Problems for the UChicago ATSS-Tuesday

July 26, 2016

Problem 1. Let Vect(X) denote the monoid of vector bundles on X under direct sum. Show that rank defines a natural transformation:

$$\operatorname{rk}:\operatorname{Vect}(-)\longrightarrow \Gamma(-,\underline{\mathbb{Z}}).$$

(Recall that $\Gamma(X, \mathbb{Z})$ denotes the group of locally constant functions from X to \mathbb{Z} .)

Problem 2. Show that there is exactly one nontrivial, real vector bundle of rank 1 on S^1 , up to isomorphism.

Problem 3. Suppose given a map $f: S^1 \to GL_n$. Let U_0 and U_1 denote $S^2 - \{(0, 0, -1)\}$ and $S^2 - \{(0, 0, 1)\}$, respectively. Define $E_i := U_i \times \mathbb{R}^n$. Identify $U_0 \cap U_1$ with $S^1 \times I$ in your favorite way. Then define $\phi_f: E_0|_{S^1 \times I} \to E_1|_{S^1 \times I}$ by

$$\phi_f((z,t,v)) = (z,t,f(z) \cdot v).$$

- (a) Show that $E_f := (E_0 \amalg E_1) / (e_0 \sim \phi_f(e_0))$ defines a vector bundle over S^2 .
- (b) Show that a homotopy between maps f and g yields an isomorphism of vector bundles $E_f \cong E_g$ so that we get a map $\pi_1 GL_n \longrightarrow \operatorname{Vect}_n(S^2)$.
- (c) Show that this is an bijection. (You may assume the result that vector bundles over a contractible space are trivial.)
- (d) Compute the group of real and complex rank 1 bundles on S^2 .
- (e) Bonus: Identify the tangent bundle (which has rank *one* as a complex line bundle) in terms of this classification. Hint: What is the derivative of z^{-1} ?

Problem 4. Show that cobordism is an equivalence relation on compact *n*-manifolds.

Problem 5. Let G be a Lie group with Lie algebra \mathfrak{g} . Prove that the tangent bundle TG is trivializable.

Problem 6. Are the Möbius bundle and tangent bundles on S^1 isomorphic? Prove your answer. Are the Möbius bundles and the tautological bundle on S^1 isomorphic? Prove your answer.

Problem 7. Show that the unit sphere S^n admits a nonvanishing vector field if n is odd. Show that the normal bundle for the usual embedding into \mathbb{R}^{n+1} is trivial for all n.

Problem 8. Show that if S^n admits a nonvanishing vector field, then the identity map $S^n \to S^n$ is homotopic to the antipodal map $x \mapsto -x$. For n even, show that the antipodal map induces the map -1 on top homology. Conclude that the tangent bundle of S^n is not trivializable when n is even.

Problem 9. Let $f: M \to N$ be a map of smooth manifolds. Assume that the Jacobian $Df: TM \to TN$ is surjective. Show that there exists a sub-bundle ker $(f) \subset TM$ (with fiber at x equal to ker (Df_x)), and that $TM \cong \text{ker}(f) \oplus f^*TN$.

Problem 10. Show that the set of real (or complex) vector bundles of rank 1 over a space forms a group with the product operation given by tensor product. Extra: Show that all elements of this group have order at most two (hint: show that every real line bundle admits a Euclidean metric).

Problem 11. Let $E \to X$ be a vector bundle of rank n and let $\pi: Fl(E) \to X$ be the flag bundle, i.e. the bundle whose fiber at $x \in X$ consists of all sequences of linear subspaces $L_1 \subset \cdots \subset L_n = E_x$ such that $\dim(L_i) + 1 = \dim(L_{i+1})$. Show that $\pi^*E \to Fl(E)$ is isomorphic to a direct sum of line bundles.

Problem 12. Show that $\operatorname{Gr}_n(\mathbb{C}^{n+k}) \cong \operatorname{Gr}_k(\mathbb{C}^{n+k})$ (and similarly for real Grassmannians. In particular, conclude that $\mathbb{CP}^n \cong \operatorname{Gr}_n(\mathbb{C}^{n+1})$.

Problem 13. Show that the assignment $E \mapsto E \times \mathbb{C}^1$ for complex vector bundles E determines a map

$$\operatorname{Gr}_n(\mathbb{C}^k) \to \operatorname{Gr}_{n+1}(\mathbb{C}^{k+1}).$$

In particular, show that the map $\mathbb{CP}^n \to \mathbb{CP}^{n+1}$ induces an isomorphism on cohomology up to degree 2n.

Problem 14. Prove that $w(\mathbb{R}P^n) = 1$ if and only if $n + 1 = 2^k$ for some k. Conclude that, if $\mathbb{R}P^n$ has a trivial tangent bundle, then $n = 2^k - 1$.

Problem 15. (a) Compute $w(\mathbb{R}P^9)$.

(b) Find a polynomial $p(w_1) \in \mathbb{Z}/2[w_1]$ such that

$$w(\mathbb{R}P^9)p(w_1) = 1.$$

- (c) Suppose that $\mathbb{R}P^9$ can be immersed in \mathbb{R}^{9+k} . Give a lower bound for k. (Hint: Use the Whitney Product Theorem).
- (d) Do the same exercise, replacing n by 2^r . Compare what you find with the theorem of Whitney which states that for n > 1, then any n-dimensional manifold can be immersed in \mathbb{R}^{2n-1} .

Problem 16. Prove that Sq^r is indecomposable if and only if $r = 2^k$. (Hint: Compute its effect on $H^*(\mathbb{R}P^{\infty}, \mathbb{Z}/2)$ for one direction and use the Adem relations for the other).

- **Problem 17.** (a) Compute $\widetilde{H}^*(\mathbb{R}P^2 \wedge \mathbb{R}P^2, \mathbb{Z}/2)$ and $\widetilde{H}^*(\Sigma \mathbb{R}P^2 \vee \Sigma^2 \mathbb{R}P^2, \mathbb{Z}/2)$ together with all of the Steenrod operations. Conclude that $\mathbb{R}P^2 \wedge \mathbb{R}P^2 \not\simeq \Sigma \mathbb{R}P^2 \vee \Sigma^2 \mathbb{R}P^2$.
- (b) Show that there is a ring isomorphism $H^*(\Sigma(\mathbb{R}P^2 \wedge \mathbb{R}P^2), \mathbb{Z}/2) \cong H^*(\Sigma^2 \mathbb{R}P^2 \vee \Sigma^3 \mathbb{R}P^2, \mathbb{Z}/2)$, but that, nonetheless, $\Sigma(\mathbb{R}P^2 \wedge \mathbb{R}P^2) \not\simeq \Sigma^2 \mathbb{R}P^2 \vee \Sigma^3 \mathbb{R}P^2$.