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Abstract: The development of algebraic topology in the twen-
tieth century is one of the most important advances of its time.
However, how did this development get under way? What forces
worked to advance the subject, and perhaps more interestingly, to
retard the development in its early days? In this talk I will present
some historical approaches to these questions and the answers they
produce.

Toutes les voies diverses où je m’étais engagé successivement me

conduisaient à l’Analysis Situs.

Henri Poincaré

The history of algebraic topology is not so easy to describe. As a hybrid subject,
its roots lie in different places and the synthesis of these diverse ideas gave birth to
the activity. It is also the case that the field of study, algebraic topology, only came
to be in a time when branches of mathematics separated themselves into different
communities. This separation was not a feature of earlier times. It is also the case that
the development of algebraic topology can be said to be one of the most impressive
features of twentieth century mathematics.

To frame the history, let’s consider some of the ways in which twentieth century
mathematics was different than other times.

1) The rise of abstraction, pioneered by Hilbert and his coworkers in Göttingen. This
approach to developing mathematics was much admired and emulated. Eventually
topological notions were organized in this manner.

2) New centers of activity grew up into what might be called “schools,” although this
term must be used with caution. The spread of pioneering ideas often came from
these centers outward, and so examining them is important.

3) Most history of mathematics is presented as a series of successes. What about
the failures? Topology did not simply spring forth in its present form, and some of
the paths that were less successful were abandoned, sometimes to be taken up again
later. A deeper presentation of history must include these failures and the contexts
in which they occurred.

In his recent book on the development of contemporary mathematics (“Plato’s

Ghost” [?]) Jeremy Gray identified a feature of mathematics early in the twentieth
century: The end of the nineteenth century is marked by a “growing appreciation of
error,” especially in the developments in analysis and in the foundations of mathe-
matics. There was a sense of ‘anxiety’ that was evident and the role of this anxiety
was to foster, for example, a deeper desire for rigor. Anxiety about methods and
results was not the only expression of fear. There was also anxiety about the status
of this emerging field of topological investigation.
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We recount three incidents that reveal a kind of anxiety over algebraic topology.
In a recent article [?], Beno Eckmann, a student of Heinz Hopf, recalled an encounter
with Hermann Weyl (1885–1955). Eckmann asked Weyl why he had published his
1923/24 papers [?], Analysis Situs Combinatorio, in the Revista Matematica Hispano-

Americana, and in Spanish! Weyl replied that he did not want to draw attention to
the publication, that his colleagues should not read them. The subject matter was
not serious mathematics!

Another remark on topology from the decade of the 20’s is contained in a 1929
address [?] to the Deutsche Mathematische Vereinigung (DMV) by B. L. van der
Waerden (1903–1996) who described combinatorial topology as “a battlefield of dif-
fering methods. . . .” The lack of a rigorous definition of manifold was the key issue
here, and van der Waerden, the quintessential Göttinger mathematician, wanted more
clarity in this endeavor.

A key figure in the emergence of algebraic topology is Brouwer, whose charis-
matic nature and leadership ability made him a guru to young topologists as well as
a threat to other leadership figures. Though Brouwer’s work in topology was limited
to the remarkable years 1909–1912, he kept a hand in the field by encouraging others,
and through his prominence as cooperating editor of Mathematische Annalen from
1915. The Annalen was based in Göttingen and had become the most prestigious
journal in mathematics in the years around the First World War. Its principal editors
were Hilbert, Einstein, Blumenthal and Carathéodory; Brouwer was listed among the
cooperating editors. When Brouwer’s intuitionistic stance on mathematics threat-
ened Hilbert’s leadership on foundational questions, Hilbert requested the removal of
Brouwer from the position of editor for the Annalen. Brouwer reacted with a flurry
of irate letters, but eventually he withdrew from the Annalen. He then founded a
new journal, Compositio Mathematicae. In their correspondance, the young topol-
ogists at the time, Hopf and Alexandroff, discussed this conflict with considerable
interest. Hopf felt that Brouwer’s absence from the editorial board would make it less
likely that his papers, and papers in topology more generally, would appear in this
journal which drew the most attention in the mathematical community. Alexandroff
felt that Hopf’s work and reputation had reached such a stage in 1929 that he could
publish anywhere. However, Hopf’s next paper was submitted to Crelle (Hs 160.99),
and after his arrival in Zürich in 1931, his work appeared primarily in Commentarii

Mathematici Helvetici or Brouwer’s Compositio Mathematicae.
In what follows, we will relate these instances to the emergence of a new field in

the twentieth century. Along the way we will present some of the context that made
the path to the study of algebraic topology possible.

This talk is based on various accounts of the history of these ideas (notably by
Scholz [?] and by Epple [?]) and on archival research in Zürich, Paris, and elsewhere.

§1. All roads lead from Poincaré

In a series of memoirs [?] on the global properties of solution curves to differential
equations on orientable surfaces, Poincaré introduced some topological notions relat-
ing the Euler characteristic of a surface (V −E+F ) and the behaviour of singularities
of a flow on the surface. To understand his definition of the index of a singularity of
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a flow on a surface, consider a simple closed curve on the surface which encloses a
simply-connected region, a cycle.

p

q

The flow passes through this cycle at the points along it and a flow line might pass
through transversely or meet the curve tangentially and remain either outside the
region (an external point on the cycle) or inside the region (an internal point on the
cycle). The index of the cycle is defined to be the integer

J =
e − i − 2

2
,

where e is the number of external points on the cycle and i the number of internal
points. A region without singularities has index zero. The index of a singularity is
the index of a cycle that encloses a region containing only that singularity. The local
pictures of a flow near a singularity had been worked out by Poincaré and the various
cases determine the index for a cycle enclosing the singular point.

The main result of this development is the Poincaré index theorem [?]: if the
number of singular points of a flow on an orientable surface is finite, the sum of
the indices at the singular points is minus the Euler characteristic of the surface,
V − E + F = 2 − 2p, where p denotes the genus (the number of handles) of the
surface.

To prove this Poincaré first proves that the index is additive with respect to a
subdivision of a cycle into two pieces: If C = APBMA = ANBMA+APBNA, then

A

B

P MN

ind.APBMA = ind.ANBMA + ind.APBNA.

The step to the global result comes by triangulating the surface into simply-
connected regions and comparing the contribution along edges or through the vertices.
Since an exterior point along an edge is an interior point for the adjacent cycle, these
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contributions cancel and the sum
∑

α

E(α)− I(α) is determined by the contributions

through vertices:

vi

Each vertex contributes its valence less 2 and so

∑

cycles, α

E(α) − I(α) =
∑

vertices

valence − 2 =
∑

vertices

valence − 2#vertices

= 2#edges − 2#vertices.

It follows that

∑

cycles, α

E(α) − I(α) − 2 = 2#edges − 2#vertices − 2#faces = −2χ(S) = 2(2p− 2).

Poincaré reaped the immediate consequences of this result—for example, on a two-
dimensional sphere, every flow must have a singular point (the theorem affectionately
called the Hairy Ball Theorem; the wind is not blowing somewhere on the globe); the
only closed compact orientable surface possessing a singularity-free flow is the torus.
He had developed in earlier papers of this series a local classification of singularities
as cols (passes), nœuds (nodes), and foyers (foci) and by computing the contribution
of each singularity we find

#nœuds − #cols + #foyers = χ(S).

§2. Manifolds

In the celebrated paper Analysis situs and its supplements, Poincaré [?] initiated
the topological study of manifolds. He gave examples arising in various ways—as
the inverse image of a regular value of a differentiable function from an open subset
of R

n+k to R
n; as a set with a finite atlas of differentiable parametrizations; as a

geometric cell complex assembled out of simplices and satisfying the local manifold
condition; and more generally as a cell complex made by identifying handle bodies
along their boundaries. Poincaré did not unify these examples with a single definition
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(as was his style). However, he did introduce new topological methods of study,
including the notions of cobordism, homology, the fundamental group, etc. (see Scholz
[?]). Poincaré defined a notion of equivalence of manifolds, ‘homéomorphismes’, given
by changes of coordinates (the present-day diffeomorphism). By collecting all such
homéomorphismes together into a ‘group’, Poincaré related this group implicitly to
the generalized notion of geometry found in the Erlangen Programm of Felix Klein
(1849–1925): Thus analysis situs, or topology, was a branch of Geometry.

He went on to prove the homological property of Poincaré duality for compact,
closed, and oriented manifolds, and he posed the problem of generalizing the success of
nineteenth century geometers in classifying surfaces to higher-dimensional manifolds.

From the outset, the importance of having a sharp definition of manifold was
clear. David Hilbert (1862–1943) sought an axiomatic characterization of the plane
as a manifold in his researches on the foundations of geometry [?]. Hilbert’s basic
notion was that of neighborhoods, and this idea was refined by Hermann Weyl (1885–
1955) in his celebrated 1913 book on Riemann surfaces [?]. Weyl’s definition of a
two-dimensional manifold is based on a system of neighborhoods, at least one for each
point, with each neighborhood being homeomorphic to an open subset of the plane.
After the development of general topological spaces in 1914 [?] by Felix Hausdorff
(1868–1942), the role of neighborhood systems and separation assumptions was made
precise and Weyl later added a separation condition to his axioms [?].

The combinatorial description of a manifold was exposed in the 1907 article [?] of
Max Dehn (1878–1952) and Heegaard for Klein’s Enzyklopädie der Mathematischen

Wissenschaften on Analysis Situs. They took as basic the abstract data that de-
scribe a triangulation, the cells and their incidence data, which were called a schéma

d’un polyèdre by Poincaré. They discussed the questions of Poincaré whether given a
scheme, was it realized by a manifold, and whether two manifolds with the same ab-
stract scheme need be homeomorphic, for which they introduced a notion of combina-
torial equivalence via mappings between schemes to substitute for homeomorphisms.
Later, Steinitz [?] and Tietze (1880–1964) [?] independently posed the Hauptvermu-

tung for manifolds: Do two triangulations of a manifold have a common refinement?
More generally it was asked if a compact manifold always has a triangulation. In
higher dimensions, without a common definition, the study of manifolds was fraught
with difficulties, expressed by van der Waerden as a “battleground of different meth-
ods.”

The development of a theory of manifolds may be characterized as a response to
two impulses after Poincaré. The first impulse was the computation of the new invari-
ants and this favored the combinatorial description of manifolds. The second impulse
sought new examples, especially of three-manifolds, in the hope of the resolution of
the Poincaré conjecture.

An axiomatic description of manifolds was achieved by Veblen and J.H.C. White-
head [?]. In short order, Whitney [?] showed that differentiable manifolds were iden-
tifiable with subsets of Euclidean spaces and so inherited notions like tangent and
normal bundles and, when needed, a Riemannian metric.

§3. On Brouwer

In the beginning of the twentieth century certain basic topological questions re-
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mained unsolved, among which the most important were Hilbert’s Fifth problem (on
continuous groups of transformations of manifolds), the question of the topological
invariance of dimension, and the Jordan curve theorem. Motivated by his philo-
sophical interests in the foundations of geometry, Brouwer worked on Hilbert’s fifth
problem which led him into a study of methods in topology. In particular, he im-
mersed himself in the work of Arthur Schoenfliess (1853–1928) on the topology of
the plane [?]. In short order, Brouwer’s penetrating critical faculties spotted flaws in
Schoenfliess’s work, leading him away from the fifth problem to questions about the
foundation of topology. His investigations of mappings of surfaces led him to his first
fixed point theorem—a continuous orientation-preserving mapping of the two-sphere
to itself must have a fixed point [?]. Around this time (1909) he also proved, using
Schoenfliess’s methods, that a continuous vector field on a two-sphere must have a
singular point (where it is zero or infinite), an improvement of the differentiable result
of Poincaré. He states of these results [?]: At first sight one might even suppose that

they can be directly deduced out of each other.

The conundrum of their connection prompted Brouwer to write to Jacques Hada-
mard (1865–1963) who suggested that Brouwer study Poincaré’s memoirs on flows on
surfaces [?]. During a visit to Paris over Christmas 1909, Brouwer kept a notebook in
which he sketched a definition of Poincaré’s index of a mapping in the combinatorial
setting. This led to a proof of the invariance of dimension and with that Brouwer
opened up a new landscape for combinatorial topology. In particular, up to this point,
focus was on the combinatorial representation of objects like manifolds, representa-
tives for homology classes in a manifold, and relations that determine the fundamental
group from the combinatorial structure. Brouwer introduced methods that made any
continuous mapping between such objects representable up to a deformation by com-
binatorial data, allowing the focus to shift from objects to the mappings between
them.

A characteristic example is Brouwer’s proof of the topological invariance of di-
mension [?]. Suppose K and L are geometric complexes of cells in some Euclidean
spaces, and f : K → L is a continuous mapping that takes vertices in K to vertices
of L. We can approximate f by the mapping β : K → L defined by representing a
point in K by its barycentric coordinates and extending f linearly from the vertices
according to the coordinates. Brouwer showed that a fine enough subdivision of K
yielded an approximation homotopic to f , that is, there is a continuous deformation
between f and the combinatorial mapping β.

In this context Brouwer defined the degree of a mapping (Abbildungsgrad) to be
the integer p−q where p is the number of points in the preimage of a generic point for
which the orientation is preserved by the mapping, and q is the number of points in the
preimage for which the orientation is reversed by the mapping. Brouwer showed how
this difference is unchanged by deformations of the mapping and so the simplicial
approximation of the mapping, a combinatorial tool, was sufficient to describe an
invariant of the mapping.

Brouwer developed his mapping degree [?] further to prove a fixed point theorem
about mappings of spheres: if f : Sn → Sn is a continuous function, then f has a
fixed point (a point P in Sn with f(P ) = P ) whenever the mapping degree deg(f) 6=
(−1)n+1. Brouwer then proved his celebrated fixed point theorem as a consequence:
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A continuous function F : en → en has a fixed point. Here en is the collection of n-
vectors in R

n with length less than or equal to 1, the unit ball in R
n. The new tool of

the mapping degree and new concepts like simplicial approximation and the relation
of homotopy between maps are key to the development of topology and Brouwer’s
contributions stand as a gate to a new chapter in the subject.

Though Brouwer’s contributions were viewed with respect, they were acknowl-
edged as difficult to understand and so did not attract an immediate following.

§4. On Noether, Hopf, and Vietoris

Brouwer published his new approach to topology in the years 1910–1913 after
which he contributed little to the subject. His work on invariance of dimension led
to an interest in a topological theory of dimension that was eventually developed
by Pavel Urysohn (1898–1924) and Karl Menger (1902–1985). Urysohn’s work in
the early 1920’s interested Brouwer who soon invited reseachers in topology to visit
him in Amsterdam. Among the visitors were Paul Alexandroff (1896–1982), Leopold
Vietoris (1891–2002), Urysohn, Menger, and later, Witold Hurewicz (1904–1956) and
Hans Freudenthal (1905–1990) were his assistants.

In December 1925, the eminent Göttingen algebraist Emmy Noether (1882–1935)
visited Blaricum, Brouwer’s vacation home, and the group of mathematicians around
Brouwer. At a dinner in her honor at Brouwer’s (recalled in [?]) she explained how the
numerical invariants of combinatorial topology were better organized as the invariants
of groups, to be called Betti groups. The dinner party included Alexandroff and
Vietoris, and the first papers written on homology groups were by Vietoris and Heinz
Hopf (1894–1971).

In his work, Vietoris extended the simplicial homology theory of Dehn and Hee-
gaard and Poincaré in two novel ways [?]. The first was in applying Noether’s sug-
gestion to use groups instead of numerical invariants. Working mod 2, he defined an
addition on cycles (sums of simplices with mod 2 zero boundary), calling the group
of dimension n cycles the n-te Zusammenhangsgruppe and the maximum number of
independent cycles the n-te Zusammenszahl. This permitted Vietoris to argue with
matrices with coefficients in the integers mod 2.

The second extension was to a wider class of spaces, namely compact metric spaces.
The main objects of study, manifolds, are often compact metric spaces, and the
Hauptvermutung pointed out a possible gap between the combinatorial representation
of a manifold as a complex and its topological nature as a space. In [?] the notion
of an ǫ-complex was introduced for all ǫ > 0. If X is a compact metric space, then
a combinatorial p-simplex in X is a choice of a (p + 1)-tuple of points in X and if
such a choice has diameter ≤ ǫ, then it is a generator for the p-chains on X . Vietoris
showed that Alexander and Veblen’s mod 2 homology groups for a finite Euclidean
complex coincided with the groups obtained using the ǫ-complex.

Hopf learned of Noether’s algebraic suggestion through his friendship with Alexan-
droff and his time spent in Göttingen. Hopf had mastered Brouwer’s methods in his
thesis and Habilitationsschrift in which, among other things, he extended Brouwer’s
results on homotopy classes of mappings between manifolds. In his 1928 paper giving
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an extension of the Euler-Poincaré formula, Hopf presented the formalism for homol-
ogy groups in the framework of modules over a ring. The simplices of a geometric
complex form the generators of a free module and the kernel of the boundary homo-
morphism module its image gives the homology group as a quotient group. Using
this formalism Hopf gave an elegant proof of the Lefschetz fixed point theorem [?].
Hopf also extended the range of homology theory by considering any geometric cell
complex, without the assumption of being a manifold.

In Hopf’s reformulation of homology as groups, the mapping degree of Brouwer has
a particularly simple statement [?]. If M and N are oriented n-dimensional manifolds,
then, by Poincaré duality, Hn(M) and Hn(N), the nth homology groups, are both
isomorphic to the free abelian group Z. If f : M → N is a continuous mapping, then
f induces a mapping f∗ : Hn(M) → Hn(N) which is a homomorphism f∗ : Z → Z.
Since any such homomorphism is multiplication by some integer, the mapping degree
can be seen to be that integer. Thus f∗(1) = the mapping degree.

The extent to which homology might be used as a tool to study spaces other than
manifolds was a theme partially motivated by the lack of success in avoiding the use of
triangulations (the Hauptvermutung) and because the properties of general topological
spaces were being developed in parallel to the development of combinatorial ideas.
Alexandroff advanced a general theory for compact spaces that lay between the ideas
of Vietoris for compact metric spaces and of Hopf for geometric complexes. He defined
the notion of the nerve of a covering which consists of an abstract cell complex
whose vertices consisted of the open sets Uα in the covering and whose p-simplices
[U0, U1, . . . , Up] satisfied U0 ∩ · · · ∩ Up 6= ∅. By taking finer coverings of a space,
the homology of this abstract cell complex is seen to converge to a common set
of generators, giving a notion of the Betti numbers of the space [?]. For compact
manifolds, these Betti numbers coincide with the usual Betti numbers.

To extend Alexandroff’s ideas to any topological space, the Czech mathematician
Eduard Čech (1893–1960) considered the collection of all finite open coverings [?].
This collection is ordered by the relation of inclusion, one cover being finer than
another. The relations between the homology groups of the nerve of each cover
is encoded in the homomorphisms between the associated homology groups. Čech
introduced the notion of the inverse limit of such a system of groups which could be
taken as the homology group of the space. In this framework he was able to give new
proofs of the Poincaré and Alexander duality theorems.

It is interesting to contrast the fate of these two papers that are the first in the
study of homology groups. Vietoris’s paper is abstract, self-contained, and extends
methods for internal goals. Hopf’s paper looks out to other areas of mathematics,
algebra and geometry, for its goals, connecting with tried and true results from a new
viewpoint. Vietoris’s paper did not obtain much interest in the intervening years, but
lately there is considerable interest in ǫ-homology in several efforts to apply topology
(see the work of G. Carlsson and R. Ghrist).

§5. Homotopy

In §12 of Analysis Situs Poincaré associated a ‘group of substitutions’ (the term
that described an abstract group most closely in Poincaré’s time) to a manifold V .
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The idea is based on the fact that line integrals give the same value on small loops in
V . The elements of the group were permutations of the values of a multiply valued
function on V generated by the loops in V . A path in V beginning and ending at the
some fixed point of V can be broken up into small loops and connecting paths. We
can sum the effect on branches of the function by integrating along this path. We
add loops C1 and C2 by following first C1, then C2. Poincaré denotes this by C1 +C2

but stipulates that the addition need not be commutative. If loops are equivalent,
that is, if A can be deformed in V to B, then he writes A ≡ B, distinguishing this
equivalence relation from homologies.

To compute the group associated to a manifold, Poincaré identified certain funda-
mental loops C1, . . . , Cp for which any other loop is equivalent to a sum of multiples
of these loops. To identify the relations among such fundamental loops, Poincaré
used the representation of a manifold as a cell complex, constructing relations from
what happens in a single cell, and from the relations among cells. By ignoring
the order of terms in an expression in the fundamental loops one has fundamen-
tal homologies among generators for the 1-cycles. This is now given by the theorem
of Poincaré that the fundamental group made abelian is the first homology group,
π1(V )/[π1(V ), π1(V )] ∼= H1(V ). However, Poincaré did not use this terminology.

The primary application of the fundamental group for Poincaré was to act as an
invariant of manifolds. In the 1892 Comptes Rendus announcement preceding Analysis

Situs [?], he posed the problem of classifying manifolds of dimension greater than two
through their Betti numbers, and showed that these invariants were insufficient by
producing two 3-manifolds with the same Betti numbers but different fundamental
groups.

The construction of three-manifolds given by Poincaré was inspired by his interest
in complex function theory and the method of Riemann surfaces led Poincaré to
the use of the universal covering space of a manifold for computations. This space is
simply-connected and any loop in the manifold can be lifted to it. Any null-homotopic
loop lifts to a closed loop in the universal cover and equivalent curves lift to curves
sharing the same endpoint. The permutations of the points corresponding to a single
point correspond to lifts of loops and hence give a permutation presentation of the
fundamental group. Since abstract groups were not part of the mathematical canon
at the time, this permutation presentation was important to transmission of the idea.
It made the universal cover a tool in the development.

The combinatorial description of a manifold as a cell complex was developed be-
tween 1900 and 1920 as a means of computing Betti numbers, torsion coefficients,
and the fundamental group. In 1908 Tietze [?] developed an algorithm for computing
the fundamental group from the assumption that any loop in a cell complex could be
deformed to a path along the 1-cells of the complex and so the fundamental group is a
quotient of the edge loops under identifications determined by the higher-dimensional
cells. This presentation moved the notion of group toward abstraction. The funda-
mental group, defined by Poincaré as a group of substitutions, became more abstractly
presented in the work of Tietze and Wirtinger. Using his algorithm Tietze posed the
problem of the dependence of the presentation upon the triangulation. In particular,
if we are given two abstractly presented groups, can we recognize them as the same
group? This problem, called the isomorphy problem, was considered by Tietze to be
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exceptionally difficult. Much later the theory of computation was developed and the
isomorphy problem shown to be unsolvable.

The term “homotopy” first appears in the 1907 Enzyklopädie article of Dehn and
Heegaard [?]. The meaning is different than the present usage, however, because
their term homotop implies homeomorphic. The rigid structure of a cell complex
is transformed in Dehn’s and Heegaard’s sense of homotopy by moving vertices to
vertices, edges to edges, etc. The transformation is the focus of the definition. It
is Brouwer who made explicit the idea of homotopy. In this framework, the role of
simplicial approximation can be further appreciated, and concepts like the mapping
degree shown to be a homotopy invariant of a mapping.

Hopf showed that the mapping degree of a continuous mapping of the n-dimensional
sphere to itself completely characterized its class, that is, two mappings Sn → Sn with
the same degree are homotopic. Mappings between manifolds of different dimension
were the next step in this development. The simplest case to examine would be among
the maps S3 → S2 for which there is a particularly well-known map, taking a pair of
complex numbers to the complex line through the origin and that point in C

2, that
is,

η : (z1, z2) ∈ S3 ⊂ C
2 7→ [z1, z2] ∈ CP 1 ∼= S2,

where CP 1 is the collection of all such lines, known as the complex projective line. In
his earlier work Hopf developed the mapping degree of Brouwer and so he sought a
generalization for this case. Hopf associated to any continuous mapping f : S3 → S2 a
integer γ(f), computed by choosing two points in S2 and considering their preimages,
which are closed curves in general; γ(f) is given by their linking number and is called
now the Hopf invariant. Hopf showed that if f and f ′ were homotopic, then their Hopf
invariants agreed. Furthermore, the mapping η has Hopf invariant one. Finally, by
analyzing how the Hopf invariant changes under composition with mappings F : S3 →
S3 and G : S2 → S2, he showed that there are infinitely many mappings from S3 to
S2 that were not homotopic to one another.

The importance of Hopf’s paper [?] cannot be underestimated. It opened up a new
class of topological problems. At the 1932 International Congress of Mathematicians
in Zürich, Čech gave the definition of the higher homotopy groups of a space, πn(X)
for n ≥ 2, as a generalization of Poincaré’s fundamental group. In the context of
homotopy as a relation between mappings, we can express the fundamental group
as a quotient of the set of all loops where we identify together two loops if they are
homotopic to one another. Loops are mappings of a circle to the space with a given
point of the circle going to a chosen basepoint in the space. To generalize this, perform
the same quotient on the mappings of any sphere Sn to the given space where a given
point of the sphere is taken to map to a given point of the space. Hopf’s theorem
detecting homotopy classes of mappings from S3 to S2 showed that π3(S

2) contained
a copy of Z as a group. Čech’s contribution [?] was unappreciated at the time: Hopf
and Alexandroff advised that since these new groups were commutative and homology
already posed enough problems the new groups were uninteresting; furthermore, Čech
presented these new invariants without applications or relations to other topological
ideas.

In a series of papers [?] in 1935, rich in ideas, Hurewicz independently introduced
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the higher homotopy groups of a space. His definition differed from Čech’s because it
came with connections to the successful past of topology. Hurewicz, like most topol-
ogists of the time, worked on topological questions of a point-set and combinatorial
nature. His nth homotopy group (n > 1) of a space X was the fundamental group of
the topological space of mappings, map((Sn−1, e1), (X, x0)), where X is a topological
space with nice properties. From this definition Hurewicz could apply theorems of a
point-set nature on the extension of continuous mappings, from which he deduced the
relations between the groups πn(G), πn(G/H), and πn(H) for H a connected sub-
group of a connected Lie group G. With these relations he put Hopf’s computation
π3(S

2) into the context of the study of Lie groups, and so constituted one of the first
steps in the development of fibre spaces. Hurewicz also related the higher homotopy
groups to homology groups; there is a group homomorphism h : πn(X) → Hn(X)
for all n; if a space X has homotopy groups πn(X) = {0} for 1 ≤ n ≤ N for some
N > 1, then Hn(X) = {0} for 1 ≤ n ≤ N and πN+1(X) ∼= HN+1(X). If a space X
has πn(X) = {0} for 2 ≤ n ≤ N for some N > 2, then the homology groups of X ,
Hn(X), for 2 ≤ n < N are invariants of the fundamental group π1(X) alone.

Finally, Hurewicz introduced the notion of homotopy equivalence of spaces. Spaces
X and Y are homotopy equivalent if there are continuous mappings f : X → Y and
g : Y → X with g ◦f homotopic to the identity mapping on X and f ◦g homotopic to
the identity mapping on Y . For example, the Möbius band is homotopy equivalent to
a circle. This relation is much cruder than the relation of homeomorphism and hence
more accessible to classification. The higher homotopy groups and the homology
groups are invariants of the homotopy equivalence class of a space. This notion
provided a new foundation for the development of combinatorial invariants of spaces
and manifolds.

6. Final Remarks

Hurewicz had spread the news of his researches in a series of sketchy notes in the
Dutch Academy Proceedings. He also lectured on them at an important event in the
history of algebraic topology—the International Conference on Topology in Moscow,
4–10 September 1935. This conference was organized by Alexandroff and brought
together “a large proportion of the active topologists in the world,” according to
Alan Tucker (1905–1995), a student of Lefschetz who attended the conference. Tucker
wrote of the meeting [?]:

The International Topological Conference held at Moscow last September showed that

the subject has attained a definite measure of maturity and a wide range of influence

on other branches of mathematics, but that it is still undergoing rapid growth and flux.

What marks this conference as significant is the sense of a research community of
“active topologists” that it represented. It was international with participants from
the Soviet Union, France, Germany, Holland, Switzerland, Czechoslovakia, Poland,
and the United States. The independent discoveries of similar research paths brought
mathematicians together, incited a flurry of papers, and set an agenda for progress in
the subject. Leadership in the field was also clear with the attendance of Heegaard,
Lefschetz, Alexander, Alexandroff, and Hopf.
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1935 was the year in which two important texts in topology made their appearance.
The first [?] was written by H. Seifert and W. Threlfall (1888–1949) and appeared
in late 1934. It focused on the methods suited for the study of manifolds, especially
of dimensions two and three. Particular attention is given to the fundamental group
and covering spaces, which had not had a thorough treatment previously. They also
treat homology groups with applications to manifolds.

The second text [?] was Topologie I written by Alexandroff and Hopf who spent
time together after the Moscow conference putting the final touches on it. This volume
was the first of three proposed volumes intended to give a view of “Topologie als ein

Ganzes,” and not, as Reidemeister wrote in his Zentralblatt review, “eine Darstellung

der ganzen Topologie.” Courant had suggested the project during one of the authors’
visits to Göttingen for his Grundlehren der Mathematischen Wissenschaften series
with Springer-Verlag. The writing was based on lecture courses the authors were
giving at the time and took place over the years 1928–1935. The book formed the focus
of much of their correspondence during these years. The main topics are point-set
topology, homology theory with applications to polyhedra, and then links to geometric
questions especially in the study of continuuous mappings between polyhedra. The
future volumes would treat manifolds, the fundamental group, dimension theory and
further topics in point-set topology. The rapidly developing state of topology was
particularly evident at the Moscow conference and they decided to abandon the later
volumes. The comprehensive nature of the book and its thorough exploration of the
topics give it a finality that is consistent with its dedication to Brouwer.

Thus, by 1935, a subdiscipline of mathematics, algebraic topology, had matured to
the point where there was an international group of researchers working on recognized
problems using shared methods. There were elementary accounts of the main ideas
to introduce new researchers to the activity, and active leaders, like Hopf, Lefschetz,
and Alexandroff, to attract students into the field.

The success of algebraic topology is due in part to the development it fostered
in related parts of mathematics. Answers to questions in the foundations of analysis
were found with new methods and results like fixed point theorems led to new analytic
ideas. The study of the fundamental group of knots and three-manifolds led to insights
about abstract groups, while homology groups presented a novel set of algebraic
notions that later developed into homological algebra in which topological notions are
imported to classify algebraic objects. However, this development was not smooth.
There were false starts, difficult expositions, paths that looked to lead nowhere, and
an atmosphere of change around the practice of mathematics. The anxiety of van
der Waerden was overcome with the advances of Veblen and Whitehead, of Hopf and
Alexandroff, overcome by their own successes, and of Weyl, misplaced as the field
came to dominate the twentieth century.
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1923.

[32] H. Weyl, Analysis situs combinatorio, Rev. Mat. Hisp.-Amer. 5(1923), 43–69;
(continuacion) 6(1924), 1–9; 33–41.

[33] H. Whitney, Differentiable manifolds, Ann. of Math. 37(1936), 645–680.

14


