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Lecture 1

In these lectures I will discuss recent joint works with F. Merle. In them we have devel-
oped an approach to the study of non-linear critical problems of dispersive type. The issues
studied are global well-posedness and scattering. The approach works for both focusing and
defocusing problems, but in these lectures I will concentrate on two focusing problems. The
approach proceeds in steps, some of which are general and hence apply to “all problems” and
some which are specific to each particular problem. The concrete problems to be discussed
here are the energy critical, focusing non-linear Schrödinger equation and wave equation. I
will try to separate both kinds of arguments in the exposition. I will start out by discussing
(NLS).

Consider thus the Cauchy problem for the Ḣ1 critical non-linear Schrödinger equation

(CP )
{
i∂tu+ ∆u± |u|4/N−2u = 0, x ∈ RN , t ∈ R,
u|t=0 = u0 ∈ Ḣ1.

The problem is called “critical” because if u is a solution and λ > 0, uλ(x, t) = 1
λN−2/2 u(xλ ,

t
λ2 )

is also a solution and ||uλ(−, 0)||Ḣ1 = ||u0||Ḣ1 , ∀λ > 0. Here the − sign corresponds to the
defocusing problem and the + sign to the focusing problem. The theory of the local Cauchy
problem (Cazenave-Weissler 90, [4]) shows that if ||u0||Ḣ1 ≤ δ, δ = δN > 0 is small (and
N ≤ 5) then ∃ ! solution to (CP ) with u ∈ C(R; Ḣ1), ||u||L2(N+2)/N−2

x,t < ∞ (i.e. the solution
scatters). As we will see later this is equivalent to ∃u±0 ∈ Ḣ1 s.t. ||u(−, t)−eit∆ u±0 ||Ḣ1 −−−−→

t→±∞
0. Also, the energy identity holds, i.e.

E(u(t)) =
1
2

∫
|∇u(x, t)|2 dx± 1

2∗

∫
|u(x, t)|2∗ dx = E(u0) .

Here ± corresponds to the defocusing, focusing cases, 1
2∗ = 1

2 −
1
N is the “Sobolev conjugate”

exponent. Here we see the difference between the defocusing and focusing cases. In the
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defocusing case, Bourgain ([3], 1998) proved that for N = 3, 4, u0 radial, the above result
holds for ||u0||Ḣ1 < ∞. Bourgain’s result was extended to u0 radial, N ≥ 5 by Tao ([30],
2004). For N = 3, general u0 the same result was proved by Colliander-Keel-Staffilani-
Takaoka-Tao ([5], 2004). This was extended to N = 4 by Ryckman-Visan ([25], 2005) and
to N ≥ 5 by Visan ([33], 2007). In the focusing case, these last results do not hold. In
fact, a classical argument, based on the “virial identity” (Zakharov, Glassey) shows that if∫
|x|2 |u0(x)|2 <∞ and E(u0) < 0, then the solution must break-down in finite time (Glassey

77, [11]). Also,

W (x, t) = W (x) =
(

1 +
|x|2

N(N − 2)

)−(N−2)/2
∈ Ḣ1

and solves the elliptic equation

∆W + |W |4/N−2W = 0 , x ∈ RN ,

and hence (NLS), but scattering does not occur, even though the solution is global in time.
Our main result in this case is:

Theorem A (K-Merle [16], 2006). — For the energy critical, focusing (NLS), N = 3, 4, 5,

u0 radial with E(u0) < E(W ),

i) if ||u0||Ḣ1 < ||W ||Ḣ1 the solution exists for all times and scatters.

ii) if ||u0||Ḣ1 > ||W ||Ḣ1 (and ||u0||L2 <∞) then the solution breaks down in finite time.

Remark. — The conditions E(u0) < E(W ) and ||∇u0| = ||∇W || are incompatible (from

now on, || || is the L2 norm).

I will now turn to the proof of Theorem A. We start with a quick review of the local (CP)
theory.

Theorem (Cazenave-Weissler [4], 1990). — Let u0 ∈ Ḣ1(RN ), ||u0||Ḣ1 ≤ A. Then, (for

3 ≤ N ≤ 5) ∃δ = δ(A) s.t. if ||eit∆u0||S(I) ≤ δ, 0 ∈ İ, there exists a unique solution to (CP)

in RN × I s.t. u ∈ C(I; Ḣ1), sup
t∈I
||u(t)||Ḣ1 + ||∇u||W (I) ≤ C(A) and ||u||S(I) ≤ 2δ. (Here

||f ||S(I) = ||f ||2(N+2)/N−2
I L

2(N+2)/N−2
x ; ||f ||W (I) = ||f ||

L
2(N+2)/N−2
I L

2N(N+2)/N2+4
x

). Moreover,

u0 7→ u ∈ C(I; Ḣ1) is Lipschitz.

Sketch of the Proof. — The key ingredients are the Strichartz estimates (Strichartz 77, [28],
Keel-Tao 98, [15]) (N ≥ 3)

(S)

i) ||∇ eit∆ u0||W (−∞,+∞) ≤ C ||u0||Ḣ1

ii) ||∇
∫ t

0 e
i(t−t′)∆g(−, t′) dt′||W (−∞,+∞) ≤ C ||∇g||L2

t L
2N/N+2
x

iii) sup
t
||∇
∫ t

0
ei(t−t

′)∆ g(−, t′) dt′|| ≤ C ||∇g||L2
t L

2N/N+2

and the Sobolev embedding:

(Sob) ||v||
L

2(N+2)/N−2
I L

2(N+2)/N−2
x

≤ C ||∇v||W (I) .
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We then have (with f(u) = ±|u|4/N−2 u) to solve the integral equation (Duhamel’s principle)

u(t) = eit∆ u0 +
∫ t

0
ei(t−t

′)∆ f(u) dt′.

Let Ba,b = {v ∈ RN × I : ||v||S(I) ≤ a, ||∇v||W (I) ≤ b}, Φu0(v) = eit∆ u0 +
∫ t

0 e
i(t−t′)∆ f(v) dt′.

We will show that we can choose δ, a, b s.t.

Φu0 : Ba,b −→ Ba,b

and is a contraction. From this, also using (S) iii), the theorem follows. But, by (S) i), ii)

||∇Φu0(v)||(I) ≤ C A+ C ||∇f(v)||
L2
I L

2N/N+2
x

.

But |∇f(v)| ≤ C |∇v| |v|4/N−2, so Hölder gives that this is ≤ C A+ C ||v||4/N−2
S(I) ||∇v||W (I) ≤

C A + C a4/N−2 b. By (Sob), ||Φu0(v)||S(I) ≤ δ + C a4/N−2 b. We then choose b = 2AC, a
so that C a4/N−2 ≤ 1

2 , so that ||∇Φu0(v)||W (I) ≤ b. If we now set δ = a
2 , C a4/N−2−1 b ≤ 1

2

(which is possible if N < 6). We obtain ||Φu0(v)||S(I) ≤ a. The contraction property is
similar and the Theorem follows.

Remark. — Because of (S), (Sob), ∃ δ̃ s.t. if ||u0||Ḣ1 < δ̃, the hypothesis of the Theorem

holds for I = (−∞,+∞). Moreover, given u0 ∈ Ḣ1, ∃ I s.t. ||eit∆ u0||S(I) ≤ δ, so the Theorem

applies on I. Note also that if u(1), u(2) are solutions of (CP) on I (u ∈ C(I; Ḣ1), ∇u ∈W (I),
the integral equation holds with u(1)(t0) = u(2)(t0), t0 ∈ I), then u(1) ≡ u(2) on I. This is

because we can partition I into Ij ’s s.t. ||u(i)||S(Ij) ≤ a, ||∇u(i)||W (Ij) ≤ b ; choosing t0 ∈ Ij0
using the uniqueness of the fixed point in Ij0 and then induction on j, our claim follows.

Thus, there exists a maximal interval I = I(u0) = (−T−(u0), T+(u0)) where the solution

u ∈ C(I ′, Ḣ1) ∩ {∇u ∈W (I ′)}, ∀ I ′ b I, I ′ 6= I, is defined. We call I the maximal interval of

existence. For t ∈ I we have E(u(t)) = E(u0).

Standard blow-up criterion. — If T+(u0) < +∞, we must have ||u||S[0,T+(u0)) = +∞. If

not, M = ||u||S[0,T+(u0)) < ∞. For ε > 0, to be chosen, partition [0, T+(u0)) =
γ(ε,M)
∪
j=1

Ij , so

that ||u||S(Ij) ≤ ε. If Ij = [tj , tj+1), using the integral equation and the proof of the Theorem
above, we have

sup
t∈Ij
||u(t)||Ḣ1 + ||∇u||W (Ij) ≤ C ||u(tj)||Ḣ1 + C ||u||4/N−2

S(Ij)
||∇u||W (Ij).

If C ε4/N−2 ≤ 1
2 we can show inductively that

sup
t∈[0,T+(u0))

||u(t)||Ḣ1 + ||∇u||W ([0,T+(u0)) ≤ C(M).

Choose now (tn) ↑ T+(u0) and show, again using the integral equation, that for n large,
||ei(t−tn)∆ u(tn)||S(tn,T+(u0)) ≤ δ

2 (on [tn, T+(u0)), u(t) = ei(t−tn)∆ u(tn) +
∫ t
tn
ei(t−t

′)∆ f(u) dt′).
But then, for same ε0 > 0 we have

||ei(t−tn)∆ u(tn)||S(tn,T+(u0)+ε0) ≤ δ

which, by the Theorem contradicts the definition of T+(u0).
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Scattering. — If T+(u0) = +∞ and M = ||u||S(0,+∞) <∞ then u scatters at +∞. In fact,
by the integral equation, as before we show that sup

t∈[0,+∞)
||u(t)||Ḣ1 + ||∇u||W (0,+∞) ≤ C(M).

But then, since

u(t) = eit∆ u0 +
∫ t

0
ei(t−t

′)∆ f(u) dt′

and if we set u+
0 = u0 +

∫∞
0 e−it

′∆ f(u) dt′, so that by (S), u+
0 ∈ Ḣ1 and u(t) − eit∆ u+

0 =
eit∆

∫∞
t e−it

′∆ f(u) dt′ → 0 in Ḣ1 as t→ +∞ from iii), so that we get scattering.
We now turn to a perturbation theorem which is an important step in what follows. The

proof sketched in our original paper is incorrect. We are indebted to M. Visan and X. Zhang
for pointing this out and suggesting the use of fractional derivatives to give a correct proof.

Perturbation Theorem. — Let I = [0, L), L ≤ +∞, let ũ be defined on RN × I be such
that

sup
t∈I
||ũ(t)||Ḣ1 ≤ A , ||ũ||S(I) ≤M , ||∇ũ||W (I) <∞

verify in the sense of the integral equation

i ∂tũ+ ∆ũ+ f(ũ) = e

and let u0 ∈ Ḣ1 be s.t. ||u0 − ũ(0)||Ḣ1 ≤ A′. Then ∃ ε0 = ε0(M,A,A′) s.t. if 0 < ε ≤ ε0 and

||∇e||
L2
IL

2N/N+2
x

≤ ε , ||eit∆ [u0 − ũ(0)]||δ(I) ≤ ε ,

then ∃ ! solution u on RN × I, s.t.

||u||S(I) ≤ C(A′, A,M) and sup
t∈I
||u(t)− ũ(t)||Ḣ1 ≤ C(A,A′,M)(A′ + ε+ ε′)

where ε′ = εβ for some β > 0.
In the proof it suffices to give a priori estimates for u, assuming that it exists. The (CP)

theory gives the rest. We will need 2 new ingredients:

(F )
∥∥∥∫ t

0
ei(t−t

′)∆ h(t′) dt′
∥∥∥
Lqt L

r
x

≤ C||h||
Lq̃
′
t Lr̃′x

(Foschi [6], 2003, Vilela [32], 2007) holds, provided

1
q

+
1
q̃

=
N

2

[
1− 1

r
− 1
r̃

]
and

1
q
< N

(1
2
− 1
r

)
,

1
q̃
< N

(1
2
− 1
r̃

)
,

1
q

+
1
q̃
< 1 ,

N − 2
r

<
N

r̃
,
N − 2
r̃

<
N

r
·

Notice that (q, r) = (
2(N + 2)
N − 2

,
2(N + 2)
(N − 2)

), (q̃, r̃) = (2,
2N
N − 2

) verify the conditions. For

0 < α < 1, α near 1, let
1
r

=
N − 2

2(N + 2)
+
α

N
so that

||f ||
L

2(N+2)/(N−2)
x

≤ C||Dαf ||Lrx ,
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and with q =
2(N + 2)
N − 2

we have

||f ||S(I) ≤ C ||Dαf ||LqI Lrx ≤ C ||∇f ||W (I)

and, by interpolation,
||Dαf ||LqI Lrx ≤ C ||f ||

(1−α)
S(I) ||∇f ||

α
W (I).

Set q̃ = 2,
1
r̃

=
N2 − 2(α− 1)N − 4α

2N(N + 2)
, so that

1
r̃′

=
1
r

+
2

(N + 2)
. Note then that, for α

close to 1, (F ) is verified. By interpolation we have ||Dαeit∆[u0 − ũ(0)]||LqI Lrx ≤ C(A′) ε′,
ε′ = ε(1−α). Moreover, by Hölder,

|| |u|4/N−2Dαu||
Lq
′
I Lr̃′x

≤ ||u||4/N−2
S(I) ||Dαu||LqI Lrx .

The second ingredient is the chain rule and Leibniz rule for fractional derivatives ([19], 93]):
in this case,

||Dα
[
f(ũ+ w)−f(ũ)

]
||
Lq̃
′
t Lr̃′x

≤ C
[
||ũ||4/n−2

S + ||w||4/N−2
S

]
||Dαw||Lqt Lx

+ C||w||s
[
||ũ||(6−N)/N−2

S + ||w||6−N/N−2
S

][
||Dαũ||Lqt Lrx + ||Dαw||Lqt Lrx

]
.

To carryout the proof, we write u = ũ + w, so that the equation for w is i∂tw + ∆w =
f(ũ+w)−f(ũ)−e, w|t=0 = u0− ũ(0). Note that by the integral equation for ũ, splitting into
sub-intervals we obtain ||∇ũ||W (I) ≤ M̃ = M̃(M,A), so that, by interpolation, ||Dαũ||LqI Lrx ≤

M1 = M1(M,A). We then split I =
J
∪
j=1

Ij , J = J(M,A, η) so that on each Ij we have

||Dαũ||LqIj Lrx ≤ η, η > 0 to be chosen. Let Ij = [aj , aj+1], a0 = 0, aJ+1 = L. By the integral

equation on Ij

w(t) = ei(t−aj)∆w(aj) +
∫ t

aj

ei(t−t
′)∆ [f(ũ+ w)− f(ũ)] dt′ +

∫ t

aj

ei(t−t
′)∆ e(t′) dt′.

By (F ) (and (Sob) and (S)) we have

||Dαw||LqIj Lrx ≤ ||D
α ei(t−aj)∆w(aj)||LqIj Lrx + C ε0 + C ||Dα[f(ũ+ w)− f(ũ)]||

Lq̃
′
Ij
Lr̃′x

≤
(
||Dα ei(t−aj)∆w(aj)||LqIjLrx + C ε0

)
+ C η4/N−2 ||Dαw||LqIjLrx

+ C ||Dαw||(N+2)/N−2

LqIj
Lrx

.

Thus, if C η4/N−2 ≤ 1
3 , we get

||Dαw||Lq
Ij L

r
x

≤ 3
2
γj + C̃ ||Dαw||(N+2)/(N−2)

LqIj
Lrx

,

where
γj =

[
||Dα ei(t−aj)∆w(aj ||Lqt Lrx + C ε0

]
.

Note that η depends only on N . From this a standard continuity argument shows that there
exists C0 = C0(C̃) s.t. if γj ≤ C0, we have

a) ||Dαw||LqIjLrx ≤ 3γj . b) C̃ ||Dαw||(N+2)/N2

LqIj
Lrx

≤ 3γj .
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Hence, ||Dαw||LqIjLrx ≤ 3[||Dα ei(t−aj)∆w(aj)||Lqt Lrx + C ε0]. To continue in the iteration, put

t = aj+1 in the integral formula, apply ei(t−aj+1)∆ to obtain:

ei(t−aj+1)∆w(aj+1) = ei(t−aj)∆ +
∫ aj+1

aj

ei(t−t
′)∆[f(ũ+w)− f(ũ)] dt′+

∫ aj+1

aj

ei(t−t
′)∆ e(t′) dt′.

By the same argument we get:

||Dα ei(t−aj+1)∆w(aj+1)||Lqt Lrx ≤||D
α ei(t−aj)∆w(aj)||Lqt Lrx

+ C ε0 + C η4/N−2 ||Dαw||LqIj Lrx + C̃ ||Dαw||LqIj Lrx .

Again, taking η small we see that γj+1 ≤ 10γj provided γj ≤ C0. Recall that by assumption
we have γ0 ≤ ε′0 + C ε0. Iterating, γj ≤ 10j(ε′0 + C ε0), if γj ≤ C0. If we have 10J+1

(ε′0 + C ε0) ≤ C0, this always holds. Repeating the argument we obtain

||Dαw||LqI Lrx ≤ 3(J + 1) 10(J+1) (ε′ + C ε),

for ε0 small. Hence, by Sobolev ||w||S(I) ≤ C(ε′ + ε). The rest of the argument follows
similarly.

Some useful corollaries:

Corollary 1. — Let K ⊂ Ḣ1 be s.t. K is compact. Then ∃T+
K , T−K s.t. ∀u0 ∈ K, T+(u0) ≥

T+
K , T−(u0) ≥ T−K .

Choose M = 1, Ã = sup
u0∈K

||u0||Ḣ1 , A = C(Ã) as in (CP), ε0 = ε0(1, A, 1) as in Perturbation

Theorem, ε1 ≤ min(ε0, 1). Cover K by balls B(u0,j , ε1), 1 ≤ j ≤ J (compactness of K).
Consider T̃+

j , T̃
−
j s.t. ||uj ||S[−T̃−j ,T̃

+
j ] ≤ 1 and T+ = min

1≤j≤J
T+
j , T− = min

1≤j≤J
T−j . Then, if

u0 ∈ B(u0,j , ε1) for some j, the solution exists in [−T−, T+] by Perturbation Theorem.

Corollary 2. — Let ũ0 ∈ Ḣ1, ||ũ0||Ḣ1 ≤ A, ũ solution in (−T−(ũ0), T+(ũ0)). If u0,n → ũ0 in

Ḣ1, then T−(ũ0) ≥ lim inf T−(u0,n) ; T+(ũ0) ≤ lim inf T+(u0,n) and ∀ t ∈ (−T−(ũ0), T+(ũ0))
we have un(t)→ ũ(t).

In fact, if I ′ ⊂⊂ I = (−T−(ũ0), T(ũ0)), sup
t∈I′
||ũ(t)||Ḣ1 ≤ C(A, I ′), ||ũ||S(I′) ≤ M . Apply

the Perturbation Theorem with u = un, u0 = u0,n on I ′. If ε0 = ε0(M,C(A, I ′), 1) and n

is so large that ||u0,n − ũ0||Ḣ1 ≤ 1, ||eit∆[u0,n − ũ0]||S ≤ ε0, we have un exists on I ′ and
sup
t∈I′
||un(t)− ũ(t)||Ḣ1 ≤ C(A,M){||u0,n − ũ0||βḢ1

}, β > 0, so the claim follows.

From now on we concentrate on the focusing case,{
i ∂tu+ ∆u+ |u|4/N−2 u = 0,

u|t=0 = u0 ∈ Ḣ1.

We start out with a review of Glassey’s blow-up result: assume that
∫
|x|2 |u0(x)|2 dx <∞,

u0 ∈ Ḣ1, E(u0) < 0, I = (−T−(u0), T+(u0)). Let y(t) =
∫
|x|2 |u(x, t)|2 dx. A calculation

shows that y′′(t) = 8
∫
|∇u(x, t)|2 − |u(x, t)|2∗ dx (the same calculation also gives y(t) < ∞,

∀ t ∈ I). Since E(u(t)) = E(u0) < 0, 1
2

∫
|∇u(t))|2 − |u(t)|2∗ = E(u(t)) + ( 1

2∗ −
1
2)
∫
|u(t)|2∗ ≤

E(u(t)) = E(u0) < 0, y′′(t) < 16E(u0) < 0. But, since y ≥ 0, I cannot be infinite. The next
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step is to establish some variational estimates. Recall that W (x) = (1 + |x|2
N(N−2))−(N−2)/2 is

a stationary solution of (CP), ∈ Ḣ1 and solves the elliptic equation

∆W + |W |4/N−2W = 0.

W ≥ 0 and is radially decreasing. By the invariances of the equation, Wθ0,λ0,x0(x) =
eiθ0λ

N−2/2
0 W (λ0(x− x0)) is still a solution. Aubin and Talenti (76) gave the following varia-

tional characterization of W : let CN be the best constant in the Sobolev embedding ||u||L2∗ ≤
CN ||∇u||L2 . Then ||u||L2∗ = CN ||∇u||L2 , u 6≡ 0 ⇔ u = W(θ0,λ0,x0) for some (θ0, λ0, x0).
Note that by the elliptic equation,

∫
|∇W |2 =

∫
|W |2∗ . Also CN ||∇W || = ||W ||L2∗ so that

C2
N ||∇W ||2 =

( ∫
|∇W |2

)(N−2)/N . Hence,
∫
|∇W |2 = 1

CNN
. Moreover

E(W ) = (
1
2
− 1

2∗
)
∫
|∇W |2 =

1
NCNN

·

Lemma. — Assume that ||∇v|| < ||∇W || and that E(v) ≤ (1 − δ0)E(W ), δ0 > 0. Then

∃ δ = δ(δ0, N) s.t.

i) ||∇v||2 ≤ (1− δ) ||∇W ||2
ii)
∫
|∇v|2 − |v|2∗ ≥ δ ||∇v||2

iii) E(v) ≥ 0.

Proof. — Let f(y) = 1
2 y −

C2∗

2∗ y
2∗/2, y = ||∇v||2. Note that f(0) = 0, f(y) > 0 for y near 0,

y > 0 and that f ′(y) = 1
2 −

C2∗
N
2 y2∗/2−1, so that f ′(y) = 0 iff y = y0 = 1

CNN
= ||∇W ||2.

Also, f(y0) = 1
NCNN

= E(W ). Since 0 ≤ y < yc, f(y) ≤ (1 − δ0) f(yc) and f is non

negative and strictly increasing between 0 and yc, and f ′(yc) 6= 0, we obtain 0 ≤ f(y),
y ≤ (1− δ) yc = (1− δ)||∇W ||2. This shows (i), (iii). For (ii), note that∫
|∇v|2 − |v|2∗ ≥

∫
|∇v|2 − C2∗

N

(∫
|∇v|2

)2∗/2
=
∫
|∇v|2

[
1− C2∗

N

(∫
|∇v|2

)2/(N−2)]
≥
∫
|∇v|2

[
1− C2∗

N (1− δ)2/(N−2)
(∫
|∇W |2

)2/(N−2)]
=
∫
|∇v|2[1− (1− δ)2/(N−2)]

which gives (iii).

Remark. — If ||∇u0|| < ||∇W ||, E(u0) ≥ 0.

From this static Lemma, we obtain dynamic consequences.

Corollary (Energy trapping). — Let u be a solution of (CP) with maximal interval I,

||∇u0||2 < ||∇W ||2, E(u0) < E(W ). Choose δ0 > 0 s.t. E(u0) ≤ (1 − δ0)E(W ). Then, for

each t ∈ I, we have for δ̄ = δ̄(δ0),

i) ||∇u(t)||2 ≤ (1− δ)||∇W ||2, E(u(t)) ≥ 0
ii)
∫
|∇u(t)|2 − |u(t)|2∗ ≥ δ

∫
|∇u(t)|2

iii) (Coercivity and uniform bound)

E(u(t)) ' ||∇u(t)||2 ' ||∇u0||2 ,

with comparability constants which depend only on δ0.
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Proof. — From the continuity of the flow, conservation of energy and the previous Lemma.

Remark. — Let u0 ∈ Ḣ1, E(u0) < E(W ) but ||∇u0||2 > ||∇W ||2. If δ0 is chosen so that

E(u0) ≤ (1− δ0)E(W ), we can conclude, in the same way that
∫
|∇u(t)|2 ≥ (1 + δ)

∫
|∇W |2,

t ∈ I.

But then, notice that:∫
|∇u(t)|2 − |u(t)|2∗ =2∗E(u0)− 2

(N − 2)

∫
|∇u(t)|2

≤2∗E(W )− 2
(N − 2)

1
CNN
− 2δ

(N − 2)
1
CNN

=
−2δ

(N − 2)CNN
< 0 .

Hence, if
∫
|x|2 |u0(x)|2 dx <∞, Glassey’s proof shows that I cannot be finite. If u0 is radial,

u0 ∈ L2, using “local virial identities” one can see that the some holds. We now turn to the
next step in the proof:

Concentration - Compactness Procedure. — We now turn to the proof of the positive
result in Theorem A. Recall that by the coercitivity-uniform bound estimate, if E(u0) <
E(W ), ||∇u0||2 < ||∇W ||2, if δ0 is s.t. E(u0) ≤ (1−δ0)E(W ), E(u(t)) ' ||∇u(t)||2 ' ||∇u0||2,
t ∈ I, and that if ||∇u0||2 < ||∇W ||2, we have E(u0) ≥ 0. It now follows from (CP) that if
||∇u0||2 < ||∇W ||2 and E(u0) ≤ η0, η0 small, then I = (−∞,+∞) and u scatters. Hence
by considering G = {E : 0 < E < E(W ): if ||∇u0||2 < ||∇W ||2 and E(u0) < E, then
||u||S(I) < ∞} and Ec = supG, we find Ec with η0 ≤ Ec ≤ E(W ) s.t. if ||∇u0||2 < ||∇W ||2
and E(u0) < Ec, then I = (−∞,+∞) and u scatters, and Ec is optimal with this property.
Theorem A is the assertion Ec = E(W ). Assume then Ec < E(W ) and we will reach a
contradiction. Note that if 0 ≤ E < Ec, ||∇u0||2 < ||∇W ||2 and E(u0) < E, then ||u||S(I) <

∞, while if Ec < E < E(W ), ∃u0 s.t. ||∇u0||2 < ||∇W ||2, Ec ≤ E(u0) ≤ E < E(W )
and ||u||S(I) = +∞. We will use a concentration-compactness argument to deduce some
consequences of this that will eventually lead to a contradiction.

Proposition 1. — There exists u0,c ∈ Ḣ1, ||∇u0,c||2 < ||∇W ||2, with E(u0,c) = Ec(<
E(W )) s.t. if uc is the corresponding solution then ||uc||S(I) = +∞.

Proposition 2. — For any uc as in Proposition 1, with (say) ||uc||S(I+) = +∞ (I+ = I ∩
[0,+∞)), there exist x(t) ∈ RN , λ(t) ∈ R+, t ∈ I+ such that

K =
{
v(x, t) :

1
λ(t)(N−2)/2

uc

(x− x(t)
λ(t)

, t
)

: t ∈ I+
}

has compact closure in Ḣ1.

The proof of Propositions 1 and 2 uses the coercitivity and uniform bound estimates, in
conjunction with the “profile decomposition” of Keraani ([20], 2001), which describes the
defect of compactness in the estimate

||eit∆ u0||S ≤ C ||u0||Ḣ1 ,
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which combines Strichartz (S) (i) with Sobolev (Sob). This is based on the “improved in-
equality” (N = 3)

||h||L6(R3) ≤ C ||∇h||
1/3
L2(R3)

||∇h||2/3
Ḃ0

2,∞
,

where Ḃ0
2,∞ is the standard Besov space (see [7]).

Theorem (Profile decomposition, Keraani 2001). — Let {v0,n} ∈ Ḣ1, ||v0,n||Ḣ1 ≤ A,
||eit∆v0,n|| ≥ δ > 0. Then, there exists a subsequence of {v0,n} and {V0,j}∞j=1 in Ḣ1 and
triples (λj,n;xjn ; tj,n) ∈ R+ × RN × R, with

λj,n
λj′,n

+
λj′,n
λj,n

+
|tj,n − tj′,n|

λ2
j,n

+
|xj,n − xj′,n|

λj,n
−−−→
n→∞

∞ , j 6= j′

(the triple is orthogonal), s.t.

i) ||V0,1||Ḣ1 ≥ α0(A) > 0.
ii) If V `

j = eit∆ V0,j, then we have, for each J

v0,n =
J∑
j=1

1

λ
N−2/2
j,n

V `
j

(x− xj,n
λj,n

,
tj,n
λ2
j,n

)
+ wJn ,

where lim infn→∞ ||eit∆wJn ||S −−−→
J→∞

0, and for each J ≥ 1 we have:

(iii a) ||∇v0,n||2 =
J
Σ
j=1
||∇V0,j ||2 + ||∇wjn||2 + o(1), as n→∞

and
(iii b) E(v0,n) =

J
Σ
j=1

E(V `
j (− tj,n

λ2
j,n

)) + E(wJn) + o(1)
as n→∞.

Lecture 2

In order to apply Keraani’s Theorem to our non-linear problem, we need the notion of a
“non-linear profile” : let v0 ∈ Ḣ1, v = eit∆v0, {tn} a sequence with lim

n→∞
tn = t̄ ∈ [−∞,+∞].

We say that u(x, t) is a non linear profile associated with (v0, {tn}) if ∃ an interval I with t ∈ I
(if t = ±∞, I = [a,+∞), (−∞, a] respectively) such that u is a solution of (CP) on I and
lim
n→∞

||u(−, tn)− v(−, tn)||Ḣ1 = 0. There always exists a non-linear profile: if t ∈ (−∞,+∞)

we solve (CP) with data at t = v(x, t). If t = +∞ (say), we solve integral equation

u(t) = eit∆ v0 +
∫ ∞
t

ei(t−t
′)∆ f(u) dt′,

in RN × [tn0 ,+∞), where n0 is so large that ||eit∆ v0||S(tn0+∞) < δ. Then, u(tn) − v(tn) =∫∞
tn
ei(t−t

′)∆ f(u) dt′, which → 0 in Ḣ1, since ∇f(u) ∈ L2
(t>tn0 ) L

2N/N+2
x . It is easy to see

that if u(1), u(2) are non-linear profiles associated to (v0, {tn}) in I 3 t, then u(1) = u(2) on I.
Hence, there exists a maximal interval of existence I for the non-linear profile. Clearly, near
finite end points of I, the S norm is infinite. These concepts are used in the following:
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Proposition 3. — Let {z0,n} ∈ Ḣ1, ||∇z0,n||2 < ||∇W ||2 and E(z0,n) → Ec(< E(W )),
||eit∆ z0,n||S(−∞,+∞) ≥ δ > 0. Let (V0,j)∞j=1 be as in the profile decomposition. Assume that
one of

a) lim inf
n→∞

E(V `
1 (− t1,n

λ2
1,n

)) < Ec

or
b) lim inf

n→∞
E(V `

1 (− t1,n
λ2

1,n

)) = Ec

and for sn = − t1,n
λ2
1

, after passing to a subsequence so that sn → s̄ ∈ [−∞,+∞] and

E(V `
1 (−sn)) → Ec, and if U1 is the non-linear profile associated to (V0,1, {sn}) then

I = (−∞,+∞), ||U1||S(−∞,+∞) <∞.

Then, (after passing to a subsequence) if zn solves (CP) for (z0,n), ||zn||S(−∞,+∞) < ∞, for
n large. (In fact it is uniformly bounded in n.)

We will first assume Proposition 3, use it to prove Propositions 1, 2, then prove Proposi-
tion 3.

Proof of Proposition 1. — Find u0,n ∈ Ḣ1,
∫
|∇u0,n|2 <

∫
|∇W |2, E(u0,n) → Ec,

||eit∆ u0,n||S(−∞,+∞) ≥ δ, ||un||S(In) = +∞, In a maximal interval. Since Ec < E(W ), for n
large E(u0,n) ≤ (1 − δ0)E(W ). By energy trapping, ∃ δ̄ s.t. ||∇un(t)||2 < (1 − δ̄)||∇W ||2,
t ∈ In. Fix J ≥ 1 and apply the profile decomposition to {u0,n}. We have

(†) ||∇u0,n||2 =
J∑
j=1

||∇V0,j ||2 + ||∇wJn ||2 + o(1),

(‡) E(u0,n) =
J∑
j=1

E
(
V `
j

(
− tj,n
λ2
j,n

))
+ E(wJn) + o(1).

For n large, we have, from (†) that ||∇wJn ||2 ≤ (1− δ̄
2)||∇W ||2 and ||∇V0,j ||2 ≤ (1− δ̄

2)||∇W ||2,
1 ≤ j ≤ J . Hence, for n large E(wJn) ≥ 0, E(V `

j (− tj,n
λ2
j,n

))) ≥ 0. Thus, E(V `
1 (− t1,n

λ2
1,n

)) ≤

E(u0,n) + o(1) by (‡), so that lim
n→∞

E(V `
1 (− t1,n

λ2
1,n

)) ≤ Ec. Assume first that we have strict in-

equality. Then Proposition 3 a) gives a contradiction for large n. Thus, lim infn→∞E(V `
1 (sn)) =

Ec. Let U1 be the non-linear profile associated to (V0,1, {sn}). The first observation is that
V0,j = 0, j > 1. Indeed, by (‡) and the facts that E(u0,n) → Ec, E(V `

1 (sn)) → Ec (after
passing to a subsequence), we see that E(wJn) → 0, E(V `

j (− tj,n
λ2
j,n

)) → 0, j = 2, . . . , J , But

then, by coercitivity, we see that

J∑
j=2

∥∥∥∇V `
j

(
− tj,n
λ2
j,n

)∥∥∥2
+ ||∇wJn ||2 → 0 .
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But, ||∇V `
j (− tj,n

λ2
j,n

)||2 = ||∇V0,j ||2, establishing the claim, and in addition showing that

||∇wJn || → 0, so that

u0,n =
1

λ
N−2/2
1,n

V `
1

(x− x1,n

λ1,n
, sn

)
+ wJn .

Renormalize, setting v0,n = λ
N−2/2
1,n u0,n(λ1,n(x + x1,n)), which has the same properties as

u0,n, and so that

v0,n = V `
1 (sn) + w̃Jn , ||∇w̃Jn || → 0 .

Let I1 = max int of U1. By definition of non-linear profile, E(U1(sn)) = E(V `
1 (sn)) + o(1) =

Ec+o(1), ||∇U1(sn)||2 = ||∇V `
1 (sn)||2 +o(1) = ||∇V1,0||2 +o(1) = ||∇u0,n||2 +o(1) < ||∇W ||2

for n large. Now fix s̄ ∈ I1, so that E(U1(s̄)) = E(U1(sn)) → Ec, so that E(U1(s̄)) = Ec.
Also, ||∇U1(sn)||2 < ||∇W ||2 for n large, so that, by energy trapping, ||∇U1(s̄)||2 < ||∇W ||2.
If ||U1||S(I1) < ∞, Proposition 3 b) gives a contradiction. Hence ||U1||S(I1) = +∞, we take
uc = U1.

Proof of Proposition 2. — (by contradiction) Let u(x, t) = uc(x, t). If not, ∃ η0 > 0, {tn}∞n=1,
tn ≥ 0 s.t. ∀λ0 ∈ R+, x0 ∈ RN we have (after rescaling)

(∗)
∥∥∥ 1

λ
(N−2)/2
0

u
(x− x0

λ0
, tn

)
− u(x, tn)

∥∥∥
Ḣ1
≥ η0 , n 6= n′.

After passing to a subsequence, tn → t̄ ∈ [0, T+(u0)], so that t̄ = T+(u0) by continuity of the
flow. We can also assume, by (CP) that ||eit∆ u(tn)||S(0,+∞) ≥ δ. We now apply the profile
decomposition to v0,n = u(tn). We have E(u(t)) = E(u0) = Ec < E(W ), ||∇u0||2 < ||∇W ||2,
so that ||∇u(t)||2 ≤ (1− δ̄). ||∇W ||2, t ∈ I+. But then lim infn→∞E(V `

1 (− t1,n
λ2
1,n

)) ≤ Ec.. If we

have strict inequality, Proposition 3 a) gives a contradiction. Hence we have equality and as
before V0,j , j = 2, . . . , J , are all 0 and ||∇wJn || → 0. Thus, we have

u(tn) =
1

λ
N−2/2
1,n

V `
1

(x− x1,n

λ1,n
,− t1,n

λ2
1,n

)
+ wJn

||wJn ||Ḣ1 → 0. We next claim that sn = − t1,n
λ2
1,n

must be bounded. In fact, if t1,n
λ2
1,n
≤ −C0, C0 a

large positive constant, for n large we have ||eit∆wJn ||S(−∞,+∞) ≤ δ
2 and∥∥∥ 1

λ
N−2/2
1,n

V `
1

(x− x1,n

λ1,n
,
t− t1,n
λ2

1,n

)∥∥∥
S(0,+∞)

≤ ||V `
1 ||S((C0,+∞)) ≤

δ

2

for C0 large, a contradiction.
If, on the other hand t1,n

λ2
1,n
≥ C0, C0 large positive, for n large, we have∥∥∥ 1

λ
N−2/2
1,n

V `
1

(x− x1,n

λ1,n
,
t− t1,n
λ2

1,n

)∥∥∥
S(−∞,0)

≤ ||V `
1 ||S((−∞,−C0)) ≤

δ

2
·

Thus, for n large, ||eit∆ u(tn)||S(−∞,0) ≤ δ, so that (CP) gives ||u||S(−∞,tn) ≤ 2δ. But tn ↑
T+(u0), a contradiction. Hence | t1,n

λ2
1,n
| ≤ C0, so that, after passing to a subsequence t1,n

λ2
1,n
→
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t0 ∈ (−∞,+∞). But then by (∗), wJn → 0 gives for n 6= n′, both large∥∥∥ 1
(λ0)N−2/2

1
(λ1,n)N−2/2

V `
1

(x− x0 λ0 − x1,n

λ1,n
,− t1,n

λ2
1,n

)
− 1

(λ1,n′)N−2/2
V `

1

(x− x1,n′

λ1,n′
,−

t1,n′

λ2
1,n′

)∥∥∥
Ḣ1
≥ η0

2

for all λ0, x0. After changing variables this gives, for all λ0, x̃0 that∥∥∥( λ1,n′

λ0 λ1,n′

)(N−2/2)
V `

1

( λ1,n′y

λ0 λ1,n′
+ xn,n′ − x̃0 ,−

t1,n
(λ1,n)2

)
− V `

1

(
y,

t1,n′

λ2
1,n′

)∥∥∥
Ḣ1
≥ η0

2
·

Choosing now λ0, x̃0 suitably this is a contradiction since
t1,n′

λ2
1,n′
→ t0, t1,n

λ2
1,n
→ t0.

Proof of Proposition 3. — Assume first that lim inf E(V `
1 (− t1,n

λ2
1,n

)) = Ec. Fix J ≥ 1 and note

that as in the proof of Proposition 1, we have V0,j = 0, j > 1, and ||∇wJn || → 0. Moreover,
if v0,n = λ

(N−2)/2
1,n z0,n(λ1,n(x+ x1,n)), w̃n = λ

N−2/2
1,n wJn(λ1,n(x+ x1,n)), we have ||∇w̃n|| → 0,

v0,n = V `
1 (sn) + w̃n, with ||∇v0,n||2 < ||∇W ||2, E(v0,n) → Ec < E(W ). By definition of the

non-linear profile, ||∇(V `
1 (sn)−U1(sn))|| → 0, so that v0,n = U1(sn)+ ˜̃wn, ||∇ ˜̃wn|| → 0. From

this we see that E(U1) = Ec < E(W ) and so, by energy-trapping sup
t∈I
||∇U1(t)||2 < ||∇W ||2.

Since ||∇ ˜̃wn|| → 0 the Perturbation Theorem gives this case, under assertion b). Assume next
that lim inf E(V `

1 (− t1,n
λ2
1,n

)) < Ec and passing to a subsequence that limE(V `
1 (− t1,n

λ2
1,n

)) < Ec. We

next show that lim inf E(V `
j (− tj,n

λ2
j,n

)) < Ec, j = 2, · · · , J . In fact, ||∇z0,n||2 =
J
Σ
j=1
||∇V0,j ||2 +

||∇wJn ||2 + o(1) and since E(z0,n)→ Ec < E(W ), for n large E(z0,n) ≤ (1− δ0)E(W ). Since
||∇z0,n||2 < ||∇W ||2, energy trapping gives that ||∇z0,n||2 ≤ (1 − δ̄)||∇W ||2. Thus, for all n
large E(V `

j (− tj,n
λ2
j,n

)) ≥ 0, E(wJn) ≥ 0. Coercitivity shows that E(V `
1 (−sn)) ≥ C α0 = ᾱ0 >

0, for n large. Then, E(z0,n) ≥ ᾱ0 +
J
Σ
j=2

E(V `
j (− tj,n

λ2
j,n

)) + o(1), so our claim follows from

E(z0,n) → Ec. Next, note that if Uj is the non-linear profile associated to (V0,j , {− tj,n
λ2
j,n
})

(after passing to a subsequence in n) then Uj exists for all time and ||Uj ||S(−∞,∞) < ∞,
1 ≤ j ≤ J . In fact, for n large, E(V `

j (− tj,n
λ2
j,n

)) < Ec, so E(Uj) < Ec by definition of non-linear

profile. Moreover, ||∇V `
j (− tj,n

λ2
j,n

)||2 ≤ ||∇z0,n||2 + o(1) ≤ (1 − δ̄)||∇W ||2 + o(1), so by energy

trapping we have ||∇Uj(t)|| < ||∇W ||, ∀ t ∈ Ij . But then, by definition of Ec, Ij = (−∞,+∞),
||Uj ||S(−∞+∞) <∞. Next, note that ∃ j0 s.t. for j ≥ j0 we have

||Uj ||2S(−∞,+∞) ≤ C||∇V0,j ||2 .

In fact, J fixed, choosing n large we have
J∑
j=1

||∇V0,j ||2 ≤ ||∇z0,n||2 + o(1) ≤ 2||∇W ||2.

Hence, for j ≥ j0, ||∇V0,j || ≤ δ̃, δ̃ so small that ||eit∆ V0,j ||S(−∞,+∞) ≤ δ, which shows
that ||Uj ||S(−∞,+∞) ≤ 2δ, supt ||Uj(t)||Ḣ1 + ||∇Uj ||W (−∞,+∞) ≤ C||V0,j ||Ḣ1 . But then,
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||Uj ||S(−∞,+∞) ≤ C||V0,j ||Ḣ1 as desired. Next, for ε0 > 0, to be chosen, define

Hn,ε0 =
J(ε0)∑
j=1

1

λ
N−2/2
j,n

Uj

(x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)
.

Then ||Hn,ε0 ||S(−∞,+∞) ≤ C0 uniformly in ε0, for n ≥ n(ε0):

||Hn,ε0 ||
2(N+2)/(N−2)
S(−∞,+∞) =

∫∫ [ J(ε0)∑
j=1

1

λ
(N−2)/2
j,n

Uj

(x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)]2(N+2)/(N−2)

≤
J(ε0)∑
j=1

∫∫ ∣∣∣ 1

λ
(N−2)/2
j,n

Uj

(x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)∣∣∣2(N+2)/(N−2)

+ Cj(ε0)

∑
j 6=j′

∫∫ ∣∣∣ 1

λ
(N−2)/2
j,n

Uj

(x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)∣∣∣·
·
∣∣∣ 1

λ
(N−2)/2
j′,n

Uj′
(x− xj′,n

λj′,n
,
t− tj′,n
λ2
j′,n

)∣∣∣(N+6)/(N−2)
= I + II .

For n large, II → 0 by orthogonality of (λj,n, xj,n, tj,n). Thus, for n large II ≤ I. But

I ≤
j0∑
j=1

||Uj ||2(N+2)/(N−2)
S(−∞,+∞) +

J0(ε)∑
j=j0+1

||Uj ||2(N+2)/(N−2)
S(−∞,+∞)

≤
j0∑
j=1

||Uj ||2(N+2)/(N−2)
S(−∞,+∞) + C

J0(ε)∑
j=j0+1

||∇V0,j ||2(N+2)/(N−2)

≤
j0∑
j=1

||Uj ||2(N+2)/(N−2)
S(−∞,+∞) + C sup

j>j0

||∇V0,j ||(2
(N+2)
N−2

−2)
J(ε0)∑
j>j0

||∇V0,j ||2 ≤
C0

2
·

Define now Rn,ε0 = |Hn,ε0 |4/(N−2)Hn,ε0 −
J(ε0)

Σ
j=1
|Ũj,n|4/(N−2) Ũj,n, where

Ũj,n(x, t) =
1

λ
(N−2)/2
j,n

Uj

(x− xj,n
λj,n

,
t− tj,n
λ2
j,n

)
.

We then have ||∇Rn,ε0 ||L2
tL

2N/(N−2)
x

→ 0 as n→ +∞. This uses orthogonality, ||Uj ||S(−∞,+∞) <

∞, ||∇Uj ||W (−∞,+∞) <∞. Let now ũ = Hn,ε0 , e = Rn,ε0 . Choose now J(ε0) so large that for

n large ||eit∆wJ(ε0)
n ||S(−∞,+∞) ≤ ε0

2 . Note that by the profile decomposition and the definition
of non-linear profile, we have, for n large

z0,n = Hn,ε0(0) + w̃J(ε0)
n

where ||eit∆w̃J(ε0)
n ||S ≤ ε0. Also, arguments as above show also that sup

t
||∇Hn,ε0(t)|| ≤ C̃0

uniformly in ε0, for n large and ||∇w̃J(ε0)
n || ≤ 2||∇W ||. Now choose ε0 < ε0(C0, C̃0, 2||∇W ||)

as in Perturbation Theorem, and n so large that ||∇Rn,ε0 ||L2
tL

2N/N−2 ≤ ε0. Then the Pertur-
bation Theorem gives us Proposition 3 a).
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An important Corollary of the above arguments is (Keraani [20], 2001, Bahouri-Gérard
[1],1999).

Lemma. — There exists a function g : (0, Ec] → [0,+∞), g ↓ s.t. ∀u0 with ||∇u0||2 <

||∇W ||2 and E(u0) ≤ Ec − η, then ||u||S(−∞,+∞) ≤ g(η).

Proof. — If not, ∃ η0 > 0 and a sequence u0,n s.t. ||∇u0,n||2 < ||∇W ||2, E(u0,n) ≤ Ec − η0

and ||un||S(−∞,+∞) → +∞. For n large we must have ||eit∆u0,n||S(−∞,+∞) ≥ δ. But if we
now apply the proof of Proposition 3, case a), we reach a contradiction.

Remark. — In the profile decomposition, if all the v0,n are radial the V0,j can be chosen

radial and xn,j = 0. We can then repeat our procedure restricted to radial function and

conclude the analogs of Propositions 1, 2 with uc radial, x(t) ≡ 0.

Remark. — Because of the continuity of u(t), t ∈ I in Ḣ1, in Proposition 2 we can construct

λ(t), x(t) continuous in [0, T+(u0)), with λ(t) > 0 for each t ∈ [0, T+(u0)). To see this, first one

can construct piecewise constant (with small jump) λ1(t), x1(t) so that the corresponding set

K1 is contained in K̃1 = {w(t) solution of (CP) with initial data in K̄, t ∈ [0, t0], t0 small}.
It is clear that K̃1 is compact. We can then construct continuous λ2(t), x2(t) s.t. K2 is

contained in the precompact set {λ−(N−2)/2
0 w((x− x0)λ−1

0 ), w ∈ K̃1, 1
2 ≤ λ0 ≤ 2, |x0| ≤ 1}.

We now turn to further properties of critical elements.

Lemma. — Let uc be as in Proposition 2, with T+(u0) <∞. (After scaling we can assume

T+(u0) = 1). Then ∃C0 = C0(K) > 0 s.t. λ(t) ≥ C0(K)1/2

(1−t)1/2 .

Proof. — Consider tn ↑ 1, u0,n = 1
λ(tn)N−2/2 u(x−x(tn)

λ(tn) , tn). We know that ∃C0 = C0(K̄) s.t.

T+(u0,n) ≥ C0. Note that u(x, tn) = λ(tn)N−2/2 u0,n(λ(tn)x+ x(tn)), hence by uniqueness in
(CP), for tn + t < T+(u0) = 1, we have u(x, t+ tn) = λ(tn)N−2/2 un(λ(tn)x+ x(tn), λ2(tn)t).
Hence, tn + t ≤ 1 for all 0 < λ2(tn)t ≤ C0. With t = C0

λ2(tn)
, we get tn + C0

λ2(tn)
≤ 1 or

λ2(tn) ≥ C0
(1−tn) as desired.

Lemma. — Let uc be a critical element as in Proposition 2, with T+(u0) = +∞. Then,

there is a (possibly different) critical element vc, with a corresponding λ̃, and A0 > 0, with

λ̃(t) ≥ A0 > 0, for t ∈ [0, T+(v0,c)).

Proof. — Recall that E(uc) = Ec ≥ η0. By a previous remark, ∃ tn, tn ↑ +∞ s.t. λ(tn)→ 0,
or the result holds for uc. After possibly redefining {tn}c0n=1, we can assume that λ(tn) ≤
inf

[0,tn]
λ(t). By compactness of K̄, w0,n(x) = 1

λ(tn)N−2/2uc(
x−x(tn)
λ(tn) , tn) → w0 in Ḣ1. Hence,

E(w0) = Ec ≥ η0 > 0. Moreover, ||∇w0||2 < ||∇W ||2 by the corresponding property of
uc and energy trapping (Ec < E(W )). Let w(x, τ), τ ∈ (−T−(w0), 0] be the corresponding
solution of (CP). If T−(w0) < ∞, we let vc(x, t) = w̄(x,−t) and Proposition 2, and the
previous lemma, give the result. If T−(w0) = +∞, let wn(x, τ) be the solution of (CP) with
data w0,n, τ ∈ (−T−(w0,n), 0]. By semicontinuity we have lim inf T−(w0,n) = +∞ and for
every τ ∈ (−∞, 0], wn(x, τ) → w(x, τ) in Ḣ1. By uniqueness in (CP), for 0 ≤ tn + τ

λ(tn)2
,
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we have wn(x, τ) = 1
λ(tn)N−2/2uc

(x−x(tn)
λ(tn) , tn + τ

λ(tn)2

)
. Define now τn = −λ(tn)2 tn. Note

that lim infn(−τn) = lim infn(λ(tn)2 tn) = +∞. In fact, if −τn → −τ0 < ∞, wn(x,−τn) =
1

λ(tn)N−2/2uc(
x−x(tn)
λ(tn) , 0) would converge to w0(x,−τ0) in Ḣ1, with λ(tn)→ 0, a contradiction

to E(w0) 6= 0, so w0 6≡ 0. Hence, for all τ ∈ (−∞, 0], for n large we have 0 ≤ tn + τ
λ(tn)2

≤ tn.
Note also that we must have ||w||S(−∞,0) = +∞. Otherwise, by The Perturbation Theorem we
would have, for n large, T−(w0,n) = +∞, ||wn||S(0,∞) ≤M , which contradicts ||uc||S(0,+∞) =
+∞. Fix τ ∈ (−∞, 0], n so large that tn + τ

λ(tn)2
≥ 0 and λ(tn + τ

λ(tn)2
) is defined. Then,

1
λ(tn + τ

λ(tn)2
)(N−2)/2

uc

(x− x(tn + τ
λ2(tn)

)

λ(tn + τ
λ2(tn)

)
, tn+

τ

λ2(tn)

)
=

1
λ̃n(τ)(N−2)/2

, wn

(x− x̃n(τ)
λ̃(τ)

, τ
)
∈ K ,

with

λ̃n(τ) =
λ(tn + τ

λ(tn)2
)

λ(tn)
≥ 1 , x̃n(τ) = x(tn +

τ

λ2(tn)
)− x(tn)

λ̃(tn)
.

Since 1

λ
N/2
n

~v(x−xnλn
) −−−→

n→∞
~̃v in L2 with either λn → 0 or ∞ or |xn| → ∞ implies that

~̃v ≡ 0, we can assume, after passing to a subsequence that λ̃n(τ) → λ̃(τ), 1 ≤ λ̃(τ) < ∞
x̃n(τ)→ x̃(τ) ∈ RN . But then, 1

λ̃(τ)N−2/2
w
(x−x̃(τ)

λ̃(τ)
, τ
)
∈ K̄ as desired.

We now conclude the proof of Theorem A, by establishing:

Theorem (Rigidity Theorem). — Let u0 ∈ Ḣ1, E(u0) < E(W ), ||∇u0||2 < ||∇W ||2.

Let u be the corresponding solution of (CP) with maximal interval I = (−T−(u0), T+(u0)).
Assume ∃λ(t) > 0, defined for t ∈ [0, T+(u0)) s.t.

K =
{
v(x, t) =

1
λ(t)N−2/2

u
( x

λ(t)
, t
)
, t ∈ [0, T+(u0))

}
has compact closure in Ḣ1. Assume that if T+(u0) <∞, λ(t) ≥ C0(K)1/2

(T+−t)1/2
and if T+(u0) = +∞,

λ(t) ≥ A0 > 0. Then we must have T+(u0) = +∞, u0 = 0.

Proof. — Case 1 : T+(u0) < +∞ so that λ(t)→ +∞ as t→ T+(u0). Fix ϕ radial, ϕ ∈ C∞0 ,
ϕ ≡ 1 on |x| ≤ 1, suppϕ ⊂ {|x| < 2} set ϕR(x) = ϕ( xR).

Define yR(t) =
∫
|u(x, t)|2 ϕR(x)dx, t ∈ [0, T+). A classical computation shows that

y′R(t) = 2 Im
∫
ū∇u∇ϕR .

Note that ∇ϕR = 1
R ∇ϕ( xR) is supported in R ≤ |x| ≤ 2R. Then,

|y′R(t)| ≤ C̃N
(∫
|∇u|2

)1/2(∫ |u|2
|x|2

)1/2
≤ C̃N

(∫
|∇u|2

)
≤ C̃N ||∇W ||

where we have used Hardy’s inequality and energy trapping. Next, we will show that, for all
R > 0,

lim
t↑T+(u0)

∫
|x|≤R

|u(x, t)|2 dx = 0 .
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In fact, u(x, t) = λ(t)N−2/2v(λ(t)x, t), where v is compact. Then,∫
|x|<R

|u(x, t)|2 dx =λ(t)−2

∫
|y|<Rλ(t)

|v(y, t)|2 dy

=λ(t)−2

∫
|y|<εTλ(t)

|v(y, t)|2 dy + λ(t)−2

∫
εRλ(t)≤|y|≤Rλ(t)

|v(y, t)|2 dy

=A+B,

where ε > 0 is at our disposal. By Hölder, we have

A ≤ λ(t)−2(εRλ(t))N−2/N ||v(t)||2
L2∗ ≤ C ε2R2 ||∇W ||2

which, for fixed R is small with ε

B ≤ λ(t)−2 (Rλ(t))N−2/N ||v(t)||2L2∗(|y|≥εRλ(t)) −−−−→t→T+

0

by the compactness of v, since λ(t) ↑ +∞.
Now, using that |y′R(t)| ≤ C and the fundamental theorem of calculus, we have

yR(0) ≤ lim
t↑T+

yR(t) + C T+(u0) = C T+(u0) .

Letting R→∞, we conclude that u0 ∈ L2. Fix now ε > 0 and choose α so small that∫ T+(u0)

T+(u0)−α
|y′R| ≤ C α ≤

ε

2

for all R > 0. By invariance of the L2 norm (and this is a fundamental point here), we have:

||u0||2L2 = ||u(T+(u0)− α)||2L2 .

For α fixed as above, choose R so large that

||u(T+(u0)− α)||2L2 ≤ ||u(T+(u0)− α)||2L2(|x|<R) +
ε

2
.

We then have

||u0||2L2 ≤ yR(T+(u0)− α) +
ε

2
≤ lim

t↑T+
−

t∫
T+(u0)−α

y′R +
ε

2
≤ ε .

Since this is true for each ε > 0, ||u0||L2 = 0, which contradicts T+ <∞. This ends the proof
in Case 1.

Lecture 3

To conclude the proof of Theorem A, we need to treat the

Proof. — Case 2 : T+(u0) = +∞, λ(t) ≥ A0 > 0.
Note first that the compactness of K̄, together with λ(t) ≥ A0 > 0 gives that ∀ ε > 0,

∃R(ε) > 0 s.t. ∀ t ∈ [0,∞), we have∫
|x|>R(ε)

|∇u|2 + |u|2∗ +
|u|2

|x|2
≤ ε .
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In fact, since u(x, t) = λ(t)N−2/2 v(λ(t)x, t) a change of variables shows that the integral
equals ∫

|y|>R(ε)λ(t)

|∇v|2 + |v|2∗ +
|v|2

|y|2
≤

∫
|y|>A0R(ε)

≤ ε

for R(ε) large by the compactness of K̄.
To continue with the proof, pick δ0 s.t. E(u0) < (1 − δ0)E(W ). Then, ∃R0 > 0 s.t. for

R > R0, t ∈ [0,∞) we have (if ||∇u0|| 6= 0)∫
|x|<R

|∇u|2 − |u|2∗ ≥ Cδ0 ||∇u0||2.

In fact, by our coercitivity estimate we have, for all t ∈ [0,∞),
∫
|∇u|2 − |u|2∗ ≥ Cδ0 ||∇u0||2,

but, by the first claim, we can make the tails smaller than Cδ0
2 ||∇u0||2. Next, choose ψ ∈ C∞0 ,

radial, with ψ(x) = |x|2 for |x| ≤ 1, ψ(x) ≡ 0 for |x| ≥ 2. Define

zR(t) =
∫
|u(x, t)|2R2 ψ

( x
R

)
dx.

The computations that we used in Glassey’s blow-up proof to yield the “virial identity” now
give:

z′R(t) = 2R Im
∫
ū∇u∇ψ

( x
R

)
,

z′′R(t) = 4
∑
`,j

Re
∫
∂x`xjψ

( x
R

)
· ∂x`u · ∂xj ū−

1
R2

∫
∆2ψ

( x
R

)
|u|2 − 4

n

∫
∆ψ
( x
R

)
|u|2∗ .

From these formulas, we deduce:

|z′R(t)| ≤C R
∫

|x|≤2R

|u| |∇u| ≤ C R2
( ∫
|x|≤2R

|u|2

|x|2
)1/2(∫

|∇u|2
)1/2

≤C R2

∫
|∇u|2 ≤ Cδ0R2||∇W ||2.

On the other hand,

z′′R(t) ≥ 8
[ ∫
|x|≤R

|∇u|2 − |u|2∗
]
− C̃N

[ ∫
R≤|x|≤2R

|∇u|2 +
|u|2

|x|2
+ |u|2∗

]
,

which, for R large is bounded below by C̃δ0,N ||∇u0||2. Integrating in t, we obtain

z′R(t)− z′R(0) ≥ C̃δ0,N t ||∇u0||2,

|z′R(t)− z′R(0)| ≤ 2Cδ0R
2 ||∇u0||2,

which is a contradiction for large t.

Remark. — In the defocusing case, for N = 3, 4, 5, this approach (in a simplifed form

since the variational estimates are not needed) provides an alternative proof of the result of

Bourgain, Tao for radial functions in the defocusing case.
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Corollary (focusing case). — u0 ∈ Ḣ1, radial, E(u0) < E(W ), ||∇u0||2 < ||∇W ||2, N =
3, 4, 5. Then I = (−∞,+∞), ||u||S(−∞,+∞) <∞, ∃u±0 ∈ Ḣ1 s.t. ||u(t)−eit∆u±0 ||Ḣ1 −−−−→

t→±∞
0.

Also, if E(u0) ≤ (1− δ0)E(W ), ||u||S(−∞,+∞) ≤ g(δ0).

Remark. — The result admits the following strengthening: if u0 ∈ Ḣ1 is s.t. ∀ t ∈ (−T−(u0), T+(u0))
we have ||∇u(t)||2 ≤ ||∇W ||2− δ0, for some δ0 > 0, then I = (−∞,+∞) and ||u||S(−∞,+∞) <

∞. For a detailed proof, see the arguments in [18].

This remark and our Theorem A have consequences for the concentration of finite time
blow-up solutions (see [17] for the details of the proof):

Corollary. — Let u0 ∈ Ḣ1 be radial (no size restriction). Assume T+(u0) <∞ and

sup
t∈[0,T+(u0))

||∇u(t)|| <∞ (type II blow-up). Then, for all R > 0 we have:

lim sup
t↑T+(u0)

∫
|x|≤R

|∇u(t)|2 ≥
∫
|∇W |2,

N = 3, 4, 5.

Remark. — For N ≥ 4, u0 radial, T+(u0) < ∞, u not a finite blow-up solution of type II,

one can show that if
∫
|∇u(tn)|2 → +∞, then ∀R > 0,

∫
|x|<R

|∇u(tn)|2 → +∞. For N = 3

this is likely false, in light of examples like those of P. Raphael [24] for N = 2, which should

give a radial solution, blowing-up on a sphere.

We now turn our attention to the non-linear wave equation (NLW).
∂2
t u−∆u = ±|u|4/N−2 u , x ∈ RN , t ∈ R
u|t=0 = u0 ∈ Ḣ1

∂tu|t=0 = u1 ∈ L2 .

Here the − sign corresponds to the defocusing case, the + sign to the focusing case. The
problem is energy critical because if u(x, t) is a solution, λ > 0, then uλ(x, t) = 1

λN−2/2 u(xλ ,
t
λ)

is also a solution and the norm in Ḣ1 × L2 of the initial data remains unchanged.
The defocusing case has been studied for many years, going back to work of Struwe

(radial)[29], Grillakis (general)[12], Shatah-Struwe [27, 26], Bahouri-Shatah [2], Kapitan-
sky [14], Bahouri-Gérard [1], Ginibre-Velo [10], Ginibre-Soffer-Velo [9], etc. (mid to late
80’s, mid 90’s). The energy here is

E((u0, u1)) =
1
2

∫
|∇u0|2 +

1
2

∫
(u1)2 ∓ 1

2∗

∫
|u0|2

∗

which is constant in time, with − in the focusing case, and + in the defocusing case, 1
2∗ =

1
2 −

1
N . In the defocusing case, Shatah-Struwe and Bahouri-Shatah showed that for any data

(u0, u1) ∈ Ḣ1 × L2 we have global well-posedness and scattering in the energy space. In the
focusing case, this does not hold. In 1974, H. Levine [22] showed (by obstruction) that if
(u0, u1) ∈ Ḣ1 × L2, u0 ∈ L2, E((u0, u1)) < 0, there is always break-down in finite time. Very
recently (2007) Krieger-Schlag-Tataru [21] have constructed explicit radial examples which
break-down in finite time. Also, W (x) = (1 + |x|2

N(N−2))−(N−2)/2 solves the elliptic equation
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∆W + |W |4/N−2W = 0 , W ∈ Ḣ1, is radial and so W (x, t) = W (x) solves (CP) with data
(W, 0), globally iin time, but does not scatter. We now turn to our study in the focusing case.

Theorem B. — Assume that E((u0, u1)) < E((W, 0)).

i) If
∫
|∇u0|2 <

∫
|∇W |2, we have g.w.p., scattering.

ii) If
∫
|∇u0|2 >

∫
|∇W |2, there is break-down in finite time.

The condition
∫
|∇u0|2 =

∫
|∇W |2 is not compatible with E((u0, u1)) < E((W, 0)). Note

that no radial assumption is made in the Theorem, which has been proved for 3 ≤ N ≤ 5.
The general scheme of the proof follows the approach we described for (NLS). To describe

the proof, I will start out by a review of the local Cauchy problem. Consider first the linear
wave equation 

∂2
tw −∆w = h in RN × R
w|t=0 = w0 ∈ Ḣ1(RN )
∂tw|t=0 = w1 ∈ L2(RN )

whose solution is given by

w(x, t) = cos(t
√
−∆)w0 + (−∆)−1/2 sin(t

√
−∆w1 +

∫ t

0

sin((t− t′)
√
−∆)√

−∆
h(t′) dt′ .

Let S(t)(w0, w1) = cos(t
√
−∆)w0 + (−∆)−1/2 sin(t

√
−∆)w1. The relevant Strichartz esti-

mates for us are:

sup
t
||(w(t), ∂tw(t))||Ḣ1×L2

+ ||D1/2w||
L

2(N+1)/N−1
t L

2(N+1)/N−1
x

+ ||∂tD−1/2w||
L

2(N+1)/N−1
t L

2(N+1)/N−1
x

+ ||w||
L

2(N+1)/N−2
t L

2(N+1)/N−2
x

+ ||w||
L

(N+2)/N−2
t L

2(N+2)/N−2
x

≤ C
{
||(w,w1)||Ḣ1×L2 + ||D1/2h||

L
2(N+1)/N+3
t L

2(N+1)/N+3
x

}
.

We then define

|| ||S(I) = || ||
L

2(N+1)/N−2
I L

2(N+1)/N−2
x

and

|| ||W (I) = || ||
L

2(N+1)/N−1
I L

2(N+1)/N−1
x

.

We also need the Leibniz and chain rules for fractional derivatives ([19], 1993) in the following
form: if F (0) = F ′(0) = 0, F ∈ C2 and for all a, b we have |F ′(a+ b)| ≤ C{|F ′(a)|+ |F ′(b)|}
and |F ′′(a+ b)| ≤ C{|F ′′(a)|+ |F ′′(b)|}, we have, for 0 < α < 1:

||DαF (u)||Lpx ≤ C||F
′(u)||Lp1x ||D

αu||Lp2x ,
1
p

=
1
p1

+
1
p2
,
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||Dα(F (u)−F (v))||Lpx ≤ C
[
||F ′(u)||Lp1x + ||F ′(v)||Lp1x

]
||Dα(u− v)||Lp2x

+ C
[
||F ′′(u)||Lr1x + ||F ′′(v)||Lr1x

]
·
[
||Dαu||Lr2x + ||Dαv||Lr2x

]
· ||u− v||Lr3x ,

1
p

=
1
r1

+
1
r2

+
1
r3
,

1
p

=
1
p1

+
1
p2
·

Using these estimates and the argument in the study of (CP) for (NLS), one obtains (see
also [26]):

Theorem. — If (u0, u1) ∈ Ḣ1 × L2, ||(u0, u1)||Ḣ1×L2 ≤ A, 0 ∈ I, ∃ δ(A) > 0 s.t. if

||S(t)(u0, u1)||S(I) ≤ δ, ∃ ! solution of (CP) on RN × I, with (u, ∂tu) ∈ C(I; Ḣ1 × L2),
||D1/2u||W (I) + ||∂tD1/2u||W (I) < ∞, ||u||S(I) ≤ 2δ, ||u||

L
N+2/N−2
I L

2(N+2)/N−2
x

< ∞, and we

have Lipschitz continuity dependence on the data (3 ≤ N ≤ 5).

Corollary. — ∃ δ̃ > 0 s.t. if ||(u0, u1)||Ḣ1×L2 ≤ δ̃, the hypothesis is verified for I =
(−∞,+∞). Moreover, given (u0, u1) ∈ Ḣ1 × L2, ∃ I 3 0 s.t. the hypothesis is verified

on I.

We say that u solves (CP) for (u0, u1) on I 3 0 if (u1, ∂tu) ∈ C(I; Ḣ1 × L2), D1/2u ∈
W (I), u ∈ S(I), (u, ∂tu)|t=0 = (u0, u1) and u solves the appropriate integral equation. It
is easy to obtain uniqueness and one can then define a maximal interval of existence I =
(−T−(u0, u1), T+(u0, u1)). One also has the standard blow-up criterion: if T+(u0, u1) < ∞,
then ||u||S(0,T+(u0,u1)) = +∞. Also, if T+(u0, u1) = +∞ and ||u||S(0,+∞) < ∞, u scatters
at +∞, i.e. ∃u+

0 , u
+
1 ∈ Ḣ1 × L2 s.t. ||(u(t), ∂t(u)) − S(t)(u+

0 , u
+
1 )||Ḣ1×L2 → 0. Note that

for t ∈ I, we have E((u(t), ∂tu(t))) = E((u0, u1)). It turns out that there is another very
important conservation law in the energy space. This will be crucial for us, in order to be
able to treat non-radial data. It says that, for t ∈ I, we have∫

∇u(x, t) · ∂tu(x, t) dx =
∫
∇u0 · u1

(conservation of momentum).
Finally, we mention that Foschi’s estimates [6] also hold for the wave equation. One

can then prove the analogue of the Perturbation Theorem for (NLS), for (NLW) and all its
corollaries.

We conclude these remarks on (CP) by mentioning the finite speed of propagation property.
Recall that if R(t) is the forward fundamental solution for the linear wave equation, we can
write the solution of the linear Cauchy problem (for T > 0) as

w(t) = ∂tR(t) ∗ w0 +R(t) ∗ w1 −
∫ t

0
R(t− s) ∗ h(s) ds .

The finite speed of propagation states that suppR(−, t) ⊂ B̄(0, t), supp ∂tR(t) ⊂ B̄(0, t).
Thus, if suppw0 ⊂ cB(x0, a), suppw1 ⊂ cB(x0, a), supph ⊂ c

[
∪

0≤t≤a
B(x0, a− t)× t

]
, w ≡ 0

on ∪
0≤t≤a

[B(x0, t) × t)]. This has consequences for solutions of (NLW). If (u0, u1), (u′0, u
′
1)

are data s.t. (u0, u1) = (u′0, u
′
1) on B(x0, a), then, the corresponding solutions agree on
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∪
0≤t≤a

[B(x0, t) × (t)] ∩ RN × (I ∩ I ′). This is because, for each u, if we define u(n+1)(x, t) =

S(t)(u0, u1) +
∫ t

0

sin((t−s
√
−∆)√

−D f(u(n)(s)) ds, u0(x, t) = S(t)(u0, u1), we have un → u, u′n → u′

and they agree on the required set, by induction. Typical applications of this are: suppu0 ⊂
B(0, b), suppu1 ⊂ B(0, b), then u(x, t) ≡ 0 on {(x, t) : |x| > b + t, t ≥ 0, t ∈ I}. Similar
statements hold for t < 0. Thus, one can approximate solutions by regular, compactly sup-
ported solutions. The next step is to obtain energy trapping, coercivity and uniform bounds,
by variational arguments, as in the case of (NLS). Recall that Wθ0,λ0,x0(x) = eiθ0 λ

(N−2)/2
0 .

W (λ0(x− x0)) and that Aubin-Talenti showed that if CN is the best constant in the Sobolev
embedding (||u||L2∗ ≤ CN ||∇u||) then ||u||L2∗ = CN ||∇u||, u 6≡ 0⇔ u = Wθ0,λ0,x0 . Moreover,
we showed that ||∇W ||2 = 1

CNN
, and if E(W ) = 1

2 ||∇W ||
2 − 1

2∗ ||W ||
2∗

L2∗ , E(W ) = 1
NCnN

. Using
our t−independent variational estimates we obtain:

Energy trapping. — If u is a solution of (NLW), with max int I, (u, ∂tu)|t=0 = (u0, u1) ∈
Ḣ1 ×L2 and for δ0 > 0, E((u0, u1)) ≤ (1− δ0)E((W, 0)), ||∇u0||2 < ||∇W ||2, then ∀ t ∈ I we
have: ∃ δ̄ = δ̄(δ0) s.t.

i) ||∇u(t)||2 ≤ (1− δ̄)||∇W ||2
ii)
∫
|∇u(t)|2 − |u(t)|2∗ ≥ δ̄

∫
|∇u(t)|2

iii) E(u(t)) ≥ 0 (and hence E((ut), ∂tu)) ≥ 0)
iv) E((u(t), ∂tu(t))) ' ||(u(t), ∂tu(t))|2

Ḣ1×L2 ' ||(u0, u1)||2
Ḣ1×L2 , with comparability con-

stants depending on δ0.

Also, as in the case of (NLS) we have: if E((u0, u1)) ≤ (1− δ0E((W, 0)); ||∇u0||2 > ||∇W ||2,
then, for t ∈ I we have ||∇u(t)||2 ≥ (1 + δ̄)||∇W ||2.

We next turn to the proof of ii) in Theorem B. We will show it in the case when ||u0||L2 <∞.
The general case follows by using, in addition, localization and finite speed of propagation.
We know that, in the situation of ii),∫

|∇u(t)|2 ≥ (1 + δ̄)
∫
|∇W |2 , t ∈ I

E((W, 0)) ≥ E((u(t), ∂tu(t))) + δ̃0 .

Then,
1
2∗

∫
|u(t)|2∗ ≥ 1

2

∫
(∂tu(t))2 +

1
2

∫
|∇u(t)|2 − E((W, 0)) + δ̃0

or ∫
|u(t)|2∗ ≥ N

N − 2

∫
(∂tu(t))2 +

N

N − 2

∫
|∇u(t)|2 − 2∗E((W, 0)) + 2∗ δ̃0 .

Let y(t) =
∫
|u(t)|2, so that y′(t) = 2

∫
u(t)∂tu(t), y′′(t) = 2

∫
{(∂tu)2 − |∇u(t)|2 + |u|2∗(t)}.

Then,

y′′(t) ≥ 2
∫

(∂tu)2 +
2N
N − 2

∫
(∂tu)− 2∗E((W, 0)) + ˜̃

δ0 +
2N
N − 2

∫
|∇u(t)|2 − 2

∫
|∇u(t)|2

=
4(N − 1)
(N − 2)

∫
(∂tu)2 +

4
(N − 2)

∫
|∇u|2 − 4

(N − 2)

∫
|∇W |2 + ˜̃

δ0 ≥
4(N − 1)
(N − 2

∫
(∂tu)2 + ˜̃

δ0 .
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If I ∩ [0,+∞) = [0,+∞), ∃ t0 > 0 s.t. y′(t0) > 0 and y′(t) > 0, ∀t > t0. For t > t0 we have:

y′′(t) y(t) ≥ 4(N − 1)
(N − 2)

∫
(∂tu)2

∫
u2 ≥

(N − 1
N − 2

)
y′(t)2

or
y′′(t)
y′(t)

≥
(N − 1
N − 2

) y′(t)
y(t)

or
y′(t) ≥ C0 y(t)(N−1)/N−2 , t > t0 .

But since (N−1)
N−2 > 1 this leads to finite time blow-up, a contradiction.

We now turn to the proof of i) in Theorem B. We repeat the “concentration-compactness”
procedure, replacing Keraani’s work with the work of Bahouri-Gérard ([1], 1999) on high
frequency approximation to solutions of the linear wave equation. We then obtain Ec, with
0 < η0 ≤ Ec ≤ E((W, 0)) with the property that if E((u0, u1)) < Ec, ||∇u0||2 < ||∇W ||2,
we have I = (−∞,+∞), ||u||S(−∞,+∞) < ∞ and Ec is optimal with this property. i) is the
assertion Ec = E((W, 0)). If not, Ec < E((W, 0)), which will lead to a contradiction. Exactly
as in the (NLS) case we have:

Proposition 1. — ∃ (u0,c, u1,c) ∈ Ḣ1 × L2, with ||∇u0,c||2 < ||∇W ||2, E((u0,c, u1,c)) = Ec
and s.t. for the solution uc of (CP), with max int I, we have ||uc||S(I) = +∞.

Proposition 2. — For any uc as in Proposition 1, s.t. (say) ||uc||S(I+) = +∞, ∃x(t) ∈ RN ,

λ(t) ∈ R+, t ∈ I+ s.t.

K =
{
v(x, t) =

( 1
λ(t)N−2/2

uc

(x− x(t)
λ(t)

, t
)
,

1
λ(t)N/2

∂t uc

(x− x(t)
λ(t)

, t
))}

has compact closure in Ḣ1 × L2.

Remark. — x(t), λ(t) can be taken continuous. Moreover, if T+ < ∞, λ(t) ≥ C0(K)
(T+−t) (same

proof as (NLS)). Also, if T+ = +∞, by possibly changing uc, we can find one for which

λ(t) ≥ A0 > 0.

One can also show:

Lemma. — ∃ g : (0, Ec] → [0,∞), g ↓ s.t. ∀(u0, u1) with E((u0, u1)) ≤ Ec − η, ||∇u0||2 <
||∇W ||2, we have ||u||S(−∞,+∞) ≤ g(η).

To proceed further, we need specific features of the problem. We now will develop some
further properties of critical elements, specific to (NLW). We start out with some further
consequences of the finite speed of propagation.

Lemma. — Let (u0, u1) ∈ Ḣ1 × L2, ||(u0, u1)||Ḣ1×L2 ≤ A. If for some M > 0, ε > 0,

0 < ε < ε0 = ε0(A), we have: ∫
|x|≥M

|∇u0|2 + |u1|2 +
|u0|2

|x|2
≤ ε ,
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then for 0 < t < T+(u0, u1) we have∫
|x|≥ 3

2
M+t
|∇u(t)|2 + |∂tu(t)|2 + |u(t)|2∗ +

|u(t)|2

|x|2
≤ Cε .

Proof. — Choose ψM ≡ 1, |x| ≥ 3
2 M , ψM ≡ 0, |x| ≤ M , |∇ψM | ≤ C

M . Let u0,M = ψMu0,
u1,M = ψMu1. Because of our assumption, ||(u0,M , u1,M )||Ḣ1×L2 ≤ Cε. If ε0 is so small that
Cε0 < δ, then uM solves (CP) in I = (−∞,+∞) and sup

t∈(−∞,+∞)
||(uM (t), ∂tuM (t)||Ḣ1×L2 <

2Cε. But by finite speed, uM = u for |x| ≥ 3
2 M + t, t > 0, t ∈ I.

Lemma. — Let uc be a critical element as in Proposition 2, with T+((u0, u1)) <∞. (Assume

without loss of generality that T+((u0, u1)) = 1). Then, ∃ x̄ ∈ RN s.t.

suppuc(−, t), ∂tuc(−, t) ⊂ B(x̄, 1− t) , 0 < t < 1 .

Proof. — We first show, for each t, 0 < t < 1, that there is a ball B1−t, of radius (1− t) s.t.
supp∇u, supp ∂tu ⊂ B1−t. If not, for a fixed t, ∃ε0 > 0, η0 > 0 s.t. ∀x0 ∈ RN we have∫

|x−x0|≥(1+η0)(1−t)
|∇u(t)|2 + (∂tu(t))2 ≥ ε0 > 0 .

Choose a sequence tn ↑ 1. Recall that λ(tn) ≥ C0(K)
1−tn . We claim that, given R0 > 0, M > 0,

for n large we have∫
|x+

x(tn)
λ(tn)

|≥R0

|∇u(x, tn)|2 + |∂tu(x, tn)|2 +
|u(x, tn)|2

|x|2
≤ ε0

M
·

Indeed, let ~v(x, t) = 1
λ(t)N/2

(
∇u(x−x(t)

λ(t) , t), ∂tu(x−x(t)
λ(t) , t)

)
which is compact in L2(RN )N+1.

Then ∫
|x+

x(tn)
λ(tn)

|≥R0

|∇u(x, tn)|2 + |∂tu(x, tn)|2 =
∫

|y|≥λ(tn)R0

|~v(y, tn)|2

and the claim follows from the compactness of K̄, λ(tn) ↑ +∞. (The proof for the term
|u(x,tn)|2
|x|2 follows from a similar argument). From this claim and the previous Lemma, used

backward in time, we conclude that ∀ t ∈ [0, tn] we have∫
|x+

x(tn)
λ(tn)

|≥ 3
2
R0+(tn−t)

|∇u(x, t)|2 + |∂tu(x, t)|2 ≤ ε0 .

But if R0 is so small that (1 + η0)(1− t) ≥ 3
2 R0 + (tn − t), we reach a contradiction, proving

the claim.
The next step is to show that |x(t)

λ(t) | ≤M , 0 ≤ t < 1. If not, ∃ tn ↑ 1 s.t. |x(tn)
λ(tn) | ↑ +∞. Fix

a ball B(x0, 1) s.t. supp∇u0, u1 ⊂ B(x0, 1). For a fixed R0 > 0, ε0 > 0 given, the previous
argument shows that, for n large, ∫

|x+
x(tn)
λ(tn)

|≥ 3
2
R0+(tn)

|∇u0|2 + |u1|2 ≤ ε0 .
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But, if |x(tn)
λ(tn) | → +∞, B(x0, 1) ⊂ {|x + x(tn)

λ(tn) | ≥
3
2 R0 + tn}, for n large, so that ∇u0, u1 are

identically 0, contradicting T+ = 1. Let now tn ↑ 1 and choose a subsequence s.t. −x(tn)
λ(tn) → x̄.

The same argument shows that for 0 < t < tn, n large we have∫
|x+

x(tn)
λ(tn)

|≥ 3
2
R0+(tn−t)

|∇u(x, t)|2 + |∂tu(x, t)|2 ≤ ε0 .

Letting n→∞ we obtain ∫
|x−x̄|≥ 3

2
R0+(1−t)

|∇u(x, t)|2 + |∂tu(x, t)|2 ≤ ε,

so that supp∇u(−, t), ∂tu(−, t) ⊂ B(x̄, 1 − t). If −x(tn)
λ(tn) → x̄, −x(tn′ )

λ(tn′ )
→ x̄′, x 6= x′ and we

choose 1 − t so small that (1 − t) < |x − x′|, we must have ∇u(−, t), ∂tu(−, t) ≡ 0, which
contradicts coercivity, T+ = 1.

Remark. — After translation we can take x̄ = 0.

Lecture 4

We next turn to a fundamental result that is crucial in the treatment of non-radial solutions.

Theorem (Orthogonality for critical elements). — Let (u0,c, u1,c) be as in Propositions

1,2, λ(t), x(t) continuous, λ(t) > 0. Assume that either T+((u0,c, u1,c)) < +∞ or T+((u0,c, u1,c)) =
+∞, λ(t) ≥ A0 > 0. Then ∫

∇u0,c · u1,c = 0 .

Note that in the radial case this is automatic. We first sketch the proof in the case T+ <∞.
We need a further linear estimate.

Lemma (Trace Theorem). — Let
∂2
tw −∆w = h ∈ L1

t L
2
x,

w|t=0 = w0 ∈ Ḣ1,

∂tw|t=0 = w1 ∈ L2.

Then, for |α| ≤ 1
4 , we have:

sup
t

∥∥∥∇w( x1 − αt√
1− α2

, x′,
t− αx1√

1− α2

)∥∥∥
L2(dx,dx′)

+ sup
t

∥∥∥∂tw( x1 − αt√
1− α2

, x′,
t− αx1√

1− α2

)∥∥∥
L2(dx,dx′)

≤ C
{
||w0||Ḣ1 + ||w1||L2 + ||h||L1

t L
2
x

}
Proof. — It suffices to consider v(x, t) = U(t)f , where v̂(ξ, t) = eit|ξ|f̂(ξ) and prove

sup
t

∥∥∥v(x1 − αt1√
1− α2

, x′,
t− αx1√

1− α2

)∥∥∥
L2(dx,dx′)

≤ C||f ||L2 .

Note that
v(x, t) =

∫
eix1ξ1 eix

′·ξ′ eit
√
ξ21+|ξ′|2 f̂(ξ1, ξ

′) dξ1 dξ
′,
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so that

v
( x1 − αt√

1− α2
,x′,

t− αx1√
1− α2

)
=
∫
eix1(ξ1−α|ξ|)/

√
1−α2

e−iαt ξ1/
√

1−α2
e−iαtξ1/

√
1−α2

eit|ξ|/
√

1−α2
eix
′ξ′ f̂(ξ) dξ1dξ

′

=
∫
eix1(ξ1−α|ξ|)/

√
1−α2

eix
′·ξ′ ĝt(ξ) dξ1 dξ

′ ,

where ĝt(ξ) = e−iαtξ1/
√

1−α2
f̂(ξ), so that ||gt||L2 = ||f ||L2 . If we now let η1 = ξ1−α|ξ|√

1−α2
,

η′ = ξ′ and compute |dηdξ | =
(1−αξ1‖ξ|)√

1−α2
' 1 for |α| ≤ 1

4 , we see that the estimate follows from
Plancherel.

If u is a solution of (CP) with maximal interval I, I ′ b I, recall that u ∈ L(N+2)/N−2
I′ L

2(N+2)/N−2
x ,

4
N−2 + 1 = N+2

N−2 , so that |u|4/N−u u ∈ L1
I′ L

2
x. Hence, the conclusion of the previous lemma

holds, provided the integrations are restricted to ( x1−αt√
1−α2

, x′, t−αx1√
1−α2

) ∈ RN × I ′.

Idea of the proof of Theorem 5 when T+((u0, u1)) = 1. — Assume that
∫
∂x1(u0,c) · u1,c =

γ > 0. Recall that suppuc, ∂t uc ⊂ B(0, 1 − t), 0 < 0 < 1. For convenience, set u(x, t) =
uc(x, 1 + t), −1 ≤ t < 0, supported in B(0, |t|). For 0 < α < 1

4 we consider the Lorentz
transformation

zα(x1, x̄, t) = u
( x1 − αt√

1− α2
, x′,

t− αx1√
1− α2

)
and fix our attention on −1

2 ≤ t < 0. In that region, the Lemma above and the remark
following it, together with the support property of u, show that zα is in the energy space and
solves our equation. An easy calculation shows that supp zα(−, t) ⊂ B(0, |t|), zα 6≡ 0, so that
T+ = 0 is the final time of existence for zα. A long calculation shows that

lim
α↓0

E(zα(−1
2), ∂t zα(−1

2))− E((u0,c, u1,c))
α

= −γ

and that, for some t0 ∈ [−1
2 ,−

1
4 ],
∫
|∇zα(t0)|2 <

∫
|∇W |2, for α small. But, since E((u0,c, u1,c)) =

Ec, for α small this contradicts the definition of Ec, since the final time of existence is fi-
nite.

Comments on the proof of Theorem 5 when T+ = +∞ (λ(t) ≥ A0 > 0)
The finiteness of the energy of zα is now unclear, because of the lack of the support property.

We then do a renormalization. We first rescale uc and consider uR(x, t) = R(N−2)/2 uc(Rx,Rt)
for R large, and for α small

zα,R(x1, x̄, t) = uR

( x1 − αt√
1− α2

, x̄,
t− αx1√

1− α2

)
.

We assume, as before, that
∫
∂x1u0,c · u1,c = γ > 0. We then prove (by integration in

t0 ∈ (1, 2)) that if h(t0) = θ(x) zα,R(x1, x̄, t0), with θ a cut-off function, for some α1 small and
all R sufficiently large, we have, for some t0 ∈ (1, 2) that

E((h(−, t0), ∂th(−, t0)) < Ec −
1
2
γ α1
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and ∫
|∇h(t0)|2 <

∫
|∇W |2 .

We then let v be the solution of (CP), with data h(−, t0) at t = t0. By our properties
of critical elements, we know that ||v||S(−∞,+∞) ≤ g(1

2 γ α1), for all R large. But, since
||uc||S(0,+∞) = +∞, we have that ||uR||L2(N+1)/N−2

[0,1]

−−−−→
R→∞

∞, by rescaling. But, by finite

speed of propagation, we have that v = zα,R on a large set, and after a change of variables to
undo α1, we reach a contradiction. The details of the argument are lengthy.

To finish the proof of Theorem B, we are reduced to:

Theorem (Rigidity Theorem). — Assume that E((u0, u1)) < E((W, 0)),
∫
|∇u0|2 <

∫
|∇W |2,

u the solution of (CP) with I+ = [0, T+). Assume that

a)
∫
∇u0 u1 = 0.

b) ∃x(t), λ(t) > 0, t ∈ [0, t+) s.t.

K =
{
v(x, t) =

( 1
λ(t)N−2/2

u
(x− x(t)

λ(t)
t
)
,

1
λ(t)N/2

∂tu
(x− x(t)

λ(t)
, t
))}

has compact closure in Ḣ1 × L2.

c) x(t), λ(t) are continuous, if T+ = 1 (scaling) λ(t) ≥ C0(K)
1−t , suppu, ∂tu ⊂ B(0, 1 − t),

when T+ = +∞, x(0) = 0, λ(0) = 1, λ(t) ≥ A0 > 0.

Then, T+ = 1 cannot happen and if T+ = +∞, (u0, u1) = (0, 0).

Clearly the rigidity theorem gives us the contradiction with establishes Theorem B, i).

Proof of the Rigidity Theorem. — Case 1 : T+ = +∞, λ(t) ≥ A0 > 0, x(0) = 0,
λ(0) = 1, x(t), λ(t) continuous. Assume (u0, u1) 6= (0, 0). By our variational estimates we
have

sup
t>0
||(∇u, ∂tu)(t)||L2 ≤ CE ,

where E((u0, u1)) = E > 0. We also have∫
|∇u(t)|2 − |u(t)|2∗ ≥ Cδ̄

∫
|∇u(t)|2 , t > 0

1
2

∫
(∂tu(t))2 +

1
2

∫
|∇u(t)|2 − |u(t)|2∗ ≥ Cδ̄E

where δ̄ = δ̄(δ0), E((u0, u1)) ≤ (1− δ0)E((W, 0)). A change of variables, the compactness of
K̄ and λ(t) ≥ A0 < 0 now give: given ε > 0, ∃R0(ε) s.t. for all 0 ≤ t <∞, we have∫

|x+
x(t)
λ(t)
|≥R0(ε)

|∂tu|2 + |∇u|2 +
|u|2

|x|2
+ |u|2∗ ≤ εE .

We next need some algebraic identities:

Lemma. — Let r(R) = r(t, R) =
∫

|x|≥R
{|∇u|2 + |∂tu|2 + |u|2∗ + |u|2

|x|2 } dx. We have, if φ ∈

C∞0 (B2), φ ≡ 1 on |x| ≤ 1, φR(x) = φ( xR), ψR(x) = xφ( xR):
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i) ∂t
(∫

ψR∇u · ∂tu
)

= −N
2

∫
(∂tu)2 +

N − 2
2

[ ∫
|∇u|2 − |u|2∗

]
+O(r(R))

ii) ∂t
(∫

φR u ∂tu
)

=
∫

(∂tu)2 −
∫
|∇u|2 +

∫
|u|2∗ +O(r(R))

iii) ∂t
(∫

ψR

{1
2
|∇u|2 +

1
2

(∂tu)2 − 1
2∗
|u|2∗

})
= −

∫
∇u ∂tu+O(r(R)).

The proof of the case T+ = +∞ is based on 2 Lemmas.

Lemma 1. — ∃ ε1 > 0, C > 0 s.t. if 0 < ε < ε1, ∃R0(ε) s.t. if R > 2R0(ε), ∃ t0 = t0(R, ε)
with 0 < t0 ≤ C R s.t. ∀ 0 < t < t0 we have |x(t)

λ(t) | < R−R0(ε) and |x(t0)
λ(t0) | = R−R0(ε).

Remark. — In the radial case, x(t) ≡ 0, so a contradiction follows directly from Lemma 10.

This is the analogue of the virial identity proof for NLS. In the non-radial case we also need:

Lemma 2. — ∃ ε2 > 0, R1(ε) > 0, C0 > 0 s.t. if R > R1(ε), for 0 < ε < ε2, we have

t0(R, ε) ≥ C0R
ε .

From Lemma 1 and Lemma 2 we have: for 0 < ε < ε1, R > 2R0(ε), t0(R, ε) ≤ C R, while
for 0 < ε < ε2, R > R1(ε), t0(R, ε) ≥ C0R

ε . This is a contradiction for ε small.

Proof of Lemma 1. — If not, since x(0) = 0, λ(0) = 1, both x(t), λ(t) continuous, we have
∀ 0 < t < C R (C large) that |x(t)

λ(t) | < R−R0(ε). Let zR(t) =
∫
ψR∇·∂tu+(N2 −α)

∫
φRu ∂tu.

Then, z′R(t) = −α
∫

(∂tu)2− (1−α)[
∫
|∇u|2− |u|2∗ ] + 0(r(R)). But, for |x| > R, 0 < t < C R

we have |x+ x(t)
λ(t) | ≥ R0(ε), so that |r(R)| ≤ C̃ εE and so, for ε small, α = 1

2 , z′R(t) ≤ −
˜̃C E
2 .

Also, |zR(t)| ≤ C1RE. Integrating in t, we obtain: C R ˜̃C E
2 ≤ 2C1RE, a contradiction for C

large.

Proof of Lemma 2. — For 0 ≤ t ≤ t0, set

yR(t) =
∫
ψR

{1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2∗

}
.

We have for |x| > R, |x + x(t)
λ(t) | > R0(ε) so that, since

∫
∇u0 u1 = 0, y′R(t) = O(r(R)) and

hence
|yR(t0)− yR(0)| ≤ C̃εEt0.

But,
|yR(0)| ≤ C̃ R0(ε)E +O(Rr(R0(ε))) ≤ C̃E{R0(ε) + εR}

and

|yR(t0)| ≥
∣∣∣∣ ∫
|x+

x(t0)
λ(t0)

|≤R0(ε)

∣∣∣∣− ∣∣∣∣ ∫
|x+

x(t0)
λ(t0)

|>R0(ε)

∣∣∣∣ .
In the first integral, |x| ≤ R, so that ψR(x) = x. The second integral is bounded by MRεE

so that

|yR(t0| ≥
∣∣∣∣ ∫
|x+

x(t0)
λ(t0)

|≤R0(ε)
x
[1

2
(∂tu)2 +

1
2
|∇u|2 − 1

2∗
|u|2∗

]∣∣∣∣−MRεE.
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The integral equals

−x(t0)

λ(t0)

∫
|x+

x(t0)
λ(t0)

|≤R0(ε)

1
2

(∂tu)2(t0) +
1
2
|∇u|2(t0)− 1

2∗
|u|2∗(t0) +

∫
|x+

x(t0)
λ(t0)

|≤R0(ε)

(
x+

x(t0)
λ(t0)

){ }

=
−x(t0)
λ(t0)

∫ {1
2

(∂tu)2 +
1
2
|∇u|2 − 1

2∗
|u|2∗

}
+
x(t0)
λ(t0)

∫
|x+

x(t0)
λ(t0)

|≤R0(ε)

{ }
+
∫
|x+

x(t0)
λ(t0)

|≤R0(ε)

(
x+

x(t0)
λ(t0)

){ }
.

The absolute value of the first term equals (R − R0(ε))E. The last two are bounded by
C̃(R−R0(ε)) εE + C̃ R0(ε)E. Thus,

|y(t0| ≥ (R−R0(ε))E(1− C̃ ε)−M RεE − C̃ R0(ε)E ≥ ER

4
for ε small, R large. Thus,

C̃ εE t0 ≥
ER

4
− C̃ E(R0(ε) + εR)

which yields the lemma for ε small, R large.

We next turn to:
Case 2 : T+ = 1, λ(t) ≥ C0(K)

1−t , suppu, ∂tu ⊂ B(0, 1− t). In this case we cannot use the
conservation of the L2 norm as in the case of (NLS) and a new approach is needed.

The first step is:

Lemma 3. — λ(t) ≤ C1(K)
1−t ·

Proof. — If not, ∃ tn ↑ 1 s.t. λ(tn)(1− tn) ↑ +∞. Let z(t) =
∫
x · ∇u · ∂tu+ (N2 − α)

∫
u ∂tu,

0 < α < 1. This is defined for 0 < t < 1 and

z′(t) = −α
∫

(∂tu)2 − (1− α)
∫
|∇u|2 − |u|2∗ ·

By our variational estimates E((u0, u1)) = E > 0 and sup
0<t<1

||(∇u, ∂tu)(t)|| ≤ C E. Also,

z′(t) ≤ −CαE, 0 < t < 1. From the support properties, we easily see that lim
t↑1

z(t) = 0, so

that, integrating in t, z(t) ≥ CαE(1−t). We will show that z(tn)
1−tn → 0, yielding a contradiction.

We know that
∫
∇u ∂tu = 0, 0 < t < 1. Hence,

z(tn)
(1− tn)

=

∫
(x+ x(tn)

λ(tn))∇u · ∂tu
(1− tn)

+
(N

2
− α

)∫ u ∂tu

(1− tn)
·

Note that, for ε > 0 given, we have∫
|x+

x(tn)
λ(tn)

|≤ε(1−tn)

∣∣∣x+
x(tn)
λ(tn)

∣∣∣|∇u(tn)| |∂tu(tn)| ≤ C εE(1− tn)
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and similarly for
∫

|x+
x(tn)
λ(tn)

|≤ε(1−tn)

|u(tn)| |∂tu(tn)|. Next we show that |x + x(tn)
λ(tn) | ≤ 2(1 − tn).

If not, B(−x(tn)
λ(tn) , (1− tn)) ∩B(0, 1− tn) = ∅, so that

∫
B(
−x(tn)
λ(tn)

,(1−tn))

|∇u(tn)|2 = 0, while

∫
|x+

x(tn)
λ(tn)

|≥(1−tn)

|∇u(x, tn|2 dx =
∫

|y|≥λ(tn)(1−tn)

∣∣∣∇u(y − x(tn)
λ(tn)

, tn

)∣∣∣2 dy

λ(tn)N
−−−→
n→∞

0

by λ(tn)(1 − tn) → +∞, compactness of K̄. Arguing similarly for ∂tu(tn), we obtain that
E((u(tn), ∂tu(tn)))→ 0, a contradiction. But,

1
(1− tn)

∫
|x+

x(tn)
λ(tn)

|≥ε(1−tn)

∣∣∣x+
x(tn)
λ(tn)

∣∣∣ |∇u(x, tn)| |∂tu(x, tn)|

≤3
∫
|x+

x(tn)
λ(tn)

|≥ε(1−tn)
|∇u(x, tn)| |∂tu(x, tn)|

=
3

λ(tn)N

∫
|y|≥ε(1−tn)λ(tn)

∣∣∣∇u(y − x(tn)
λ(tn)

, tn

)∣∣∣ ∣∣∣∂tu(y − x(tn)
λ(tn)

tn)
∣∣∣ dy −−−→

n→∞
0,

by compactness of K̄, (λ(tn)(1 − tn)) → 0. Arguing similarly (using Hardy) for
∫

u·∂tu
(1−tn) , we

conclude the proof.

Proposition. — In this case we have (T+ = 1) suppu, ∂tu ⊂ B(0, 1 − t) and K = ((1 −
t)N/2(∇u((1− t)x, t), ∂tu((1− t)x, t)) is compact in L2(RN )N+1.

Proof. —
{
~v(x, t) = (1− t)N/2(∇u((1− t)(x− x(t)), t), ∂tu((1− t)(x− x(t)), t)

}
has compact

closure since C0(K) ≤ (1 − t)λ(t) ≤ C1(K) and if K̄ is compact, K1 = {λN/2 ~v(λx) : ~v ∈
K, C0 ≤ λ ≤ C1} has K̄1 compact. Let now ṽ(x, t) = (1 − t)N/2(∇u((1 − t)x, t), ∂tu((1 −
t)x, t)), so that ṽ(x, t) = ~v(x + x(t), t). Since supp~v(−, t) ⊂ {x : |x− x(t)| ≤ 1} and E > 0,
the fact that {~v(−, t)} is compact ⇒ |x(t)| ≤ C. But, if K2 = {~v(x+ x0, t) : |x0| ≤ C}, then
K̄2 is compact, giving the Proposition.

At this point, because of the lack of the L2 conservation law, we cannot go further and a
new idea is needed. Following Giga-Kohn [8] in the parabolic case and Merle-Zaag [23] in
the hyperbolic case

(
(∂2
t − ∆)u − |u|p−1 u = 0, 1 < p < 4

N−1 + 1
)
, we introduce self-similar

variables. We set: y = x
1−t , s = log 1

1−t , 0 < t < 1 and define

w(y, s; 0) = (1− t)N−2/2 u(x, t) = e−s(N−2)/2 u(e−s y, 1− e−s) ,

which is defined for 0 ≤ s < ∞, suppw(−, s; 0) ⊂ {|y| ≤ 1}. We also consider, for δ > 0,
uδ(x, t) = u(x, t+δ) and the corresponding w. In other words, we set y = x

1+δ−t , s = log 1
1+δ−t

and

w(y, s; δ) = (1 + δ − t)N−2/2 u(x, t) = e−s(N−2)/2 u(e−s y, 1 + δ − e−s)
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which is defined for 0 ≤ s ≤ − log δ, with suppw(−, s, δ) ⊂ {|y| ≤ e−s−δ
e−s = 1−t

1+δ−t ≤ 1 − δ}.
The w solve, in their domain,

∂2
s w =

1
ρ

div(ρ∇w − ρ(y · ∇w) y)− N(N − 2)
4

w + |w|4/N−2w − 2y · ∇ ∂sw − (N − 1) ∂sw ,

where ρ(y) = (1− |y|2)−1/2.
The elliptic part of this operator degenerates. In fact, 1

ρ div(ρ∇w−ρ(y·∇w)y) = 1
ρ div(ρ(I−

y ⊗ y)∇w), which is elliptic for |y| < 1 and degenerates when |y| = 1. This new equation
gives us a new set of formulas. The reason for introducing δ > 0 is that, on suppw(−, s, δ),
(1 − |y|2) ≥ δ, so we stay away from the degeneracy. Bounds on w (obvious):

∫
B1
|w|2∗ +

|∇w|2 + |∂sw|2 ≤ C, w ∈ H1
0 (B1) and hence

∫
B1

|w|2
(1−|y|2)2

≤ C. All these bounds are uniform
in δ, s.

We introduce an energy, which will provide a Liapunov function for v :

Ẽ(w(s)) =
∫
B1

{1
2

(∂sw)2 + |∇w|2 − (y · ∇w)2
} dy

(1− |y|2)1/2

+
∫
B1

{N(N − 2)
8

w2 − (N − 2)
2N

|w|2∗
} dy

(1− |y|2)1/2

which is finite for δ > 0. Our new formulas are (0 < s1 < s2 < log 1/δ)

i) Ẽ(w(s2))− Ẽ(w(s1)) =

s2∫
s1

∫
B1

(∂sw)2

(1− |y|2)3/2
dy ds (Ẽ ↑).

ii)

1
2

∫
B1

[
∂sw · w)− (1 +N)

2
w2
] ∣∣∣ dy

(1− |y|2)1/2

∣∣∣s2
s1

=

−
s2∫
s1

Ẽ(w(s)) ds+
1
N

s2∫
s1

∫
B1

|w|2∗

(1− |y|2)1/2

+

s2∫
s1

∫
B1

{
(∂sw)2 + ∂sw · y · ∇w +

∂sw · w|y|2

(1− |y|2)

} dy

(1− |y|2)1/2
·

iiii) lim
s→log 1

δ

Ẽ(w(s)) = E = E(u0, u1), so that Ẽ(w(s)) ≤ E, for 0 ≤ s < log 1
δ .

Our first improvement is (δ > 0) :

Lemma. —
1∫

0

∫
B1

(∂sw)2

(1− |y|2)
dy ds ≤ C log

1
δ
·
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Proof. — We notice that

−2
∫

(∂sw)2

(1− |y|2)
=
d

ds

{∫ [1
2

(∂sw)2 +
1
2

(|∇w|2 − (y · w)2) +
(N − 2)N

8
w2

− (N − 2)
2N

|w|2∗
]
(− log(1− |y|2) dy

}
+
∫ [

log(1− |y|2) + 2
]
y · ∇w ∂sw −

∫
log(1− |y|2)(∂sw)2 − 2

∫
(∂sw)2 .

We integrate between 0 and 1 and drop the next to last term by sign. One finishes by (C-S),
support of w(−, s, δ).

Corollary. —
1∫

0

∫
B1

|w|2∗

(1− |y|2)1/2
≤ C

(
log

1
δ

)1/2

Ẽ(w(1)) ≥ −C log
(1
δ

)1/2
.

Proof. — The first estimate follows from ii), iii) above, C-S and the Lemma. Note that (CS)

give the 1
2 power. The second estimate follows from i) and the fact that

1∫
0

Ẽ(w(s)) ds ≥

−C
(

log 1
δ

)1/2, which follows from the definition of Ẽ and the first bound.

Our second improvement is:

Lemma. —
(log 1

δ
)3/4∫

1

∫
B1

(∂sw)2

(1− |y|2)3/2
≤ C

(
log

1
δ

)1/2
.

Proof. — Use i), iii) and the second bound in Corollary. Note that the upper limit of inte-
gration is not important in the bound. It is chosen for the subsequent applications.

Corollary. — ∃s̄δ ∈ (1, (log 1
δ )3/4) s.t.∫ s̄δ+(log 1

δ
)1/8

s̄δ

∫
B1

(∂sw)2

(1− |y|2)3/2
≤ C

(log 1
δ )1/8

·

Proof. — Split (1, (log 1
δ )3/4) into disjoint intervals of length (log 1

δ )1/8. Their number is
(log 1

δ )5/8 and 5
8 −

1
8 = 1

2 . Note the length → +∞, the bound → 0.

Now it is not hard to see that, since s̄δ ∈ (1, (log 1
δ )3/4), if s̄δ = − log(1+δ− t̄δ), | (1−t̄δ)

(1+δ−t̄δ) −
1| ≤ C δ1/4 → 0, which is the point of our choice of (log 1

δ )3/4. From this and the compactness
of K̄, one can find w∗(y, s) which solves our self-similar equation in s ∈ [0, S], which is a
limit of w(y, s̄δj + s, δj) as δj → 0, in C([0, S]; Ḣ1

0 × L2). The estimate in the corollary
shows that w∗ is independent of s. Moreover, the coercivity of u shows that w∗ 6≡ 0. Thus,
w∗ ∈ H1

0 (B1), solves the (degenerate) elliptic equation: (ρ(y) = (1−|y|2)−1/2), 1
ρ div(ρ∇w∗−
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ρ(y · ∇w∗)y)− N(N−2)
4 w∗ + |w∗|4/N−2w∗ = 0. We next show that w∗ satisfies the additional

(crucial) estimates: ∫
B1

|w∗|2∗

(1− |y|2)1/2
+
∫
B1

[|∇w∗|2 − (y · ∇w∗)2]
(1− |y|2)1/2

<∞ .

Indeed, for the first estimate, it is enough to show that∫ s̄δj+S

s̄δj

∫
B1

|w(y, s; δj)|2
∗

(1− |y|2)1/2
dy ds ≤ C for j large .

But this follows from ii) above once more, together with the choice of s̄δj (Corollary) and
(C-S). The proof of the second estimate is similar, using the first one, iii) and the formula for
Ẽ.

The conclusion of the proof is obtained by showing that a w∗ in H1
0 (B1), solving the

degenerate elliptic equation, with the additional bounds, must be 0. To do this, we will use
unique continuation. Recall that for |y| ≤ 1 − η0, η0 > 0, the linear operator is uniformly
elliptic, with smooth coefficient and the non-linearity is critical. An argument going back to
Trudinger [31] shows that w∗ is bounded on |y| ≤ 1− η0, for each η0 > 0. Hence, if we show
that w∗ ≡ 0 near |y| = 1, the standard unique continuation principle [13] will show that
w∗ ≡ 0. Near |y| = 1, our equation is modelled by (in variables z ∈ RN−1, r ∈ R, r > 0 near
r = 0)

r1/2 ∂r(r1/2 ∂rw
∗) + ∆z w

∗ + |w∗|4/N−2w = 0 .

In these variables, our information is w∗ ∈ H1
0 ((0, 1]× (|z| < 1)) and the additional estimates

are: ∫ 1

0

∫
|z|<1

|w∗(r, z)|2∗ dr

r1/2
dz <∞,∫ 1

0

∫
|z|<1

|∇z w∗(r, z)|2
dr

r1/2
dz <∞ .

We now take advantage of the degeneracy of the equation. We “desingularize” the prob-
lem by writting r = a2, setting v(a, z) = w∗(a2, z), so that ∂a v(a, z) = 2a ∂rw∗(r, z) =
2r1/2 ∂rw

∗(r, z). Our equation becomes ∂2
av + ∆zv + |v|4/N−2 v = 0, 0 < a < 1, |z| < 1 and

our bounds are:∫ 1

0

∫
|z|<1

|∇zv(a, z)|2 da dz =

1∫
0

∫
|z|<1

|∇zw∗(r, z)|2
dr

r1/2
dz <∞

and ∫ 1

0

∫
|z|<1

|∂av(a, z)|2 da
a
dz =

∫ 1

0

∫
|z|<1

|∂rw∗(r, z)|2 dr dz <∞ ,

and v ∈ H1
0 ((0, 1] × B1). But, from the additional bound we see that “∂av(a, z)|a=0 = 0”.

One then extends v by 0 to a < 0 and checks that the extension is an H1 solution to the
same equation. By Trudinger’s argument, it is bounded. But, since it vanishes for a < 0, by
unique continuation [13], v ≡ 0. Hence w∗ ≡ 0, reaching our contradiction.
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