Problems for the UChicago ATSS-Wednesday

July 27, 2016

Problem 1. Show that, if we allow non-compact manifolds in the definition of cobordism, then every manifold is cobordant to the empty set.

Problem 2. Prove Pontryagin's theorem for framed 0-dimensional manifolds. (Yes the problem is long, but if you do it, I promise you will come out the other end understanding the proof of Pontryagin's theorem.)

- (a) Show that the Thom space of the normal bundle of a 0-dimensional manifold $X \subset \mathbb{R}^N$ is equivalent to a wedge of copies of S^N . Better, show that a choice of framing on the normal bundle yields an explicit equivalence.
- (b) So the framing induces an isomorphism $\nu^+ \xrightarrow{\cong} \bigvee_{x \in X} S^N$, show that the composite of the collapse map with this isomorphism

$$p_X: S^N \longrightarrow \nu^+ \longrightarrow \bigvee_{x \in X} S^I$$

induces on $H_N(-,\mathbb{Z})$ the map $\mathbb{Z} \longrightarrow \bigoplus \mathbb{Z}$ given by $1 \mapsto (\pm 1, ..., \pm 1)$ where the signs are determined by the choice of framing.

(c) Finally, show that the map

$$S^N \longrightarrow S^N$$

corresponding to X in the Pontryagin-Thom theorem is just the composite

$$S^N \xrightarrow{p_X} \bigvee_{x \in X} S^N \xrightarrow{\nabla} S^N$$

so that the degree is just the sum of the integers ± 1 from the previous part.

(d) Show that a framed cobordism (W, X, X') induces a homotopy between the two resulting maps $p_X, p_{X'} : S^N \longrightarrow S^N$. So we have a well defined map:

$$\Theta: \Omega_0^{fr} \longrightarrow \pi_N(S^N), \quad N \ge 1.$$

- (e) Show that every map $S^N \to S^N$ is homotopic to one obtained in this way. (You may use the fact that every map is homotopic to a smooth map, and that every smooth map has a regular value.) So Θ is surjective.
- (f) Finally, show that Θ is injective. (Hint: the argument is just like surjectivity, but this time you're not trying to realize a map as coming from a manifold, you're trying to realize a homotopy as coming from a manifold with boundary.)
- (g) Conclude that

$$\Omega_0^{fr} \cong \pi_N(S^N), \quad N \ge 1.$$

(h) Compute the left hand side 'geometrically'. Deduce that $\pi_n(S^n) = \mathbb{Z}$ and the degree can be compute by examining the preimage of a regular value and counting signed points.

Problem 3. Let W be a compact manifold with boundary M with $i: M \hookrightarrow W$ the inclusion. Show that $i_*[M] = 0$.

Problem 4. Let *E* be a vector bundle over *B* and *E'* be a vector bundle over *B'*. Denote by $E \times E'$ the exterior product of vector bundles, over $B \times B'$. Verify: $T(E \times E') \cong T(E) \wedge T(E')$, and that for any pullback square

where $E \to B$ is a vector bundle produces a map $T(E') \to T(E)$.

Problem 5. Fix a space X and consider the set of pairs $\{(M, f)\}$ where M is a compact n-manifold and $f: M \longrightarrow X$ is a map. Let $MO_n(X)$ denote the quotient of this set by the equivalence relation of *bordism*: $(M, f) \sim (N, g)$ if there exists a compact (n + 1)-dimensional manifold with boundary, W, and a map $H: W \longrightarrow X$ such that $\partial W \cong M \amalg N$ and we have equalities $H|_M = f, H|_N = g$.

(a) Prove that composition turns $MO_n(-)$ into a functor **Spaces** \longrightarrow **Set**.

(b) Show that $MO_n(X)$ is an abelian group under disjoint union.

We denote by $MO_*(X)$ the graded ring $\bigoplus_{n\geq 0} MO_n(X)$.

Problem 6. Prove that $MO_*(-)$ is a homotopy invariant functor.

Problem 7. Check the surjectivity of the Pontrjagin–Thom construction. In other words, show that for any map $f: S^{n+k} \to T(\gamma_{m,k})$, if we first construct a manifold M using the inverse image construction and then apply the Pontrjagin–Thom construction, the map produced is homotopic to f. (Hint: once the manifold M is constructed it comes with a chosen embedding into \mathbb{R}^{n+k} . Now consider how you want f to relate to the normal bundle of M.)

Problem 8. Check the injectivity of the Pontrjagin–Thom construction. In particular, show that if the Pontrjagin–Thom construction produces a null-homotopic map on M then M is the boundary of a manifold. (Hint: if the transversality construction is applied to a map $S^{n+k} \to T(\gamma_k)$ which does not hit the zero section, what is the result? Now interpret what this means for a map $S^{n+k} \times I \to T(\gamma_k)$.)

Problem 9. Show that the Klein bottle is a boundary.

Problem 10. Show that every 3-manifold is a boundary.

Problem 11. Construct a 4-manifold whose boundary is $\mathbb{R}P^3$.

Problem 12. Show that every 4-manifold is cobordant to one of the four:

 $\varnothing, \mathbb{R}P^2 \times \mathbb{R}P^2, \mathbb{R}P^4, (\mathbb{R}P^2 \times \mathbb{R}P^2) \amalg \mathbb{R}P^4$

Problem 13. Using the previous problem's calculation, which of these is cobordant to $\mathbb{C}P^2$? How about $\mathbb{C}P^2 \#\mathbb{C}P^2$ (the connect sum)? $S^2 \times S^2$?

Problem 14. Show by an explicit construction that SO(n) and SU(n) are boundaries.

Problem 15. Are all Lie groups boundaries?

Problem 16. Use the results from yesterday's problem session to show that $K^0(S^2) = \mathbb{Z} \oplus \mathbb{Z}$. More explicitly, show that if we think of S^2 as $\mathbb{C}P^1$ then $K^0(S^2)$ is generated by the tautological line bundle and the trivial bundle. (Actually, to appease algebraic geometers, we usually take the generator to be the *dual* of the tautological line bundle...)