:1.05); \draw[thick] (50:0.95) -- (50:1.05); \draw[thick] (75:0.95) -- (75:1.05); \draw[thick] (100:0.95) -- (100:1.05); \node at (12.5:1.2) {$a_1$}; \node at (37.5:1.2) {$b_1$}; \node at (62.5:1.2) {$a_1$}; \node at (87.5:1.2) {$b_1$}; \node[rotate=35] at (120:1.2) {$\cdot$}; \node[rotate=35] at (127:1.2) {$\cdot$}; \node[rotate=35] at (134:1.2) {$\cdot$}; \begin{scope}[outer sep=2pt,decoration={markings,mark=at position 0.6 with {\arrow[scale=1.7]{stealth}}}] \draw[postaction={decorate}] (1,0) arc (1:25:1) ; \draw[postaction={decorate}] (25:1) arc (25:50:1) ; \draw[postaction={decorate}] (75:1) arc (75:50:1) ; \draw[postaction={decorate}] (100:1) arc (100:75:1) ; \end{scope} \end{tikzpicture} \end{center} and define $\phi$ by mapping an arc to the indicated edge in the 1-skeleton, with degree $\pm 1$ depending on the sign determined by the word (this is reflected in the orientations of the arcs in the picture). \item Real projective space $\R P^n$ is defined to be \[\{\text{lines through origin in }\R^{n+1}\}=\frac{\R^{n+1}\setminus\{0\}}{\genfrac{}{}{0pt}{}{u\sim v\text{ iff }u=rv}{\text{for some }r\in\R^\times}}=\frac{\{v\in\R^{n+1}\setminus\{0\}: \|v\|=1\}}{v\sim -v}=\frac{\S^n}{v\sim-v}.\] Denoting the upper hemisphere of $\S^n$ by $\D_+^n$, \begin{center} \begin{tikzpicture}[scale=2,every node/.style={minimum size=1cm},>=latex] \fill[ball color=white!60] (0,0) circle (1.3); \begin{scope} \path[clip] (-1.3,0) arc (180:360:1.3 and 0.6) arc (0:180:1.3); \fill[ball color=blue!60] (0,0) circle (1.3); \end{scope} \fill[color=gray!80,opacity=0.4] (0,0) ellipse (1.3 and 0.6); \draw[thick,dashed] (1.3,0) arc (0:180:1.3 and 0.6); \draw[thick] (-1.3,0) arc (180:360:1.3 and 0.6); \node[myblue!50!black,inner sep=0pt,outer sep=0pt] (x) at (1.2,1) {$\D_+^n$}; \end{tikzpicture} \end{center} then we can also see that \[\RP^n=\frac{\D_+^n}{v\sim -v\text{ for all }v\in\partial\D_+^n}.\] Note that $\partial\D_+^n=\S^{n-1}$. We have the quotient map $\phi:\S^{n-1}\to\RP^{n-1}$ identifying $v$ and $-v$ for all $v\in\S^{n-1}$; this is just the attaching map for the $n$-cell $\D_+^n$ when we give $\RP^n$ a CW-complex structure. In general, $\RP^n$ is a CW-complex with 1 $i$-cell for $i=0,1,\ldots,n$. Thus, $\RP^0$ is just a point, $\RP^1$ is $\S^1$, and \[\RP^n=\frac{\RP^{n-1}\sqcup \D_+^n}{v\sim\phi(v)\text{ for all }v\in\partial\D^n}.\] \end{itemize} \end{examples} \subsection*{How to Compute CW Homology} Let $X$ be a CW-complex. We define a chain complex $\cal{C}^\CW{}(X)=\{C_n^{\CW}(X),d_n\}$ by letting $C_n^{\CW}(X)$ be the free abelian group on the $n$-cells, and the boundary maps $d_n:C_n^{\CW}(X)\to C_{n-1}^{\CW}(X)$ satisfy $d_{n-1}\circ d_n=0$, but we'll skip their definition to get to some calculations. Of course, lastly we define $H_i^{\CW}(X)=H_i(\cal{C}^{\CW}(X))$. \begin{examples} $\text{}$ \begin{itemize} \item Let's compute the CW homology of $\S^n$, for $n\geq 2$. The CW chain complex is just \begin{center} \begin{tikzcd}[row sep=0.1in,outer sep=5pt] C_{n+1}^{\CW}(\S^n) \ar{r} & C_n^{\CW}(\S^n) \ar{r} & C_{n-1}^{\CW}(\S^n) \ar{r} & \cdots \ar{r} & C_0^{\CW}(\S^n) \ar{r} & 0\\ 0 \ar{r} & \Z \ar{r} & 0 \ar{r} & \cdots \ar{r} & \Z \ar{r} & 0 \end{tikzcd} \end{center} and therefore \[H_i^{\CW}(\S^n)\cong C_i^{\CW}(\S^n)=\begin{cases} \Z & \text{ if }i=0\text{ or }n,\\ 0 & \text{ otherwise.} \end{cases}\] This agrees with singular, and hence also simplicial, homology. \item The CW chain complex for $\Sigma_g$ is \begin{center} \begin{tikzcd}[row sep=0.01in,column sep=0.8in,outer sep=3pt] \cdots \ar{r} & 0 \ar{r} & \Z \ar{r}{d_2} & \Z^{2g} \ar{r}{d_1} & \Z \ar{r} & 0\\ & &\overset{\text{\rotatebox{90}{$\;=$}}}{\mathclap{\langle f\rangle}} & \overset{\text{\rotatebox{90}{$\;=$}}}{\mathclap{\langle a_1,b_1,\ldots,a_g,b_g\rangle}} & \overset{\text{\rotatebox{90}{$\;=$}}}{\mathclap{\langle v\rangle}}& \end{tikzcd} \end{center} Every $a_i$ and $b_i$ is sent to $v-v=0$, so that $d_1=0$. Now note that $d_2$ sends $f$ to \[a_1+b_1-a_1-b_1+a_2+\cdots+a_g+b_g-a_g-b_g=0\] and therefore $d_2=0$. Thus, \[H_i^{\CW}(\S^n)\cong C_i^{\CW}(\S^n)=\begin{cases} \Z & \text{ if }i=0\text{ or }2,\\ \Z^{2g} & \text{ if }i=1,\\ 0 & \text{ otherwise.} \end{cases}\] Morally, the boundary map in CW homology is measuring degree of the attaching maps of the cells. \end{itemize} \end{examples}