\classheader{2012-10-09} Last time, we talked about measure spaces $(X,\cal{A},\mu)$. \begin{definition} We say that a measure space is complete if, for any $A\in\cal{A}$ such that $\mu(A)=0$, we have $B\in\cal{A}$ for every subset $B\subseteq A$. By monotonicity of measures, they will also be null. \end{definition} \begin{claim} The $\sigma$-algebra generated by $\cal{A}$ and all subsets of null sets is the $\sigma$-algebra of all sets $S$ such that there are $A_1,A_2\in\cal{A}$ with $A_1\subseteq S\subseteq A_2$ and $\mu(A_2\setminus A_1)=0$. We can then define $\mu(S)=\mu(A_1)=\mu(A_2)$. \end{claim} \begin{definition} An outer measure is a function $\mu:\cal{A}\to [0,\infty]$, where $\cal{A}$ is an arbitrary collection of sets, such that \begin{itemize} \item $\mu(\varnothing)=0$, \item $\sigma$-\textbf{sub}-additivity: $\mu(\bigcup A_n)\leq\sum \mu(A_n)$ for any $A_1,A_2,\ldots\in\cal{A}$. \end{itemize} \end{definition} We can create an outer measure as follows: for an arbitrary collection of sets $\cal{A}$, and an arbitrary function $\alpha:\cal{A}\to[0,\infty]$, we can define for any $A\in P(X)$ \[\phi_\alpha(A)\stackrel{\text{def}}{=} \inf\{\textstyle\sum \mu(A_n)\mid A\subseteq\bigcup A_n,\,A_n\in\cal{A}\}.\] If there is no cover of $A$ by some $A_n\in\cal{A}$, then $\phi_\alpha(A)=\infty$. We now want to create a measure from this outer measure: \[\underset{\text{(arbitrary)}}{\alpha,\,\cal{A}}\quad\longrightarrow \quad\underset{\text{(outer measure)}}{\phi_\alpha,\, P(X)}\quad\longrightarrow\quad \underset{\text{(measure)}}{\mu,\,\cal{M}_\phi}\] \begin{definition} Given an outer measure $\phi$, we say that $A$ is $\phi$-measurable if, for any set $S$, \[\phi(S)=\phi(S\cap A)+\phi(S\setminus A).\] \end{definition} We will see that the collection of $\phi$-measurable sets will form a complete measure space. First, note that we always have \[\phi(S)\leq \phi(S\cap B)+\phi(S\setminus B).\] If $\phi(A)=0$, and $B\subseteq A$, then $S\cap B\subseteq B\subseteq A$ implies that $\phi(S\cap B)=0$, and $S\setminus B\subseteq S$ implies that $\phi(S\setminus B)\leq\phi(S)$, so that \[\phi(S)\leq 0+\phi(S\setminus B)\] hence $\phi(S)=\phi(S\setminus B)$, hence $\phi(B)=0$. \begin{center} \begin{tikzpicture} \draw (0,-0.3) -- (185:2cm); \draw (0,-0.3) -- (355:2cm); \draw (0,-0.3) -- (195:2cm); \draw (0,-0.3) -- (345:2cm); \draw (0,-0.3) -- (205:2cm); \draw (0,-0.3) -- (335:2cm); \draw (0,0) circle (2cm); \fill[white] (0,-0.3) circle (0.9cm); \draw (-0.8cm,0.5cm) circle (0.6cm); \draw (0.8cm,0.5cm) circle (0.6cm); \draw (0,-0.3) circle (0.9cm); \path (0,-0.3) node {$S$}; \path (-0.9cm,0.5cm) node {$A$}; \path (0.9cm,0.5cm) node {$B$}; \end{tikzpicture} \end{center} Now we want to check that \[\phi(S)=\phi(S\cap(A\cup B))+\phi(S\setminus (A\cup B)).\] We have that \[\phi(S)=\phi(S\cap A)+\phi(S\setminus A).\] Therefore \[\phi(S\setminus A)=\phi(\underbrace{(S\setminus A)\cap B}_{S\cap B})+\phi(\underbrace{(S\setminus A)\setminus B}_{S\setminus(A\cup B)})\] and \[\phi(S\cap A)+\phi(S\cap B)=\phi(S\cap (A\cup B))\] \[\phi(S\cap (A\cup B))=\phi(\underbrace{S\cap (A\cup B)\cap A}_{S\cap A})+\phi(\underbrace{(S\cap (A\cup B))\setminus A}_{S\cap B}).\] The rest of the argument you should study on your own. If our initial arbitrary collection of sets $\cal{A}$ is such that $\varnothing\in \cal{A}$, and for any $A,B\in\cal{A}$, we have $A\cup B,A\cap B,A\setminus B\in\cal{A}$, and we further assume that $\alpha$ is an outer measure on $\cal{A}$ such that for any $A,B\in\cal{A}$ we have \[\alpha(A)=\alpha(A\cap B)+\alpha(A\setminus B)\] then the resulting $\sigma$-algebra $\cal{M}$ will contain $\cal{A}$, i.e. $\cal{A}\subseteq\cal{M}$. Here is a special case. Consider ``bricks'', i.e. sets of the form \[\prod_{i=1}^n[\hspace{0.02cm}a_i,b_i)\subseteq \R^n\] and let $\cal{A}$ be the set of finite unions of such sets. Let $\alpha$ be the volume function. Then $\phi_\alpha$ is the outer Lebesgue measure, $\cal{M}$ consists of the Lebesgue measurable sets, and $\mu$ is the Lebesgue measure. We can do the same construction on the bricks for any additive function $\alpha$; the resulting measure will always contain at least the Borel sets. \begin{definition} We say that $\mu$ is a Borel measure on a $\sigma$-algebra $\cal{M}$ if \begin{itemize} \item The $\sigma$-algebra $\cal{M}\supseteq\{\text{Borel sets}\}$. \item Some people require that $\mu$ is $\sigma$-finite, i.e. there exist $A_1,A_2,\ldots$ with $\mu(A_n)<\infty$ such that $\mu(X\setminus \bigcup A_n)=0$. \item Some people require that $\mu(K)<\infty$ for any compact $K$ (in $\R^n$, this just says that bounded sets have finite measure). \end{itemize} \end{definition} \begin{definition} We say that a measure $\mu$ is regular when for any $A\in\cal{A}$, \[\mu(A)=\inf\{\textstyle\sum \mu(G_n)\mid G_n\text{ are open, }A\subseteq \bigcup G_n\}=\inf\{\mu(G)\mid G\text{ open}, A\subseteq G\}\] \end{definition} For any $\epsilon>0$, we can choose $G$ such that $\mu(A)\leq \mu(G)\leq\mu(A)+\epsilon$. Letting $\epsilon\to 0$, we can see that for any $A$ there is a $G_\delta$ set containing $A$ of the same measure. By the same argument for the complement, we have an $F_\sigma\subseteq A$ of the same measure. Now we'll start on a new topic. Let $\lambda$ be the Lebesgue measure on $\R^n$, and $\cal{B}(\R^n)$ the Borel sets in $\R^n$. \begin{definition} For any $X\subseteq\R^n$, a differential basis for $X$ is a collection $\cal{D}\subseteq X\times \cal{B}(\R^n)$ such that \begin{itemize} \item For any $(x,A)\in\cal{D}$, we have $\lambda(A)>0$. \item For any $x\in X$ and $r>0$, there is some $(x,A)\in\cal{D}$ such that $A\subseteq B(x,r)$, the ball of radius $r$ around $x$. \end{itemize} \end{definition} Given an $x\in\R^n$ and $A\subseteq\R^n$, let $r(A)$ be the smallest radius such that $A\subseteq B(x,r(A))$. We say that a differential basis $\cal{D}$ is regular when it satisfies the following property: for any $x\in X$, there exist a $\delta>0$ and $r_0>0$, depending on $x$, such that for any $(x,A)\in\cal{D}$ with $r(A)