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Chapter 1

Homology

Algebraic topology began in ernest with Poincaré’s famous paper Analysis Situs. To

Poincaré, topology was what we today call “differential topology” . One of the major

directions in topology after Poincaré was the development of combinatorial methods,

most notably the theory of simplicial complexes, simplicial homology, etc., whereby

continuous problems about spaces are converted into purely combinatorial problems

that, in principle, can be solved by a computer. The interest in this combinatorialization

for its own sake, sometimes called “PL topology”, peaked in the 1970’s, but it has since

become absorbed into many areas of mathematics, from geometric group theory to

algebraic combinatorics to number theory.

Because of its wide applicability, and because I believe simplicial homology is the best

first example of a homology theory to present, this is how we will begin.

1.1 Construction of simplicial homology

1.1.1 Simplices and ∆-complexes

Our first goal is to define a collection of spaces whose topology can be described in a

purely combinatorial way. Classically this was done with simplicial complexes but, as

developed in Hatcher’s book, there is an even simpler combinatorial structure called a
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6 CHAPTER 1. HOMOLOGY

∆-complex. While such spaces may seem special, most examples studied in topology

admit such structures; examples include smooth manifolds, Eilenberg-MacLane spaces,

and algebraic varieties.

Definition 1.1.1 (Affine independence). A set {v0, . . . , vn} of vectors in Rn+1 is

affinely independent if one of the following equivalent definitions is satisfied:

1. The set of vectors {v1 − v0, . . . , vn − v0} is linearly independent.

2. If there exist ai ∈ R so that
∑n

i=0 aivi = 0 and
∑n

i=0 ai = 0 then aj = 0 for each

0 ≤ j ≤ n.

Definition 1.1.2 (Simplex). Let (v0, . . . vn), vi ∈ Rn be an ordered (n+ 1)-tuple of

affinely independent vectors in Rn+1. The n-dimensional simplex (or simply n-simplex)

spanned by {v0, . . . vn}, denoted [v0 · · · vn], is defined to be the topological space

[v0 · · · vn] := {
n∑
i=0

aivi : each ai ≥ 0 and

n∑
i=0

ai = 1}.

Fixing the ordered (n+ 1)-tuple vi, each point x =
∑n

i=0 aivi ∈ [v0 · · · vn] is uniquely

determined by the ai; these numbers are called barycentric coordinates on [v0 · · · vn].

Thus a 0-simplex [v0] is a point, a 1-simplex [v0v1] is an edge, a 2-simplex [v0v1v2] is a

triangle, and a 3-simplex [v0v1v2v3] is a tetrahedron. Note that [v0 · · · vn] is precisely

the convex hull of {v0, . . . , vn} in Rn+1; that is, [v0 · · · vn] is the smallest convex subset

of Rn+1 containing {v0, . . . , vn}.

The ordering of {vi} is part of the data attached to the simplex σ := [v0 · · · vn]. When

we want to emphasize this we will call σ an ordered simplex. Note that any reordering

of the vi gives a simplex with span equal to that of σ. The ordering on a simplex σ

is useful in a number of respects. For one, for any two n-simplices σ := [v0 · · · vn] and

τ := [w0 · · ·wn] there is a unique linear homeomorphism f : σ → τ given by

f(
∑

aivi) :=
∑

aiwi.

Secondly, any subset {vi1 , . . . , vik} of {vi}, with ordering given by the restriction of the

ordering (v0, . . . , vn), gives a (k−1)-dimensional simplex [vi1 · · · vik ], called a subsimplex
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of [v0 · · · vn]. As a special case we have the (n+ 1) different faces of σ, with a different

face σj of σ for each 0 ≤ j ≤ n, given by deleting the jth vertex vj :

σj := [v0 · · · v̂j · · · vn] (1.1)

We would like to build spaces X by taking a finite number of simplices and gluing them

together along various subsimplices. Thus such spaces X would have a topology given

by the quotient topology. How do we record which simplices glue to which others? A

convenient way to do this is to think of each n-simplex in X not as a subset of X, but

as the image of a continuous map f : ∆n → X of the standard n-simplex ∆n into X.

Definition 1.1.3 (∆-complex). Let X be a topological space. A (finite) ∆-complex

structure on X consists of the following pieces of data:

Decomposition into simplices: A finite collection S = {∆i} of simplices (perhaps

of different dimensions), with continuous maps σi : σi → X, injective on the interior of

σi, so that :

1.
⋃
i σi(∆i) = X.

2. Each x ∈ X lies in the image of the interior of precisely one simplex.

Closure under taking faces: If σ : ∆ → X is an element of S, then so is the

restriction of σ to any subsimplex τ of ∆.

We will also call a ∆-complex structure on X a triangulation of X.1 Sometimes we will

simply call X itself a ∆ complex. Each pair (σi,∆i) will be called a simplex of X.

One can check that X is homeomorphic to the quotient space given by the disjoint

union of the ∆i with identifications given by ∆i ∼ ∆j precisely when σi(∆i) = σj(∆j)

as subsets of X.

Notation: We will often denote a simplex σ : ∆i → X simply by σ. It is often

conceptually simpler to think of σ as its image σ(∆) in X, in which case one needs to

1This differs from the standard usage of the term “triangulation”, which is usually reserved for the

special case when the ∆ complex is actually a simplicial complex.
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remember the ordering of the vertices of ∆, which one also thinks of as an ordering of

the σ-images of the vertices.

As we will see, ∆-complexes give a huge collection of topological spaces. Later we

will allow the collection {σi} to infinite, but this requires us to be more careful about

specifying the topology on X.

Actually recording all of the data that determines a ∆-complex gets cumbersome

quite quickly. Thus we will use the following shortcut: we simply give a diagram of

glued simplices specifying a topological space X, with each simplex endowed with an

orientation given by an arrow, with any two identified simplices ∆i,∆j labelled with

the same label.

Example 1.1.4. The torus. The Klein bottle. The genus g ≥ 2 surface. Sn.

Example 1.1.5. Nerve of a cover gives a ∆-complex; indeed a simplicial complex.

Same with nerve of a category. To get an ordering on the vertices, first order the

elements of the cover, and take the induced ordering on vertices.

1.1.2 Simplicial homology: construction

Our first goal is to attach to any ∆-complex X and any integer i ≥ 0 a finitely generated

abelian group Hi(X), called the ith homology group of X. We want to do this so that

at least each of the following simple properties hold:

1. Computability: Each Hi(X) is algorithmically computable via basic linear

algebra.

2. Topological invariance: If X and Y are ∆-complexes, and if X is homeomor-

phic to Y , then Hi(X) ≈ Hi(Y ) for each i ≥ 0.

3. Nontriviality: For any n-sphere Sn, n > 0, the group Hn(Sn) 6= 0.

Of course there are other versions of nontriviality one could ask for. We chose this one

because it is simple to state but it already implies the Brouwer Fixed Point Theorem in

all dimensions.
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Thus the homology groups will give a computable topological invariants for a large

collection of topological spaces. They will satisfy many other important properties. The

construction will consist of two major steps: one topological, the other algebraic.

Step 1 (topological step): The chain complex of X

Definition 1.1.6 (Simplicial n-chains). Fix a ∆-complex X. For each n ≥ 0, the

group of (simplicial) n-chains of X, denoted Cn(X), is the free abelian group on the

set of n-simplices of X.

Since X has finitely many simplices, each Cn(X) is finitely generated. Since we are

assuming that the set of simplices in the ∆-complex structure of X is closed under

taking subsimplices, Cn(X) is nonzero precisely for n ≤ max dim(σ), where the max is

taken over all simplices of X.

We write the group operation in Cn(X) as addition. Thus if {σi} denotes the set of

all n-simplices of X, then any element c ∈ Cn(X) can be written uniquely as a formal

finite sum

c =
∑
i

aiσi with ai ∈ Z

To be pedantic, if we choose an isomorphism Cn(X)→ Zr taking the basis element σi

to the element (0, . . . , 1, . . . , 0) ∈ Zr with a “1” in the ith position, then c corresponds

to (a1, . . . , ar) under the isomorphism. As we will see, the notation c =
∑r

i=1 aiσi will

be easier to work with. Yet another equivalent way to view Cn(X) is as the space

of integer-valued functions on {n− simplices of X}, which is an abelian group under

addition of functions.

For each n ≥ 1, we define the boundary homomorphism

∂n : Cn(X)→ Cn−1(X)

on any n-simplex σ : [v0 · · · vn]→ X via

∂nσ :=
n∑
i=0

(−1)iσ|[v0···v̂i···vn] (1.2)

We emphasize that the right hand side of Equation (1.2) is given in the notation for

an element of the abelian group Cn−1(X). By the universal property of free abelian
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groups, the map ∂n : Cn(X) → Cn−1(X) has a unique Z-linear extension of the map

defined in Equation (1.2):

∂n(
∑
i

aiσi) =
∑
i

ai∂nσi

It will also be convenient to let ∂0 : C0(X)→ 0.

Recall from the theory of finitely generated abelian groups that, once generating sets

{ui} for Zn and {vj} for Zm are chosen and fixed, there is a bijection

{homomorphisms φ : Zn → Zm} ←→ {m× n matrices with integer entries}

where the matrix A corresponding to a homomorphism φ has entries aij determined by

φ(ui) =
∑

j aijvj . Thus the homomorphism ∂n can be encoded by an dim(Cn−1(X))×
dim(Cn(X)) matrix with integer entries.

The idea of making the definition given in Equation 1.2 is that “the boundary of a

simplex [v0 · · · vn] is the formal sum of all of its faces, oriented properly.” The “oriented

properly” part is the reason for the sign in Equation 1.2; we will discuss this below

when explaining orientations.

Poincaré already made the key observation that “a boundary has no boundary”. The

example to think of here is a simplex σ: points in the interior of σ look topologi-

cally different from points on ∂σ, while all points of ∂σ look alike (i.e. any two have

homeomorphic neighborhoods in ∂σ. Algebraically, this is reflected in the following

proposition, which is simple but crucial for homology theory.

Proposition 1.1.7. Let X be any ∆ complex. For any n ≥ 1 the homomorphism

∂n ◦ ∂n+1 : Cn+1(X)→ Cn−1(X) is the zero homomorphism.

Proof. Give proof. Trick: break sum into i < j and i > j parts; they cancel.

Example 1.1.8. The 3-simplex. The 2-sphere.

Example 1.1.9 (The torus). Let T 2 = S1 × S1 be the 2-dimensional torus. We view

T 2 as a square with opposite sides identified. GIVE ∆-complex structure. Write out

each Cn(X) and the boundary maps.
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At this point we have the following: given any finite ∆-complex X, we have a sequence

of finitely generated abelian groups and homomorphisms:

Cn(X)
∂n→ Cn−1(X)

∂n−1→ · · · ∂2→ C1(X)
∂1→ C0(X)

∂0→ 0

where n = max dim(σ) for σ a simplex in X, and where (by Proposition 1.1.7) the

composition of any two adjacent homomorphisms is zero. This setup is the basic setup

to which we can now apply homological algebra to produce algebraic invariants of X.

Step 2 (algebraic step): Chain complexes

With the previous example in mind, we begin with the general homological theory of

chain complexes. This machinery is widely applicable not only within topology, but it

is a fundamental tool in number theory, algebraic geometry, and group theory.

Definition 1.1.10 (Chain complex). A chain complex (of abelian groups) C :=

{Cn, ∂n} is a collection of abelian groups Cn and homomorphisms ∂n : Cn → Cn−1 for

each n satisfying ∂n ◦ ∂n−1 = 0.

Remark 1.1.11. We explicitly allow the Cn to be infinitely generated; indeed we will

later see quite important examples where Cn is the free abelian group on an uncountable

set. We also explicitly allow n to be an arbitrary integer, for convenience.

Example 1.1.12 (Complex of simplicial chains). Let X be a ∆-complex, and

for n ≥ 0 let Cn(X) denote the group of n-chains on X. The complex of simplicial

chains of X is the chain complex C(X) := {Cn(X), ∂n}, where n ≥ 0, and where we set

C−1(X) = 0 by definition.

Since a chain complex C := {Cn, ∂n} consists of abelian groups and homomorphisms

between them, it is natural to consider kernels and images. We define the group Zn of

n-cycles of C to be the kernel

Zn(C) := ker(∂n : Cn → Cn−1)

The letter “Z” is used because Vietoris, who first defined Zn in this way, called Zn the

n-te Zusammenhangsgruppethe. 2 We define the group Bn of n-boundaries of C to

2In his book [Mu], Munkres attributes the “Z” to the fact that the German word for “cycle” is

“Zyklus”.
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be the image

Bn(C) := im(∂n+1 : Cn+1 → Cn)

Since ∂n◦∂n−1 = 0, it follows that Bn ⊆ Zn. The homology group Hn(C) gives a measure

of how many i-cycles are not cycles for the trivial reason that they are boundaries.

Definition 1.1.13 (Homology of a chain complex). Let C := {Cn, ∂n} be a chain

complex. For each i ≥ 0 we define the ith homology group of the chain complex, denoted

Hi(C) by

Hi(C) := Zn(C)/Bn(C)

If two i-cycles c, c′ ∈ Zi(C) satisfy c = c′ + ∂d for some (i+ 1)-chain d, we say that c is

homologous to c′. Note that in this case [c] = [c′] ∈ Hi(C).

Since the quotient of any free abelian group is abelian, each Hi(C) is abelian; it is

finitely generated if Cn is finitely generated. By the classification of finitely generated

abelian groups, in this case Hi(C) = Zbi × Ti where bi ≥ 0 and Ti is a finite abelian

group. The number bi is called the ith Betti number of X.

Classically, the Betti numbers of a space were studied before homology theory was

discovered. Forgetting the information that Ti might give, why is the group Hi(X)/Ti ≈
Zbi better than just the integer bi? As an invariant they contain the same information.

However, we will see that the extra group-theoretic structure of Hi(X)/Ti adds a great

deal of extra structure and power to the story. Sometimes the process of realizing a

numerical invariant as the dimension of a vector space, or rank of a group, etc., is called

categorification.

We define the (simplicial) homology Hi(X) of a ∆-complex X to be the homology

of the complex of simplicial chains of X:

Hi(X) := Hi(C(X))

We thus have a procedure:

Space X  Triangulation of X  Chain complex {Cn(X), ∂n}  Hi(X)
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Here the first squiggly arrow uses topology; the second is purely combinatorial; the

third is basic linear algebra (in the guise of homological algebra). Sometimes it is useful

to think of the homology groups Hi(X) as “linearizations” of the space X.

Later in this class we will give several other ways that take as input a topological space,

and as output gives a chain complex. The homology of this chain complex will then

give us another kind of “homology theory” for spaces.

Chain maps

As is common with algebraic objects, the maps between objects are just as important

as the objects themselves. What are the natural morphisms between chain complexes?

Definition 1.1.14 (Chain map). Let C = {Cn, ∂n} and C′ = {C ′n, ∂′n} be chain com-

plexes. A chain map φ : C → C′ is a collection of homomorphisms φn : Cn → C ′n that

commute with the boundary maps ∂n, ∂
′
n:

φn−1 ◦ ∂n = ∂n ◦ φn for all n ≥ 0

One of the fundamental properties of homology groups is the following.

Lemma 1.1.15 (Chain maps induce homology maps). Let φ : C → C′ be a chain

map of chain complexes. Then φn(Bn) = B′n and φ(Zn) = Z ′n for each n ≥ 0. Thus the

map

φ∗ : Hn(C)→ Hn(C′)
[z] 7→ [φn(z)]

is a homomorphism. The association φ 7→ φ∗ is functorial: (φ ◦ ψ)∗ = φ∗ ◦ ψ∗

Proof. This is easy.

1.1.3 First computations

The general idea of simplicial homology is that Hi(X) measures the number of nontrivial,

“i-dimensional holes in X”, where by “hole” we mean “cycle” (i.e. a hole is supposed to

be the same as a chain with vanishing boundary, which is a really clever formalization
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of the notion of hole), and by “nontrivial” we mean “which is not a hole for the stupid

reason that it bounds something”.

Example 1.1.16. Compute the homology of S1. Now add the 2-disk, and see how this

“filling the hole of S1” is detected in homology. Compute the homology of the 2-sphere

and the torus.

Remark 1.1.17. Fix n > 2. The n-sphere can easily be given a ∆-complex structure

by taking two n-simplices and σ := [v0 · · · vn] and τ := [u0 · · ·un] and identifying them

along their boundaries: for each 0 ≤ i ≤ n identify [v0 · · · v̂i · · · vn] ∼ [w0 · · · ŵi · · ·wn].

However, a direct computation of the simplicial homology groups of this ∆-complex

becomes a complicated affair for large n, since in order to compute we need an actual

∆-complex structure, and for this we need to throw in all faces of σ and τ , and the faces

of these faces, etc. It is possible to do this but it is also cumbersome. We will soon have

other methods, for example cellular homology, whereby the problem of computing the

homology groups H∗(S
n) is easy.

The answer of this computation answers a fundamental problem of topology that was

open for a long time: the invariance of dimension under homeomorphism; namely

Rm ≈ Rn if and only if m = n. This is deduced from the corresponding fact for

Sn ≈ Sm, which in turn follows from the computation that Hi(S
n) = 0 except for

i = 0, n, in which case Hi(S
n) = Z.

In order to do explicit computations on more complicated spaces, we will have to develop

more machinery. In terms of general results, we first note that since Cn(X) = 0 for

each n > max{dim(σ) : σ ⊂ X}, it follows trivially that Hn(X) = 0 for such n. At the

other extreme, H0(X) detects the number of path components of X.

Proposition 1.1.18. Let X be a ∆-complex with d path components X1, . . . , Xd. Then

H0(X) ≈ Zd. In fact, for any n ≥ 0 we have

Hn(X) ≈ ⊕dr=1Hn(Xr)

Proof. We first prove that when X is connected then H0(X) ≈ Z. Let v0 and v2 be any

two 0-simplices of X. Since X is connected, there is a path in X from v0 to v1. Since any

simplex is connected, we can clearly find such a path consisting of a union of 1-simplices
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[v0w0] ∪ [w0w1] ∪ · · · ∪ [wrv1]. We thus have a one-chain [v0w0] + [w0w1] + · · ·+ [wrv1]

with

∂([v0w0] + [w0w1] + · · ·+ [wrv1]) = [w0]− [v0] + [w1]− [w0] + · · · [v1]− [wn]

= [v1]− [v0]

so that [v0] = [v1] ∈ H0(X). It follows that for any 0-cycle τ :=
∑

i aivi, we have

[τ ] =
∑
i

ai[vi] =
∑
i

ai[v0] = (
∑
i

ai)[v0]

so that [v0] generates H0(X). Thus we need only prove that n[v0] 6= 0 for any n 6=
0. Suppose nv0 = ∂σ for some σ =

∑
i aiσi ∈ C1(X). Define a homomorphism

ψ : C0(X) → Z to be the unique linear extension of the map with ψ(v) = 1 for all

0-simplices v. Then for any 1-simplex [uv] we have

ψ(∂[uv]) = ψ(u− v) = ψ(u)− ψ(v) = 1− 1 = 0.

Linearity implies ψ(∂σ) = 0 for any σ ∈ C1(X). But then

n = nψ(v0) = ψ(nv0) = ψ(∂σ) = 0

so that n = 0. This proves that [v0] ∈ H0(X) generates an infinite cyclic subgroup. We

have thus proved that H0(X) ≈ Z when X is connected. This shows that the second

claim in the proposition follows from the first claim, which we now prove.

Since each Xi is connected, any simplex σ ∈ Cn(X) is also a simplex of some (in fact

unique) Xi. Thus a triangulation of X is the same thing as a triangulation of each Xi,

so for each n ≥ 0 we have an isomorphism of abelian groups

φ :
d⊕
i=1

Cn(Xi)→ Cn(X)

which is just the sum of inclusion maps. The map that associates σ to this simplex

in Cn(Xi) is an inverse of φ. Thus φ is an isomorphism. Since a simplex lies in Xi

if and only if any of its subsimplices does, it follows that each boundary operator ∂n

commutes with φ, that is ∂n ◦ φ = φ ◦ ∂n; that is, both φ and φ−1 are chain maps. It

follows from Lemma 1.1.15 that φ induces a homomorphism

φ∗ :

d⊕
i=1

Hn(Xi)→ Hn(X).
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Similarly for φ−1. Thus φ∗ is an isomorphism. This proves the second claim of the

proposition.

Proposition 1.1.18 thus reduces the computation of homology groups of ∆-complexes to

the case of connected ∆-complexes.

1.1.4 Topological invariance of Hi(X)

One of our goals in this section is to prove that if X and Y are ∆-complexes and

if X is homeomorphic to Y , then Hi(X) ≈ Hi(Y ) for every i ≥ 0. This is called

the “topological invariance of homology”. This problem (or, to be more precise, the

corresponding problem for simplicial complexes) was an important open problem in the

first few decades of the century.

Let X and Y be simplicial complexes. Let f be any map from the set of 0-simplices

of X to the set of 0-simplices of Y with the property that f takes any collection of

vertices that span a simplex to a collection of vertices that span a simplex. Then f has

a unique linear extension f : X → Y given by extending using barycentric coordinates.

Such a map f is called a simplicial map.

As we’ve seen in an exercise, if there is a homeomorphism f : X → Y that is simplicial,

that is thenf induces an isomorphism f∗ : Hi(X) → Hi(Y ). In general, however, an

arbitrary homeomorphism f will not “see” the ∆-complex structures on X and Y at

all. We will describe two strategies to remedy this. But before doing so, it will be

convenient to consider a more flexible kind of equivalence than homeomorphism. Indeed,

the original attempts at proving topological invariance of homology inspired the basic

definitions of the theory of homotopies.

Homotopies.

Define homotopy, homotopy equivalence and homotopy type, contractibility (homotopy

type of a point. Of course homotopy equivalence doesn’t preserve dimension. Define

the category of topological spaces and continuous maps. Want to prove that homology

gives a functor from this category. So one first needs to prove the following.

Let X and Y be ∆-complexes. Then:
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1. Any continuous map induces for each i ≥ 0 a homomorphism f∗ : Hi(X)→ Hi(Y ).

2. If f, g : X → Y and f is homotopic to g, then f∗ = g∗.

3. Functoriality: (f ◦ g)∗ = f∗ ◦ g∗ and IdX∗ = IdHi(X).

Even (1) is nontrivial, as continuous maps do not necessarily take simplices to simplices.

(2) can be viewed as the “maps version” of invariance of Hi under homotopy equivalence.

Proposition 1.1.19. (1)-(3) above imply that Hi is a topological invariant; indeed

if (1)-(3) hold, then any homotopy equivalence f : X → Y induces an isomorphism

f : Hi(X)→ Hi(Y ) for each i ≥ 0.

Proof. Give proof.

Our goal in the rest of this section is to prove (1)-(3).

Strategy 1: Simplicial approximation.

In this approach one tries to find a simplicial map that is “close” to the given continuous

map f : X → Y . In order to do this one has to replace X with some iterated barycentric

subdivision X ′ of X, from which one get a simplicial map f ′ : X ′ → Y homotopic

to f . The map f ′ then induces a map on simplicial chains, and therefore induces

homomorphisms f ′∗ : Hi(X
′)→ Hi(Y ). We then need to know two things:

1. Hi(X
′) ≈ Hi(X) for any iterated barycentric subdivision X ′ of X.

2. The the induced map f ′∗ doesn’t depend on the choice of f ′: if f
′′

: X ′′ → Y is

any other simplicial map then f
′′
∗ = f ′∗.

Given all this, we can then define f∗ : Hi(X) → Hi(Y ) to be the composition of the

isomorphism Hi(X
′) ≈ Hi(X) with the homomorphism f ′∗. One can check functoriality.

Strategy 2: Singular homology.

This strategy has three big steps:
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1. (Construction) Construct a new functor from the category of topological spaces

and continuous maps to the category of groups and homomorphisms, called

singular homology, denoted for now by Hs
i (X).

2. (Homotopy functor) Prove that if f, g : X → Y are homotopic then f∗ = g∗ :

Hs
i (X)→ Hs

i (Y ) for each i ≥ 0.

3. (Simplicial equals singular) Prove for any ∆-complex X that Hs
i (X) ≈ Hi(X), so

that the singular and the simplicial theories agree.

These three steps immediately imply that simplicial homology groups are invariant

under any homotopy equivalence.

1.2 Singular homology

1.2.1 Construction and functoriality

Define singular chain complex, homology. Continuous map induces a chain map, hence

a map on singular homology. Check functoriality.

Remark 1.2.1. It is easy to see that Hs
i is a topological invariant, that is, invariant

under homeomorphism.

1.2.2 Homotopy functor

The key result is the following.

Proposition 1.2.2. Let X and Y be topological spaces, and let f, g : X → Y be

continuous maps. If f is homotopic to g then f∗ = g∗ : Hs
i (X)→ Hs

i (Y ) for each i ≥ 0.

By functoriality, we have the following.

Corollary 1.2.3 (Homotopy invariance of singular homology). If f : X → Y

is a homotopy equivalence of spaces then f∗ : Hs
i (X) → Hs

i (Y ) for each i ≥ 0. In

particular Hs
i is a topological invariant of spaces.
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Our goal now is to prove Proposition 1.2.2. The idea is to continue our “dictionary”

between topological concepts and homological concepts by giving an algebraic version

of homotopies of maps.

Topological object Homological algebra object

singular n-chains Cn(X) n-chains Cn

boundary map ∂n boundary homomorphism ∂n

continuous map f : X → Y chain map f : ⊕Cn → ⊕C ′n
homotopy of continuous maps chain homotopy of chain maps

Of course we also could have presented the left hand column in the simplicial category.

Proof of Proposition 1.2.2. We are given a homotopy F : X × [0, 1] → Y between

f = F0 and g = F1. For each n ≥ 0 we define a homomorphism, called the prism

homomorphism, or prism operator:

Pn : Cn(X)→ Cn+1(Y )

which “morally” is the unique linear extension of the map that sends the n-chain

σ : ∆n → X to the (n+ 1)-chain G : ∆n × [0, 1]→ Y which is the restriction of F to

∆n × [0, 1]. As one can see geometrically, this satisfies the key equation

∂P = g# − f# − P∂ (1.3)

which we will use in a moment. One problem here is that Pn(σ) is not actually a chain

in Y , as ∆n × [0, 1] is not an (n + 1)-simplex. To remedy this we need to chop up

∆n × [0, 1] into a signed sum of (n + 1)-simplices, in a systematic way so that (1.3)

holds. One way of doing this is as follows: denote ∆n × {0} by [v0 · · · vn] and label the

vertices of ∆n × {1} by {wi} so that the for each i the “vertical 1-simplex” vi × [0, 1]

has endpoiints vi and wi. Then (the unique linear extension of) the formula

Pn(σ) :=

n∑
i=1

F ◦ (σ × Id) � [v0 · · · viwi · · ·wn]
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is an (n+ 1)-chain in Y , and a short but somewhat messy computation gives that Pn

satisfies (1.3), as desired.

So what does (1.3) do for us? It is the homological algebra version of homotopy.

Definition 1.2.4 (Chain homotopy). Let C = {Cn, ∂n} and C′ = {C ′n, ∂′n} be chain

complexes. Let φ, ψ : C → C′ be chain maps. A chain homotopy between φ and ψ is

a collection of homomorphisms Pn : Cn → C ′n+1 satisfying ψ − φ = ∂P + P∂, or with

notation to keep track of dimensions:

ψn − φn = Pn−1 ◦ ∂n + ∂′n+1 ◦ Pn

Thus (1.3) gives a chain homotopy between the singular chain maps g# and f#. The

proposition then follows from the following lemma, which is a statement in homological

algebra.

Lemma 1.2.5 (Fundamental lemma of chain homotopies). If φ, ψ : C → C′ are

chain homotopic chain maps then

φ∗ = ψ∗ : Hn(C)→ Hn(C′)

for each n ≥ 0.

Proof. Give.

This completes the proof of the proposition.

We thus have that singular homology is a homotopy functor on the category of topological

spaces and continuous maps; in particular it is invariant under homotopy equivalence,

hence under homeomorphism. In order to prove that Hs
i (X) ≈ Hi(X) we will need to

further develop methods for computing singular homology.

1.2.3 Relative homology

It is often useful to break up computations into smaller ones. In homology theory, one

way to do this is to use relative homology.
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In this section we develop the relative version of singular homology. However, the theory

works basically verbatim for simplicial homology. We will denote singular homology by

Hi.

The setup is this: Let X be any topological space, and let A ⊆ X be any (possibly

empty) subspace. Denote the natural inclusion map by i : A→ C. The map i induces

a homomorphism of singular chain groups

i# : Cn(A)→ Cn(X)

The homomorphism i# is injective on generators, and since our groups are free abelian

it follows that i# is injective on all of Cn(A). Sometimes we identify Cn(A) with its

image in Cn(X) under i#.

Clearly Zn(A) is a subgroup of Zn(X) and Bn(A) is a subgroup of Bn(X). It follows that

i# induces a homomorphism i∗ : Hn(A)→ Hn(X). Note that i∗ is often not injective.

For example, let X = D2 and let A = ∂D2 = S1. We then have i∗ : H1(S1)→ H1(D2),

with domain Z and range 0.

Definition 1.2.6 (Relative chain group). Let X be any topological space, and let

A ⊆ X be any (possibly empty) subspace. The relative chain group of X relative to

A is defined to be

Cn(X,A) := Cn(X)/Cn(A)

The usual boundary homomorphism ∂n : Cn(X)→ Cn−1(X) clearly preserves Cn(A),

and so induces a boundary homomorphism ∂′n : Cn(X,A)→ Cn−1(X,A). The fact that

∂2 = 0 implies that (∂′)2 = 0. Thus {Cn(X,A), ∂′n} is a chain complex.

Definition 1.2.7 (Relative homology). Let A be a subspace of a space X. The

relative homology groups Hn(X,A), n ≥ 0 are defined to be the homology of the

relative chain complex {Cn(X,A), ∂′n}.

We have the obvious notions of relative chain, relative cycle, etc. So, for example, a

relative cycle c ∈ Zn(X,A) is the same thing as a chain c ∈ Cn(X) such that ∂n(c) ∈ A.

As we are considering singular homology, and so c is really a continuous map c : ∆n → X,

what we mean by the statement “ ∂n(c) ∈ A ” is really that σ(∂∆n) ⊂ A. We also have

the corresponding theory for maps, where a map of pairs f : (X,A)→ (Y,B) is simply



22 CHAPTER 1. HOMOLOGY

a continuous map f : X → Y such that f(A) ⊆ B. We also have homotopies of pairs,

which are continuous families of maps of pairs Ft : (X,A)→ (Y,B).

It is easy to check that if x ∈ X is any point, then

Hi(X,x) ≈ H̃i(X) for all i ≥ 0

Homology of quotients. One of the most useful aspects of relative homology is its

relation to the homology of quotient spaces X/A. However one needs a weak hypothesis

on A for this to work. First recall that a space X deformation retracts onto a

subspace A ⊆ X if there is a homotopy F : X × [0, 1] → A so that F0 = IdX and

Ft(a) = a for all a ∈ A, t ∈ [0, 1]. We will say that a nonempty subspace A ⊆ X is

reasonable if there is a neighborhood N(A) (i.e. an open set containing A) such that

N(A) deformation retracts to A.

Examples of reasonable subspaces include any subcomplex of a ∆-complex or a simplicial

complex, and any submanifold of a manifold. On the other hand, the topologist’s sine

curve is not a reasonable subspace of R2, nor is Q ⊂ R.

Let A be a subspace of X. The quotient map p : X → X/A can also be thought of as

a map of pairs p : (X,A)→ (X/A,A/A). The following theorem is gives us access to

computations of the singular homology of several nontrivial examples.

Theorem 1.2.8 (Homology of quotients). Let A be a reasonable subspace of a

topological space X. Then the quotient map p : (X,A)→ (X/A,A/A) induces for each

i ≥ 0 an isomorphism

p∗ : Hi(X,A)→ Hi(X/A,A/A) ≈ H̃i(X/A)

We will prove Theorem 1.2.8 a little later. The power of Theorem 1.2.8 is in the

computability of Hi(X,A), which we continue to develop.

1.2.4 Fundamental theorem of homological algebra

In order to compute Hi(X,A), and hence Hi(X/A), we need some homological algebra.

Much of homological algebra is phrased in the language of exact sequences. Let {An}
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be a sequence of abelian groups, or of chain complexes, or of modules over a fixed ring.

For each n let φn : An → An−1 be a homomorphism in the appropriate category. In

terms of diagrams we write

· · · φn+2→ An+1
φn+1→ An

φn→ An−1
φn−1→ · · ·

We say that this sequence is exact at An if kernel(φn) = image(φn+1). So for example,

in the case that A := {An, φn} is a chain complex, we can view Hn(A) as a measure of

the non-exactness of A at An. We will soon see that the notion of exactness will also

be important in comparing different chain complexes.

Let A,B,C be, as above, abelian groups, chain complexes, or modules over a fixed ring.

Let φ : A → B and ψ : B → C be morphisms in the appropriate category, and let 0

denote the trivial object in that category (e.g. trivial group, the zero chain complex, or

the trivial module). A sequence

0→ A
φ→ B

ψ→ C → 0

is a short exact sequence if it is exact at each of A,B and C. Note that exactness at

A is equivalent to injectivity of φ, while exactness at C is equivalent to surjectivity of ψ.

Note too that in the case of modules, the sequence is exact precisely when C ≈ B/A.

Such exact sequences are ubiquitous in topology. For example, as we showed above,

when A is a subspace of a topological space X, we have an exact sequence of chain

groups

0→ Cn(A)→ Cn(X)→ Cn(X,A)→ 0

But more than this, denoting we have the full singular chain complexes C(A) :=

{Cn(A), ∂n} and C(X), the relative chain complex C(X,A), and chain maps i# : C(A)→
C(X) and j# : C(X)→ C(X,A). . In other words, we have a short exact sequence of give vert-horiz diagrm

chain complexes

0→ Cn(A)→ Cn(X)→ Cn(X,A)→ 0 (1.4)

This is one of the easiest examples of three chain complexes with natural chain maps

between them. The importance of short exact sequence of chain complexes comes from

the following theorem, which allows us to relate the homologies of the complexes in a

short exact sequence.
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Theorem 1.2.9 (Fundamental Theorem of Homological Algebra). Let

0→ A φ→ B ψ→ C → 0

be a short exact sequence of chain complexes. Then for each n ≥ 0 there is a “connecting

homomorphism” ∂ and a “long exact sequence”

· · · (φn+1)∗−→ Hn+1(C) ∂−→ Hn(A)
(ψn)∗−→ Hn(B)

(φn)∗−→ Hn(C) ∂−→ · · ·

Proof. This proof is the “mother of all diagram chases”, and so I will do it out in detail.

This will probably be the last diagram chase I work out for you.

Our first goal is to construct the connecting homomorphism. FINISH PROOF.

Applying Theorem 1.2.9 to the short exact sequence (1.4) gives the following.

Theorem 1.2.10 (Long exact sequence of a pair). Let X be a topological space

and let A ⊆ X be a nonempty subspace. Then there is a long exact sequence

· · · −→ Hn+1(X,A) −→ Hn(A) −→ Hn(X) −→ Hn(X,A) −→ · · · −→ H0(X,A) −→ 0

One can check (homework) that the “connecting homomorphism” ∂ : Hn(X,A) →
Hn(A), defined purely via homological algebra, has a geometric meaning here: if

c ∈ Zn(X,A) is a cycle representing an element of Hn(X,A), then the element ∂[c] ∈
Hn−1(A) is represented by the cycle ∂c ∈ Zn−1(A).

Finally, when using augmented chain complexes, while we still have the exact sequences

0→ Cn(A)→ Cn(X)→ Cn(X,A)→ 0

for each n ≥ 0, we have in the augmented case that C−1(A) = C−1(X) = Z and so

C−1(X,A) = C−1(X)/C−1(A) = 0. This gives that

H̃i(X,A) ≈ Hi(X,A) for all i ≥ 0 (1.5)

Application: Homology of Sn. As a first application of the long exact sequence of

a pair, we use it to compute the (reduced) homology of all spheres Sn, as follows. Let
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n ≥ 1. Applying Theorem 1.2.10 to the pair (X,A) = (Dn, ∂Dn) = (Dn, Sn−1) gives

the long exact sequence

· · · −→ Hi+1(Dn, Sn−1) −→ Hi(S
n−1) −→ Hi(D

n) −→ Hi(D
n, Sn−1) −→ · · ·

· · · −→ H1(Dn) −→ H0(Sn−1) −→ H0(Dn) −→ H0(Dn, Sn−1) −→ 0

Now here is where we want to actually use reduced homology, replacing each of the

homology groups above by their reduced versions. The first thing to note is that

H̃i(D
n) = 0 for i ≥ 0 (recall n > 0). Thus we have for i ≥ 0 that the pieces of this long

exact sequence that are :

0 −→ H̃i+1(Dn, Sn−1) −→ H̃i(S
n−1) −→ 0

which, by exactness, proves that

H̃i+1(Dn, Sn−1) ≈ H̃i(S
n−1) when i > 0 (1.6)

Now, the pair (Dn, Sn−1), n > 0 is always a reasonable pair. Theorem 1.2.8 thus implies

Hi(D
n, Sn−1) = Hi(D

n/Sn−1) for each i ≥ 0 (1.7)

Of course Dn/Sn−1 is homeomorphic to Sn. Since singular homology is a topological

invariant, combining (1.6) and (1.7) gives

H̃i+1(Sn) ≈ H̃i(S
n−1) for all n ≥ 1, i ≥ 0

We can now proceed by induction on n, using the fact that in singular homology we

easily computed directly that H̃i(S
0) =0 for i > 0 and H̃0(S0) = Z. It follows from

induction on n that for any n ≥ 0:

H̃i(S
n) =

{
Z i = n

0 i 6= n

1.2.5 Isomorphism of the simplicial and singular theories

We now know enough about singular homology to prove that it is isomorphic with

singular homology.

THIS STUFF IS EXPLAINED WELL IN HATCHER, p.128-130. PLEASE SEE THAT

EXPLANATION.
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1.2.6 The Excision Theorem

The only thing I still owe you is a proof of Theorem 1.2.8, namely: For reasonable pairs

(X,A) of spaces, the quotient map p : (X,A)→ (X/A,A/A) induces for each i ≥ 0 an

isomorphism

p∗ : Hi(X,A)→ Hi(X/A,A/A) ≈ H̃i(X/A)

where Hi denotes singular homology. This will follow from a somewhat technical but

quite useful theorem, namely the excision theorem in singular homology.

Theorem 1.2.11 (The Excision Theorem). Let X be a topological space with sub-

spaces A,U with U ⊆ A ⊆ X. Assume that the closure of U is contained in the interior

of A. Then the inclusion map i : (X − U,A− U)→ (X,A) induces an isomorphism

i∗ : Hn(X − U,A− U)→ Hn(X,A) for all n ≥ 0

Theorem 1.2.11 is called the “excision theorem” because it basically says that “excising

away U from both X and A doesn’t change the relative homology.

Proof of special case. The usual proof of this theorem (see e.g. Hatcher, §2.1) is quite

complicated. However, the key idea can be gleaned in the following special case.

Assumption: We assume that X is a ∆-complex and that each of the subspaces

A,X − U and A− U of X is actually a subcomplex of X.

The subtlety in the general case: In general, even when X is although (X,A) and

(X−U,A−U) may each individually have the structure of a ∆-complex, the ∆-complex

structures may have nothing to do with each other. This must be dealt with.

With the assumptions above in hand, consider the chain map φ which is the composition

of inclusion followed by projection:

Cn(X − U)→ Cn(X)→ Cn(X,A)

First note that φ is surjective. This is because Cn(X,A) = Cn(X)/Cn(A) has as basis

the collection of simplices of X not contained in the subcomplex A. Of course any such
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simplex lies in X −U . It is also clear that the kernel of φ is Cn(A−U). Thus φ induces

an isomorphism

Cn(X − U,A− U) = Cn(X − U)/Cn(A− U) ≈ Cn(X,A) for each n ≥ 0

Since φ commutes with boundary operators, the theorem follows.

First applications of excision. The excision theorem has many applications. We

can finally prove Theorem 1.2.8, which we restate for the reader’s convenience.

Theorem 1.2.8 (Homology of quotients). Let A be a reasonable subspace of a

topological space X. Then the quotient map p : (X,A)→ (X/A,A/A) induces for each

i ≥ 0 an isomorphism

p∗ : Hi(X,A)→ Hi(X/A,A/A) ≈ H̃i(X/A)

Proof of slightly special case. We prove the theorem under the assumption that A itself

is open, so that we can take V = A. See Hatcher, Proposition 2.22 for the general case,

which is only slightly harder. [It does introduce one new tool, the exact sequence of a

triple]

With this assumption in hand, we have a commutative diagram

Hn(X,A)
≈−→ Hn(X −A,A−A) = Hn(X −A)

p∗ ↓ ↓ (p|X−A)∗

Hn(X/A,A/A)
≈−→ Hn(X/A−A/A,A/A)

Here the horizontal arrows are the excision isomorphisms. Now the right-hand vertical

arrow is the map induced by the restriction of p to X −A, which is a homeomorphism,

so that this right-hand vertical map is an isomorphism. Since the diagram commutes,

p∗ is itself an isomorphism.
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Theorem 1.2.12 (Invariance of dimension). Let V ⊂ Rn and W ⊂ Rm be open

sets. If V ≈W then n = m.

Proof. The theorem is easy if n = 1 or m = 1, so for convenience we assume n,m > 1.

Pick any x ∈ V . Applying the excision theorem (Theorem 1.2.11) with X = Rn, A =

Rn − x and U = Rn − V ) gives that

Hi(V, V − x) ≈ Hi(Rn,Rn − x)

Now Rn−x deformation retracts to Sn−1. The long exact sequence of the pair (Rn,Rn−x)

thus gives

· · · → Hi(Rn)→ Hi(Rn,Rn − x)→ Hi−1(Sn−1)→ Hi−1(Rn)→ · · ·

So for each i > 1 we have

Hi(Rn,Rn − x) ≈ Hi−1(Sn−1)

which (since i, n > 1) vanishes except when i = n. But any homeomorphsim h : V →W

induces a homeomorphism of pairs h : (V, x) → (W,h(x)), which thus induces an

isomorphism

Hi(Rn,Rn − x) ≈ Hi(Rm,Rm − h(x))

and so n = m.

1.3 Applications and more computational tools

In this section we begin to give some applications of the theory we’ve built up so far.

We also introduce more tools so that we can compute Hi(X) for many more spaces X.

1.3.1 Euler characteristic

We begin with a striking application of the topological invariance of simplicial homology.
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Definition 1.3.1 (Euler characteristic). Let X be a finite ∆-complex, and for each

n ≥ 0 let cn(X) denote the number of n-simplices in X. The Euler characteristic of

X, denoted by χ(X), is defined to be the finite alternating sum:

χ(X) :=
∑
n≥0

(−1)ncn(X)

The sum is finite since X is a finite ∆ complex. Even for X = D2, there are ∆-complex

structures on X with wildly varying terms c0, c1, c2. The following remarkable theorem

is a cornerstone of algebraic and combinatorial topology.

Theorem 1.3.2 (Toplogical invariance of χ(X)). Let X be any ∆-complex. Let

bn(X) denote the nth Betti number of X; that is, bn(X) is the rank of the free abelian

part of Hn(X). Then

χ(X) =
∑
n≥0

(−1)nbn(X)

In particular, since each bn(X) depends only on the homotopy type (in particular

homeomorphism type) of X, the same is true for χ(X).

Proof. The number cn(X) is the rank of the free abelian group Cn = Cn(X) of simplicial

n-chains. Let Zn and Bn denote the subgroups of n-cycles and n-boundaries. Since

Hn(X) = Zn/Bn we have that

bn := rank(Hn(X)) = rank(Zn/Bn) = rank(Zn)− rank(Bn) (1.8)

The Rank-Nullity Theorem in linear algebra gives

rank(Cn) = rank(Zn) + rank(Bn−1) for each n ≥ 1 (1.9)

while rank(C0) = rank(Z0) since C0 = Z0. Thus

χ(X) :=
∑

n≥0(−1)n rank(Cn)

= rank(Z0) +
∑

n≥1(−1)n[rank(Zn) + rank(Bn−1)] by (1.9)

= rank(Z0)− rank(Z1)− rank(B0) + rank(Z2) + rank(B1) · · ·
= [rank(Z0)− rank(B0)] + [rank(B1)− rank(Z1)]− · · · by regrouping terms

=
∑

n≥0(−1)n rank(Hn(X)) by (1.8)
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1.3.2 The Lefschetz Fixed Point Theorem

The Lefschetz Fixed Point Theorem is probably the most important fixed point theorem

in mathematics. It was discovered and proven by Solomon Lefschetz around 1926. In

order to explain the theorem and its proof, we need a little bit of algebraic setup.

Let C = {Cn, ∂n} be any finite chain complex of finitely generated free abelian groups.

Any chain map f : C → C induces a homomorphism (fn)∗ : Hn(C) → Hn(C) for each

n ≥ 0. Let Tn(C) denote the torsion subgroup of Hn(C). Since any homomorphism

of an abelian group preserves its torsion subgroup, f clearly induces for each n ≥ 0 a

homomorphism of free abelian groups

(fn)∗ : Hn(C)/Tn(C) −→ Hn(C)/Tn(C)

Let d denote the rank of the free abelian group Hn(C)/Tn(C). If d = 0 then (fn)∗ is

the zero map. If d > 0, we can choose a basis for Hn(C)/Tn(C) so that (fn)∗ acts as

a d× d integer matrix on Hn(C)/Tn(C). Thus (fn)∗ has a well-defined trace, denoted

by Tr((fn)∗), defined as 0 if d = 0 or the sum of the diagonal entries of this matrix if

d > 0. Since similar matrices have the same trace, Tr((fn)∗) does not depend on the

choice of basis.

Not that a chain map f : C → C gives by definition homomorphims fn : Cn → Cn for

all n ≥ 0. Since each Cn is free abelian, fn itself has a well-defined trace Tr(fn). The

Hopf trace formula is a purely homological-algebraic statement that relates the traces

of the two different, and a priori unrelated, homomorphisms associated to a chain map.

Theorem 1.3.3 (Hopf trace formula). Let C = {Cn, ∂n} be any finite chain complex.

Let f : C → C be any chain map. Then∑
n≥0

(−1)n Tr(fn) =
∑
n≥0

(−1)n Tr((fn)∗) (1.10)

Note that the Hopf Trace Formula is a vast generalization of the topological invariance

of Euler characteristic (Theorem 1.3.2): just set f = Id in Hopf’s formula, and note

that the trace of the identity matrix equals the rank of the vector space (or the free

abelian group).
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Proof. We have for each n that Bn ⊆ Zn ⊆ Cn. Pick a basis ∂n+1(σ1), . . . , ∂n+1(σd) for

Bn, extend it to a basis for Zn by adding elements z1, . . . , zr, then extend that to a

basis for Cn. To compute Tr(fn), we have to take any basis vector v and determine the

coefficient λ(v) of v in fn(v). The key thing to observe is that λ(∂n+1σj) = λ(σj) since

f is a chain map. Then

∑
n≥0

(−1)n Tr(fn) =
∑
n≥0

(−1)n
r∑

k=0

λ(zk)

since all other terms in the sum cancel in pairs. Now since Hn(C) has basis {z1, . . . , zr},
we have that

Tr((fn)∗) =
r∑

k=1

λ(zk)

and so we are done.

The Hopf Trace Formula gives us a useful way to attach a number to any continuous

self-map of a ∆-complex.

Definition 1.3.4 (Lefschetz number). Now let X be any finite ∆-complex and let

f : X → X be any continuous map. For each n ≥ 0 let (fn)∗ : Hn(X)/Tn(X) →
Hn(X)/Tn(X) be the induced homomorphism on the free abelian part of the nth

homology group of X. The Lefschetz number of f , denoted by Λ(f), is defined to be

the integer

Λ(f) :=
∑
n≥0

(−1)n Tr((fn)∗)

The remarkable Lefschetz Fixed Point Theorem reduces the existence of a fixed point

for a self-map to the nontriviality of a single integer attached to that map.

Theorem 1.3.5 (Lefschetz Fixed Point Theorem). Let X be any finite ∆-complex

and let f : X → X be any continuous map. If Λ(f) 6= 0 then f has a fixed point.

Proof. Assume that f has no fixed point. We must prove Λ(f) = 0. Put any metric

d on X. Since X is compact and f is continuous, and since f(x) 6= x for any x ∈ X,

there exists δ > 0 so that d(f(x), x) > δ for all x ∈ X. By repeatedly subdividing if

necessary, we can make it so the ∆-complex structure on X has the property that each

simplex has diameter at most δ/100.
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Now homotope f to a simplicial map h : X → X so that d(f(x), h(x)) < δ/2; this can

be done by the Simplicial Approximation Theorem. So d(h(x), x) ≥ δ/2 for all x ∈ X.

In particular, for every simplex σ we have h(σ) ∩ σ = ∅. It follows that Tr(hn) = 0 for

each n ≥ 0. By the Hopf Trace Formula we have Λ(h) = 0. But since f is homotopic to

h we have f∗ = h∗ : Hn(X)→ Hn(X), so that Λ(f) = Λ(h), and we are done.

The Lefschetz Fixed Point gives as a trivial corollary a new proof of the Brouwer Fixed

Point Theorem, and indeed a vast generalization of it.

Corollary 1.3.6. Let X be a finite, connected ∆ complex with Hi(X) = 0 for each

i > 0. Then any continuous map f : X → X has a fixed point.

Of course one immediately obtains Brouwer by setting X = Dn, n > 0.

Proof. Since X is connected, (f0)∗ : H0(X)→ H0(X) is the 1×1 identity matrix. Since

Hi(X) = 0 for i > 0, we have that Tr((fi)∗) = 0 for i > 0. Thus Λ(f) 6= 0. Now apply

Lefschetz.

Since we mention Brouwer, me give an application of it to pure linear algebra.

Corollary 1.3.7. Let A be an n× n matrix of real numbers with each entry positive.

Then A has some positive eigenvalue λ whose eigenvalue is a vector with all coordinates

positive.

Proof. Give.

1.3.3 Maps of spheres, with applications

The theory we have developed so far can be used to give us a pretty complete under-

standing of all homotopy classes of maps f : Sn → Sn between spheres of the same

dimension. The key invariant here is degree.

Definition 1.3.8 (Degree). Recall that H̃n(Sn) ≈ Z for each n ≥ 0. Thus any

continuous map f : Sn → Sn induces a homomorphism f∗ : Hn(Sn) → Hn(Sn). For
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any homomorphism φ : Z → Z there exists a unique r ∈ Z so that φ(z) = rz for all

z ∈ Z. We define the degree of f , denoted by deg f , to be the unique integer so that

f∗(z) = (deg f)z for all z ∈ Hn(Sn)

Since homology is functorial it follows that deg(IdSn) = 1, and for each f, g : Sn → Sn

we have for each z ∈ Hn(Sn):

deg(f ◦ g)z = (f ◦ g)∗(z) = f∗ ◦ g∗(z) = f∗((deg g)(z)) = (deg f)(deg g)(z)

so that

deg(f ◦ g) = (deg f)(deg g)

Since f homotopic to g implies f∗ = g∗, degree is an invariant of homotopy classes of

maps Sn → Sn. What is remarkable is that this is a complete invariant.

Theorem 1.3.9 (Hopf’s classification of maps Sn → Sn). Two continuous maps

f, g : Sn → Sn are homotopic if and only if deg f = deg g.

We will soon see that for n ≥ 1, there exist maps of any degree d ∈ Z. Thus the set of

homotopy classes of maps f : Sn → Sn is in bijective correspondence with Z.

We will need some more machinery before proving Theorem 1.3.9. Meanwhile we can

see that degree is computable in many examples. Let f : Sn → Sn be any continuous

map.

1. If f is not surjective then deg(f) = 0. This follows since the non-surjectivity of

f implies that f∗ : Hn(Sn)→ Hn(Sn) factors through Hn(Sn − x) = 0 for some

x ∈ Sn.

2. Let Σf : ΣSn → ΣSn denote the suspension map of f . Since the inclusion

h : Sn → ΣSn ≈ Sn+1 induces an isomorphism

h∗ : H̃n(Sn)→ H̃n+1(Sn+1)

so that h∗(1) = 1, it follows that

deg(Σf) = deg f
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3. Fix d ≥ 1. Think of S1 as the unit circle in the complex plane, and let ψd :

S1 → S1 be the map ψd(z) := zd. Let X be the ∆-complex structure on S1

given by the union of d edges σ1, . . . , σd, each of length 2π/d, and let Y be the

∆-complex structure on S1 given by a single edge τ with endpoints identified.

Then ψd : X → Y takes each σi onto τ as a homeomorphism on the interior, and

mapping each endpoint of σi onto the common endpoint of τ .

Now H1(X) is generated by the homology class of the 1-cycle
∑d

i=1 σi, while

H1(Y ) is generated by the homology class of the 1-cycle τ . Since ψd(σi) = τ for

each i, we have

ψd(
d∑
i=1

σi) =
d∑
i=1

ψd(σi) =
d∑
i=1

τ = dτ

it follows that (ψd)∗ : H1(X) → H1(Y ) is given by multiplication by d, so that

deg(ψd) = d. We can similarly build a map of any degree d ≤ 1. Since the

constant map has degree 0, we have just proven that there exist maps f : S1 → S1

of any degree d ∈ Z.

It follows from 2 that for any n ≥ 1 there exist maps f : Sn → Sn of any degree

d ∈ Z. For example, the suspension Σψd : S2 → S2 has degree d.

Remark: Implicit in the above discussion is the use of the naturality of the

isomorphism between the simplicial homology Hi(X) and the singular homology

Hs
i (X) ≈ Hs

i (S1), which gives the commutativity of the following diagram:

Hi(X)
(ψd)∗−→ Hi(Y )

≈↓ ↓≈

Hs
i (S1)

(ψd)∗−→ Hs
i (S1)

4. Let Sn = {(x1, . . . , xn+1 :
∑
x2
i = 1} ⊂ Rn+1, and let rn : Sn → Sn be the

reflection

rn(x1, . . . , xn+1) = (−x1, . . . , xn+1)

We claim that

deg(rn) = −1 (1.11)

Proof 1. Induct on n. One can check for n = 1 this by using the method of 1

above directly. Let Σ : Sn → Sn+1 be the suspension map. Then the following

commutative diagram implies deg(r) = −1 by induction:
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Hn(Sn)
Σ∗−→ Hn+1(Sn+1)

(rn)∗

y y(Σrn)∗ = (rn+1)∗

Hn(Sn)
Σ∗−→ Hn+1(Sn+1)

Proof 2. Give Sn the structure of a ∆-complex by gluing two n-simplices ∆1,∆
2

along their boundary; we think of ∆1 as the northern hemisphere and ∆2 as

the southern. Thus Cn(Sn) = Z2, generated by {∆1,∆2}. It is easy to check

that Zn(Sn) = Z, generated by ∆1 −∆2. On the other hand Bn(Sn) = 0 since

Cn+1(Sn) = 0. Thus Hn(Sn) = Zn(Sn) ≈ Z is generated by the homology class

[∆1 −∆2].

Now the chain map r# induced by r is given by r#(∆1) = ∆2 and r#(∆2) = ∆1.

Thus we have

r∗([∆1 −∆2]) = [r#(∆1 −∆2)] = [∆2 −∆1] = −[∆1 −∆2]

Thus r∗(z) = −z for each z ∈ Hn(Sn), giving deg(r) = −1.

The argument just given of course works almost verbatim for any reflection

r(x1, . . . , xn+1) = (x1, . . . ,−xi, . . . , xn+1), giving that deg(r) = −1.

5. Now letA : Sn → Sn be the antipodal mapA(x1, . . . , xn+1) = (−x1, . . . ,−xn+1).

Thus A is the composition of n+ 1 reflections. Since deg(f ◦ g) = (deg f)(deg g)

it follows that

deg(A) = (−1)n+1

Note that as an immediate corollary one obtains that when n is even, A is not

homotopic to the identity. On the other hand, when n is odd it is not hard to

construct a homotopy A ∼ IdSn .

Which self-maps f : Sn → Sn have fixed points? By the Lefschetz fixed-point theorem

we know that

Λ(f) = 1 + (−1)n(deg f)

which is nonzero unless (deg f) = (−1)n+1. So if f has no fixed points, it must have the

same degree as the antipodal map A : Sn → Sn, which of course has no fixed points.
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By Hopf’s classification of maps f : Sn → Sn, we know that any such f is actually

homotopic to A. Meanwhile we can already prove the following, which shows that up

to homotopy, the antipodal map is the only self-map of Sn without a fixed point.

Proposition 1.3.10. Any continuous map f : Sn → Sn without fixed points must be

homotopic to the antipodal map.

Proof. We think of Sn as the set of unit vectors v in Rn+1. For t ∈ [0, 1] let

ft(v) :=
(1− t)f(v)− tv
||(1− t)f(v)− tv||

This is well-defined since by assumption f(v) 6= v, so the line from v to f(v) does not

pass through 0. The maps ft give the desired homotopy.

Application: The Borsuk-Ulam Theorem. See Homework 4.

Application to vector fields on spheres. It is a fundamental question to understand

vector fields on manifolds. Perhaps the simplest question along these lines is to ask

which manifolds admit a (continuous) nonvanishing vector fields. Recall that a vector

field on Sn is defined to be a continuous function V : Sn → Rn+1 so that V (z) is

perpendicular to z for each z ∈ Sn.

The following theorem generalizes to all even dimensions the “Hairy Ball Theorem”,

which states that S2 doesn’t admit any nonvanishing vector field.

Theorem 1.3.11 (Nonvanishing vector fields on spheres). Let n ≥ 1. Then Sn

admits a nonvanishing vector field if and only if n is odd.

Proof. If n is odd just set

f(x1, . . . , xn+1)) := (−x2, x1,−x3, x4, . . . ,−xn+1, xn)

which of course works since n+ 1 is even, and so the terms pair up.



1.4. CW COMPLEXES AND CELLULAR HOMOLOGY 37

If V is a nonvanishing vector field, by replacing V with z 7→ V (Z)/||V (z)|| we get a

continuous map V : Sn → Sn. Assuming this, for t ∈ [0, 1] let

Vt(z) := (cosπt)z + (sinπt)V (z)

Vt is a homotopy from the identity to the antipodal map A, so that 1 = deg(Id) =

deg(A) = (−1)n + 1, which implies that n must be odd. Note that the nonvanishing

vector field V was used to give us, at each z ∈ Sn, a direction in which to rotate in

order to move z to −z.

One can rephrase nonvanishing of V as saying that “V is linearly independent”. Vector

fields {Vi} on Sn are linearly independent if for each z ∈ Sn the vectors {Vi(z)} are

linearly independent in the tangent space TSnz . A much deeper problem is to determine,

for each n ≥ 1, the maximal number of linearly independent vector fields on Sn. This

famous problem was solved by Frank Adams (in “Vector Fields on Spheres”, Annals of

Math., 1962). The fact that he got the exact answer is truly remarkable, considering

that the exact answer is given by the following.

Theorem 1.3.12 (Adams, 1962). Let n ≥ 1. Write

n+ 1 = 24a+b(2k + 1)

for a, b, k integers with 0 ≤ b ≤ 3. Then the maximal number of linearly independent

vector fields admitted by Sn is precisely 2b + 8a− 1.

1.4 CW complexes and cellular homology

With a basic understanding of maps f : Sn → Sn under our belts, we are now able to

develop a homology theory that is most computable in practice - CW homology. This

will agree with simplicial and singular homology when they are all defined. The CW

homology of CW complexes is quite similar to the simplicial homology of ∆-complexes,

but many fewer cells are typically needed, and so computations are much easier.

CW complexes. The class of spaces we consider is the class of CW-complexes.

Consider the following inductive procedure:
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Base step: Let X0 be a discrete set, that is, a set of points given the discrete topology.

We call X0 the 0-skeleton of X.

Inductive step: Suppose for some n ≥ 1, the (n−1)-skeleton Xn−1 is already defined.

Suppose we have a collection of n-disks {Dn
α : α ∈ I}, where I is some index set, and

for each α we are given a continuous map φα : ∂Dn
α → Xn−1. The n-skeleton of X,

denoted Xn, is defined to be the quotient space

Xn := [Xn−1
∐
α∈I

Dn
α]/ ∼

where ∼ is defined by

x ∼ φα(x) ∀x ∈ ∂Dn
α, ∀α ∈ I

Now set X = ∪n≥0X
n. The space X is called a CW complex. The images φ(Dn

α)

are called the n-cells of X, and we say that Xn is obtained from Xn−1 by “adding

n-cells”. The maps φα are called the attaching maps. If N is such that Xn = XN

for all n ≥ N , we say that X is n-dimensional. Note that each Xn has a well-defined

topology, namely the quotient topology, so when X is finite-dimensional X = XN has

this topology. W

When X is infinite-dimensional we need to specify a topology on X. We do this by

declaring a subset A ⊂ X to be open precisely when A ∩Xn is open for each n ≥ 0.

This is called the weak topology on X. Of course one can replace the word “open”

by “closed” in this definition.

When a topological space Y is homeomorphic to a specific CW complex X, we refer to

X as “a CW structure on Y ”. We say that a closed subset Z ⊆ X is a subcomplex of

X if it is a union of cells. Clearly in this case Z is a CW complex in its own right.

The class of CW-complexes includes all ∆-complexes. But CW structures are combina-

torially much simpler than ∆-complex structures.

Example 1.4.1 (First examples of CW complexes). 1. A 1-dimensional CW

complex is called a graph.

2. Sn, n > 0, has a CW-complex structure with one 0-cell v and one n-cell Dn, with

attaching map φ : Dn → {v} the constant map.
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3. The genus g ≥ 1 surface Σg can be given the structure of a CW complex with

one vertex, 2g-edges a1, b1, . . . , ag, bg with the obvious attaching maps, and with

one 2-cell D2 with attaching map φ : ∂D2 → (∪ai ∪ bi) given by dividing the

circle ∂D2 into 4g segments, and mapping the segments in order onto the edges

a1b1a
−1
1 b−1

1 · · · agbga−1
g b−1

g .

4. The n-dimensional real projective space, denoted RPn, is defined to be the

space of lines through the origin in Rn+1. Since the set of such lines is in bijective

correspondence with the set of (unordered) pairs of antipodal points in Sn, we

can topologize RPn as a quotient space

RPn = Sn/(v ∼ −v ∀v ∈ Sn) (1.12)

where Sn is here thought of as the set of unit vectors in Rn+1. From (1.12)

it follows that RPn is the quotient of the upper hemisphere Dn of Sn by the

equivalence relation v ∼ −v for all v ∈ ∂Dn (the equator). Let p : Dn → RPn be

the quotient map. By induction on n it follows that RPn is obtained from RPn−1

by adding the single n-cell Dn, with attaching map the restriction of p to ∂Dn.

Thus RPn is a CW complex with one cell in each dimension 0 ≤ i ≤ n. The space

RP∞ = ∪n≥1RPn is a CW complex with one cell in each dimension i ≥ 0.

5. Let relatively prime numbers q ≥ 1, p ≥ 2 be given. Think of the standard

Sn ⊂ Rn+1. Let Rotp be the rotation of Sn by angle 2πq/p around the vertical

line passing through the north and south poles (i.e. the xn+1-axis). Let r :

Sn → Sn denote the reflection r(x1, . . . , xn, xn+1) = (x1, . . . , xn,−xn+1). The

n-dimensional lens space L(p, q) is defined to be the quotient of Dn by the

equivalence relation

v ∼ Rotp ◦ r(v) for all v ∈ ∂Dn

Note that L(2, 1) ≈ RPn. We claim that L(p, q) has a CW complex structure with

one cell in each dimension 0 ≤ i ≤ n.

6. Let X and Y be CW complexes. The product CW structure on X × Y has

one n-cell Dp ×Dq for every pair consisting of a p-cell Dp of X and a q-cell Dq of

Y with n = p+ q. discuss attaching maps
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Cellular homology. The construction of CW homology rests on two facts: the fact

that we understand and can compute the degree of maps f : Sn → Sn, and the the

fact that CW complexes are built inductively by gluing in cells along their boundary

spheres. The latter is summarized by the following, following Lemma 2.34 of [Ha].

Proposition 1.4.2 (Relative homology of CW complexes). Let X be a CW

complex. Then for each n ≥ 0:

1.

Hi(X
(n), X(n−1)) =

{
0 i 6= n

Zd i = n

where d is the number of n-cells in X.

2. Hi(X
(n)) = 0 for i > n.

3. The inclusion i : X(n) → X induces an isomorphism i∗ : Hk(X
(n)) → Hk(X)

when k < n.

Proof. Look at the long exact sequence of the pair (X(n), X(n−1)). Since the pair is

reasonable,

Hi(X
(n), X(n−1)) ≈ Hi(X

(n)/X(n−1)).

But X(n)/X(n−1) is a wedge of n-spheres, one for each n-cell of X. The proposition

follows.

Note that the proof of Proposition 1.4.2 gives that the basis for Hn(X(n), X(n−1))

is given by the set of n-cells {σr} of X, where the basis element corresponding to

σr : Dn → X(n) is given by the composition

Dn r−→ X(n) p−→ X(n)/X(n−1)

where p is the natural projection.

Proposition 1.4.2 gives us a hint of how to construct a new kind of homology theory for

CW complexes. Let X be a CW complex. We define the group of cellular n-chains

CCW
n (X) by setting

CCW
n (X) := Hn(X(n), X(n−1)) ≈ Z#{σα}
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where Hn denotes singular homology and where {σα} is the set of n-cells of Xn. Note

that in most of the examples we’ve seen, the rank of CCW
n (X) is much smaller than the

rank of the corresponding simplicial chain groups. This will make calculations much

easier (see below).

In order to get a true chain complex we will need to find homomorphisms dn : CCW
n (X)→

CCW
n−1(X) such that dn−1◦dn = 0. Well, the long exact sequence of the pair (X(n), X(n−1))

gives a boundary homomorphism

∂n : Hn(X(n), X(n−1))→ Hn−1(X(n−1)).

The long exact sequence of the pair(X(n−1), X(n−2)) also gives a homomorphism

in−1 : Hn−1(X(n−1))→ Hn−1(X(n−1), X(n−2)).

We now let dn be the composition dn = in−1 ◦ ∂n, that is

dn : Hn((X(n), X(n−1))
∂n−→ Hn−1(X(n−1))

in−1−→ Hn−1(X(n−1), X(n−2))

It is straightforward to check (see [Ha], page 139) that dn−1 ◦ dn = 0. Thus CCW(X) :=

{CCW
n (X), dn} is a chain complex, called the complex of CW chains on X.

Definition 1.4.3 (CW homology). Let X be a CW complex, and let CCW(X) denote

the complex of CW chains on X. The CW homology of X, denoted by HCW
n (X), is

the homology of this chain complex:

HCW
n (X) := Hn(CCW(X))

The main usefulness of CW homology comes from the following.

Theorem 1.4.4. Let X be a CW complex. Then HCW
n (X) ≈ Hn(X) for all n ≥ 0.

Theorem 1.4.4 has a number of useful consequences. First, it implies that HCW
n (X)

is a topological invariant; indeed an invariant of homotopy equivalence. Second, if

X has no n-cells for any n > N , then clearly Hn(X) = HCW
n (X) = 0 for all n > N .

Finally, since the set of n-cells forms a basis for Cn(X), we obtain the trivial bound

that Hn(X) = HCW
n (X) has rank at most the number of n-cells of X.
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Remark 1.4.5 (Euler characteristic). By the topological invariance of CW-homology,

we can use CW-chains to compute Euler characteristic. This makes computations quite

easy. For example, it is possible simply by inspection to compute that χ(Sn) =

1 + (−1)n+1, that χ(Sg) = 2− 2g, and that χ(RPn) = 0 for n odd and χ(RPn) = 1 for

n even.

Similarly we can use CW-chains when computing Lefschetz numbers.

In order to compute the CW-homology groups we need a better handle on the boundary

maps. This is given in terms of degrees of maps between spheres. We have for each

n ≥ 0 that CCW
n (X) is generated by the set of n-cells of X. Let {σα : Dn → X} be the

set of n-cells of X, and let {τβ : Dn−1 → X} be the set of (n− 1)-cells. We then have,

for each fixed α and β, a map

ψαβ : Sn−1 → Sn−1

defined as the composition of σα restricted to ∂Dn = Sn−1, which has image lying in

X(n−1), followed by the quotient map X(n−1)/[X(n−1) − τβ(Dn−1)]. We set

dαβ := deg(ψαβ) ∈ Z

Thus dαβ measures how many times the boundary of the n-cell σα wraps around the

(n− 1)-cell τβ . Since degree is computable in practice, so are the numbers dαβ . The key

to computing CW-homology is the following lemma.

Lemma 1.4.6 (Computing dn). Let notation be as above. Then for each α

dn(σα) =
∑
β

dαβτβ

Proof. This is easy from the definitions. Try it yourself. Otherwise see [Ha], page

141.

Example 1.4.7. We begin with some examples that show how easy it is to compute CW

homology. The CW structure of some of the examples is given above in Example 1.4.1

above.

1. For n > 0 each boundary map on CW-chains Ci(S
n) on Sn is the zero map, so

that H̃i(S
n) = 0 for i 6= n and H̃n(Sn) = Cn(Sn) = Z, generated by the n-cell.
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2. For the genus g ≥ 1 surface the complex of CW-chains is

0→ Z ∂2−→ Z2g ∂1−→ Z ∂0−→ 0

where ∂1 = 0 and ∂2(z) = a1 + b1 − a1 + b1 + · · ·+ ag + bg − ag − bg = 0 where z

is the generator of C2(Sg). It follows that

Hi(Sg) =


Z i = 0, 2

Z2g i = 1

0 i > 2

3. Let X = Sn × Sn. Then X can be given as a CW complex with one 0-cell, two

n-cells, and one 2n-cell. When n = 1 then X = S1 × S1 is the torus, which we

worked out above. For n > 2, the dimensions are such that all boundary maps

are the zero map, so

Hi(S
n × Sn) =


Z i = 0, 2n

Z2 i = n

0 i 6= 0, n, 2n

4. Let X = RPn.

Example 1.4.8 (Complex projective space). The n-dimensional complex pro-

jective space CPn is the space of (complex) lines in the (n+ 1)-dimensional complex

vector space Cn+1 passing through the origin. One cell in each dimension 2i with

0 ≤ i ≤ n. Now a line in Cn+1 is just the C-span of a single nonzero vector v ∈ Cn+1.

Two vectors u, v determine the same line precisely when u = λv for some λ ∈ C∗.
Thus CPn is the quotient Cn+1 − {0}/ ∼ where uṽ if u = λv for some λ ∈ C∗. Each

equivalence class [v] ∈ CPn clearly has a representative v with ||v|| = 1. Thus if we

denote by S2n+1 the unit sphere in Cn+1, we have that CPn ≈ S2n+1/ ∼ where u ∼ v if

u = λv with λ ∈ C satisfies |λ| = 1. The set of such complex numbers is the unit circle

in C, where λ acts on and (n+ 1)-tuples in Cn+1 by rotating each coordinate by the

argument of λ.

For n = 1, we have that CP1 is the quotient of S3 by a free S1 action, with quotient

CP1 = S2, giving the famous Hopf fibration S1 → S3 → S2, which we will study

later. Now let n ≥ 1. The last coordinate vn+1 of v ∈ S2n+1 ⊂ Cn+1 is just a complex

number. By multiplying vn+1 by λ with |λ| = 1, in other words by rotating the vector
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vn+1 in C, we can assume that vn+1 has zero imaginary part and positive real part.

Since
∑n+1

i=1 vi = ||v|| = 1, another way to look at this is that v can be taken to be of

the form v = (w,
√

1− |w|2) with w ∈ Cn and ||w|| ≤ 1. The set of such w is just the

closed unit ball D2n ⊂ Cn.

We have used up all of our freedom in finding an element for each equivalence class

[v] ∈ CPn, except that in the special case when vn+1 = 0, that is when w ∈ ∂D2n,

we can again multiply the (n + 1)-tuple V by any λ ∈ C∗ without changing the last

coordinate Vn+1. We are thus left with CPn = D2n/ ∼ where ∼ is given by w ∼ λw for

each w ∈ ∂D2n and λ ∈ C∗, where ∂Dn ≈ S2n−1 is thought of as the unit sphere in Cn.

But the discussion above proves that the quotient of S2n−1 by the equivalence relation

∼ is precisely CPn−1.

When n = 1 the above discussion specializes to give that CP1 is obtained from D2 by

identifying its boundary ∂D2 ≈ S1 to a point (since any unit vector can be rotated

to any other), giving that CP1 is a CW-complex with one 0-cell and one 2-cell. With

this as base case, the last paragraph gives by induction that CPn is a CW complex

with one cell in each dimension 0, 2, . . . , 2n, with the attaching map defined inductively

by D2n → CPn−1 equal to the quotient map ∂D2n ≈ S2n−1 → S2n−1/ ∼≈ CPn−1

described above.

The above description gives that CPn is a CW complex with complex of CW-chains

given by C2 = C4 = · · · = C2n = Z, and with Ci = 0 otherwise. Of course this implies

that all boundary maps ∂i are zero, so that

Hi(CPn) =

{
Z i = 0, 2, . . . , 2n

0 otherwise

This computation extends immediately to give that Hi(CP∞) = Z for all even i ≥ 0

and Hi(CPn) = 0 for all odd i ≥ 0.

1.5 Mayer-Vietoris

The Mayer-Vietoris sequence is one of the most use tools in the computation of homology.

Theorem 1.5.1 (Mayer-Vietoris). Let X be any space, and let i : A → X and j :
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B → X be inclusions of subspaces. Suppose that the union of the interiors int(A)∪int(B)

is all of X. Then there is a long exact sequence in homology:

· · · −→ Hn(A∩B)
i∗⊕j∗−→ Hn(A)⊕Hn(B) −→ Hn(X)

∂n−→ Hn−1(A∩B) −→ · · · −→ H0(X)→ 0

When A 6= ∅, such a long exact sequence exists for reduced homology. Both sequences

are natural with respect to homomorphisms induced by continuous maps of triples

f : (X,A,B)→ (X ′, A′, B′).

Proof. Define Cn(A+B) to be the subgroup of Cn(X) consisting of those elements that

can be written as the sum of an element of Cn(A) and an element of Cn(B). Note that

when A∩B = ∅ then Cn(A+B) = Cn(A)⊕Cn(B), but when A∩B 6= ∅ this is typically

no longer true. Let φ : Cn(A)⊕Cn(B)→ Cn(A+B) be defined by φ(a, b) := i(a) + j(b).

Then there is a short exact sequence of chain complexes

0 −→ Cn(A ∩B)
i#⊕j#−→ Cn(A)⊕ Cn(B)

φ−→ Cn(A+B) −→ 0 (1.13)

is exact. Here we are implicitly using that the image of φ lies in Cn(A+ B). By the

Fundamental Theorem of Homological Algebra, (1.13) induces a long exact sequence

· · · −→ Hn(A∩B)
i∗⊕j∗−→ Hn(A)⊕Hn(B)

φ∗−→ Hn(A+B)
∂n−→ Hn−1(A∩B) −→ · · · −→ H0(A+B)→ 0

where of course H∗(A+B) denotes the homology of the chain complex {Cn(A+B)}.
The case of reduced homology is similar, and naturality is straightforward to check.

We claim that the inclusion h : Cn(A + B) → Cn(X) induces an isomorphism on

homology (which one can check is natural, and also holds for reduced homology). With

the above, this claim finishes the proof.

When X is a ∆ complex with finitely many cells, the idea behind the claim is that since

the interiors of A and B cover X, one can find a ∆-complex structure on X, each of

whose cells lies in A or B (or both).

One can use the simplicial approximation theorem to directly define a chain homotopy

inverse of h, giving that it is a chain homotopy equivalence. A slightly simpler method

is to note that the short exact sequence

0→ Cn(A+B)→ Cn(X)→ Cn(X)/Cn(A+B)→ 0
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gives a long exact sequence, from which we see that it is enough to prove that the chain

complex {Cn(X)/Cn(A+B)} has vanishing homology in each degree. Unravelling the

definitions, we must prove that for any σ ∈ Cn(X) with ∂σ ∈ Cn−1(A+B), there exists

τ ∈ Cn+1(X) so that σ + ∂n+1τ lies in Cn(A+B). The construction of τ can be done

by using simplicial approximation, repeatedly subdiving X.

The Mayer-Vietoris Theorem gives us a powerful tool to compute homology.

Example 1.5.2 (Computing using Mayer-Vietoris). We begin with some easy

examples.

1. X = Sn, A = Dn
+, B = Dn

−.

2. Connect sums M#N of n-manifolds.

(a) Can compute Hi(Sg) by induction, using S1 = T 2 and Sg+1 ≈ Sg#T 2.

(b) 3-manifolds. Mention Kneser-Milnor Prime Decomposition Theorem.

(c) Recall the following problem from the midterm: Let Sg be a closed, connected

(oriented) genus g ≥ 2 surface. Let f : Sg → Sg be a homeomorphism. Let

M3
f be the mapping torus of f :

M3
f :=

Sg × [0, 1]

(x, 0) ∼ (f(x), 1) ∀x ∈ Sg

Assume that f∗ : H1(Sg) → H1(Sg) is the identity. [Note: there exist

incredibly complicated f , far from being homotopic to Id, with this property.]

(a) Prove that H2(M3
f ) ≈ Z2g+1.

(b) Even if you can’t do part (a), find/guess 2g+ 1 maps of surfaces into M3
f

that represent a basis for H2(M3
f ).



Chapter 2

Cohomology

Cohomology is a functor that is morally a kind of “dual” to homology. As abelian groups

each can be constructed from the other. However, moving to this dual point of view

exposes a remarkably rich structure that is ubiquitous in mathematics. Cohomology

appears naturally in areas as diverse as algebraic geometry, dynamical systems, the

theory of group extensions, the theory of foliations, and more. The fundamental nature

of cohomology is not surprising when one realizes that the act of carrying when adding

numbers is the same thing as evaluating a certain cocycle.

2.1 Cohomology of a chain complex

Just as with homology theory, one constructs the cohomology of a chain complex, and

then applies this construction to simplicial chains, singular chains, CW chains, etc. This

section is purely homological-algebraic. There is no topology here. We will apply this

homological algebra to topology in the sections that follow.

2.1.1 Definition and basic properties

To construct cohomology groups we first have to understand how to “dualize” an abelian

group A with respect a fixed “coefficient group” G. To this end, fix an abelian group

47
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G, for example G = Z,Z/dZ,Q,R. For any abelian group A, let Hom(A,G) denote the

set of homomorphisms φ : A→ G. The set Hom(A,G) is itself an abelian group under

addition:

(φ+ ψ)(a) := φ(a) + ψ(a) (2.1)

where the + on the left-hand side of (2.1) denotes the group operation in Hom(A,G)

and the + on the right-hand side of (2.1) denotes the group operation in G. Any

homomorphism Ψ : A→ A′ of abelian groups induces a homomorphism

Ψ∗ : Hom(A′, G)→ Hom(A,G)

defined by

Ψ∗(φ)(a) := φ ◦Ψ(a) for all φ ∈ Hom(A′, G)

The operation φ 7→ φ∗ is natural in the sense that Id∗ = Id and φψ)∗ = ψ∗ ◦ φ∗. What

we have just proved is that Hom(−, G) is a contravariant functor from the category of

abelian groups and homomorphisms to itself.

Now let C := {Cn, ∂n} be a chain complex of free abelian groups. Applying the functor

Hom(−, G) to this setup gives a collection of abelian groups C∗n := Hom(Cn, G), called

the cochain groups, and homomorphisms ∂∗n : C∗n−1 → C∗n, called coboundary

homomorphisms. For historic reasons the dual homomorphism ∂∗n is denoted by δn.

We think of elements f ∈ Cn as G-valued functions on Cn. Since Cn is free-abelian,

elements of C∗n are in bijective correspondence with labelings of the generators of Cn by

elements of G.

Since ∂n ◦ ∂n+1 = 0 for each n ≥ 0, it follows from functoriality that

δn+1 ◦ δn = ∂∗n+1 ◦ ∂n∗ = (∂n ◦ ∂n+1)∗ = 0∗ = 0

The collection C∗ := {C∗n, δn} is called the cochain complex with coefficients in G

associated to the chain complex C.

Definition 2.1.1 (Cohomology with coefficients in G). Let the terminology be

as above. For any n ≥ 0, the nth group of C with coefficients in G, denoted by

Hn(C;G) is defined to be

Hn(C;G) := kernel(δn)/image(δn−1)
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Basic properties. Just as with homology theory, it is straightforward to check that

any chain map f : C → C′ induces for each n ≥ 0 homomorphisms f∗n : Hn(C′;G) →
Hn(C;G), and the association f 7→ f∗ is natural in the sense that

Id∗C = IdH∗(C;G) and (f ◦ g)∗ = g∗ ◦ f∗

for chain maps f : C → C′ and g : C′ → C′′ . These facts follow from the corresponding

properties of Hom(−, G) and the fact that

f ◦ ∂ = δ ◦ f

We have just shown that:

Hn(−;G) is a contravariant functor from the category of chain complexes and chain

maps to the category of abelian groups and homomorphisms.

Note the contravariance; it comes from the contravariance of the functor Hom(−, G).

Just as with homology, any chain homotopy between chain maps f, g : C → C′ gives for

each n the equality f∗ = g∗ : Hn(C′ ;G)→ Hn(C;G). In particular any chain homotopy

equivalence induces an isomorphism of cohomology groups.

For each statement about homology there is typically a corresponding statement for

cohomology (although, as we will see, the converse is not true!). The proofs are

usually the same. A particularly important example is the cohomology version of the

Fundamental Theorem of Homological Algebra.

Theorem 2.1.2 (FTHA, cohomology version). Let

0→ A φ→ B ψ→ C → 0

be a short exact sequence of chain complexes. Then for each n ≥ 0 there is a “connecting

homomorphism” ∂ and a “long exact sequence”

· · · (φn+1)∗←− Hn+1(C) ∂←− Hn(A)
(ψn)∗←− Hn(B)

(φn)∗←− Hn(C) ∂←− · · ·

2.1.2 The Universal Coefficients Theorem

It is definitely not always true that the abelian groups Hn(C;G) and Hn(C;G) are equal,

or somehow “duals” of each other, even when G = Z. For example, consider the chain
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complex

· · · −→ C3
0−→ C2

×2−→ C1
0−→ C0 −→ 0

· · · −→ 0
0−→ Z ×2−→ Z 0−→ Z −→ 0

whose corresponding dual chain complex C∗ is given by

· · · ←− 0
0←− Z ×2←− Z 0←− Z←− 0

We then have

H0(C) = Z and H1(C) = Z/2Z and H2(C) = Z

but

H0(C;Z) = Z and H1(C;Z) = Z and H2(C;Z) = Z/2Z

No, the truth is more subtle. It turns out that if we know Hi(C) for every i ≥ 0, then

the groups H i(C;G) are indeed determined.

How can we measure the difference between homology and cohomology? Well, let

C := {Cn, ∂n} be any chain complex. We claim there is a map

Ψ : Hn(C;G)→ Hom(Hn(C), G)

defined as follows. For any element [φ] ∈ Hn(C, G) pick a cycle φ ∈ Hom(Cn, G) with

δ ◦ φ = 0 representing the equivalence class [φ]. Since

φ(Bn) = φ ◦ ∂(Cn) = δ ◦ φ(Cn) = 0

and so the restriction of φ to Zn induces a homomorphism φ : Zn/Bn → G. Another

choice of representative ψ ∈ Hom(Cn, G) of [φ] ∈ Hn(C, G) is of the form ψ = φ+ δτ

for some τ , and so on any σ ∈ Zn we have δτ(z) = τ∂z = 0, so that

ψ(z) = φ(z) + δτ(z) = φ(z).

This proves that the map

Ψ([φ]) := φ

is well-defined. It is straightforward to check that Ψ is surjective, so that we have a

short exact sequence

0 −→ ker(Ψ) −→ Hn(C, G)
Ψ−→ Hom(Hn(C, G)) −→ 0 (2.2)
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ker(Ψ) is not always trivial. The subtlety of the problem in determining ker(Ψ) is that

it does not just depend on Hn(C). in order to describe ker(Ψ) precisely we need to use

a certain functor called Ext, which we now describe.

Fix an abelian group G. To any abelian group A we define an abelian group Ext(A,G)

via the following procedure: Let I be any set of generators for A. By the universal

property of free abelian groups, the free abelian group VI on the set I surjects onto

A; let K be the kernel of this surjection. Note that since K is a subgroup of the free

abelian group VI , it is also free abelian. We thus have a chain complex C of free abelian

groups

· · · → 0→ C2 → C1 → C0 → 0

· · · → 0→ K → VI → A→ 0

which gives a dual chain complex

· · · ← 0← K∗ ← V ∗I ← A∗ ← 0

By construction we see that H0(C;G) = H2(C;G) = 0. it is not hard to check (do it!)

that the group H1(C;G), which in general may not vanish, does not depend on the

choice of generating set I for A. We then define

Ext(A;G) := H1(C;G)

Ext is actually a functor from the category of abelian groups to itself, but we won’t

need this. By the way, the name “Ext(A,G)” comes from the fact that it is a key object

in classifying (isomorphism classes of) group extensions of the group G by the group A.

The main thing we will need are the following elementary computations.

• Ext(A⊕B,G) = Ext(A,G)⊕ Ext(B,G).

• Ext(A,G) = 0 for free abelian A.

• Ext(Z/nZ, G) = G/nG, where nG is the subgroup of G consisting of nth powers

gn ∈ G (or, written additively, elements ng with g ∈ G).
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These three computations easily determine Ext(A,G) for any finitely generated abelian

group A.

We can now describe ker(Ψ) from Equation (2.2) above; namely

ker(Ψ) = Ext(Hn−1(C, G)) (2.3)

Thus it is the (n− 1)st homology group that determines, via Ext(−, G), the difference

between Hn(C) and Hn(C, G). We record this as the following.

Theorem 2.1.3 (Universal Coefficients Theorem). Let C be a chain complex of

free abelian groups. Then there exists for each n ≥ 0 a short exact sequence of abelian

groups:

0 −→ Ext(Hn−1(C), G) −→ Hn(C;G)
Ψ−→ Hom(Hn(C), G) −→ 0

The proof of Equation (2.3) is straightforward but somewhat involved; the interested

reader can consult §3.1 of [Ha]. By the above discussion, it implies Theorem 2.1.3. Note

that Theorem 2.1.3 implies that the collection of homology groups {Hn(C) determines

the collection of cohomology groups {Hn(C;G)}. An important special case of the

Universal Coefficients Theorem is when G is a field, which gives the following.

Corollary 2.1.4. Let C be a chain complex of free abelian groups. Then for any field

F and any n ≥ 0:

Hn(C;F) ≈ Hom(Hn(C),F)

Another direct corollary of Theorem 2.1.3 is the following.

Corollary 2.1.5. Let C be a chain complex of free abelian groups. Suppose that Hi(C)
is finitely generated for i = n, n− 1. Let Ti(C) be the torsion subgroup of Hi(C). Then

Hn(C;Z) = Hn(C)/Tn(C)⊕ Tn−1(C).

2.2 Cohomology of spaces

With the above algebraic setup, we can plug in the simplicial, singular, and CW

chain groups Cn(X) of ∆-complexes (or spaces, or CW complexes) X to define the
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corresponding cohomology groups with coefficients in G via

Hn(X;G) := Hn({Cn(X)})

In this case we can work out what the coboundary operator δn : Cn(X) → Cn+1(X)

looks like, namely for any σ ∈ Cn+1(X) - GIVE.

With this setup we now have all of the theorems and computational tools for cohomology

that we had for homology, such as: homotopy invariance, relative groups and the LES

of pairs, excision, Mayer-Vietoris, etc.

2.2.1 Cup product

Cohomology theory is so useful because it has a lot more structure; in particular it

allows us to associate to any space X not just groups Hn(X), but a ring, as we now

explain.

In order to define the extra structure we want, we need to fix once and for all not just

an abelian group of coefficients, but a ring R of coefficients. Of course a ring is just

an abelian group under addition, but it has the additional structure of multiplication.

Here you should think of R = Z,Z/dZ,Q,R.

Given a space X we can combine the cohomology groups into one group by declaring

H∗(X;R) :=
⊕
n≥0

Hn(X;R)

We say that an element c ∈ H∗(X;R) has degree d if c ∈ Hd(X;R). We define a product

on the abelian H∗(X;R), as follows: Given any cochains a ∈ Ci(X;R), b ∈ Cj(X;R),

define the cup product σ ∪ τCi+j(X;R) to be the unique linear extension of the

homomorphism defined on a basis element σ : ∆i+j = [v0v1 · · · vi+j ]→ R:

(a ∪ b)(σ) := a(σ|[v0···vi]) · b(τ |[vi · · · vi+j ]) (2.4)

Here the symbol · on the right-hand side of (2.4) is multiplication in the ring R. This

is exactly where we use that R is a ring, not just a group. It is easy to verify directly
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from the definition that the operation ∪ satisfies a “graded product rule” under the

coboundary operator: for each a ∈ Ci(X;R), b ∈ Cj(X;R)

δ(a ∪ b) = δa ∪ b+ (−1)ia ∪ δb

Equation (2.4) implies that the cup product of cocycles is again a cocycle, and the cup

product a ∪ δb = δa ∪ b = 0, so that cup product induces a homomorphism

∪ : H i(X;R)×Hj(X;R)→ H i+j(X;R)

In particular we have defined a multiplication map

∪ : H∗(X;R)⊗H∗(X;R)→ H∗(X;R)

This multiplication is both associative and distributive, since this is already true at the

level of chains. The zero element 0 ∈ H0(X;R), namely the zero map, is the identity

element of H∗(X;R) as an abelian group under addition. Let 1 ∈ H0(X;R) denote the

unique linear extension of the homomorphism C0(X)→ R that assigns the value 1 to

each 0-simplex. It is clear that a ∪ 1 = 1 ∪ a = a for all a ∈ H∗(X;R). Note here that

we have just used the fact that R is a ring with 0 and 1.

We have just proved the following.

Proposition 2.2.1 (H ∗ (X) is a ring). Let R be any ring and let X be any space.

Then H∗(X;R) is a ring under the operation of addition of cocycles and cup product.

It follows from the construction that this ring structure is natural: any continuous map

f : X → Y of spaces induces a (grading preserving) homomorphism of graded rings

f∗ : H∗(Y ;G) → H∗(X;G), and if f is homotopic to g then f∗ = g∗. It follows that

any homotopy equivalence induces an isomorphism of cohomology rings.

Examples 2.2.2. 1. We begin with an example of two spaces with isomorphic

(co)homology groups, but non-isomorphic cohomology rings. Let X = S1∨S1∨S2,

and let T 2 denote the torus. Then Hi(X) ≈ Hi(T
2) for each i ≥ 0. Thus

H i(X;G) ≈ H i(T 2;G) for any coefficient group G. However, the two rings

H∗(X;Z) and H∗(T 2;G) are not isomorphic, so that X is not homotopy equivalent

to T 2.
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2. Compute the cohomology ring of Sg, g ≥ 2.

3. Compute H∗(RPn;Z) as a ring. Same for H∗(RPn;Z/2Z).

4. Let X be a space, and let U, V ⊂ X be open subspaces with X = U ∪V . Suppose

that U and V are acyclic (i.e. all reduced homology groups vanish).

(a) Prove that a ∪ b = 0 for all a, b ∈ H∗(X) of positive degree. [Hint: Look up

the relative cup product in Hatcher, and use it.]

(b) Conclude that RP2 and T 2 cannot be written as a union of two open, acyclic

subspaces. Also conclude that the suspension of any space has trivial cup product

in positive degree.
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