Smooth Dynamics 2
Problem Set Nr. 1
University of Chicago
Winter 2013

Instructor: Prof. Wilkinson
Submitted by: Clark Butler
Problem 1

Let M be a Riemannian manifold with metric $\langle \cdot, \cdot \rangle$ and Levi-Civita connection ∇. Fix the standard identification of TTM with $\otimes^3 TM$:

Problem 1.1 If θ is the canonical 1-form on the cotangent bundle T^*M, and $I : TM \to T^*M$ is the isomorphism $v \to \langle v, \cdot \rangle$, then $I^* \theta = \alpha$, where α is given by

$$\alpha(u,v,w) = \langle u, v \rangle$$

Solution: Let $[\beta]$ be a tangent vector in TTM, given as an equivalence class of curves, with $\beta(0) = u$, $(\pi \circ \beta)'(0) = v$, $(\nabla_{(\pi \circ \beta)'(0)} \beta)(0) = w$. Then

$$I^* \theta(\beta'(0)) = \theta(I(\beta'(0))) = I((\beta'(0))(\pi \circ \beta)'(0)) = \langle \beta(0), (\pi \circ \beta)'(0) \rangle = \langle u, v \rangle$$

where we have used the fact that $\pi \circ \beta = \pi \circ I \circ \beta$, since I is a fiber preserving isomorphism. \(\square\)

Problem 1.2 Let $\xi_i = (u, v_i, w_i)$, $i = 1, 2$, then up to sign,

$$d\alpha(\xi_1, \xi_2) = \langle v_2, w_1 \rangle - \langle v_1, w_2 \rangle$$

Solution: We use the following formula: for a 1-form ω and smooth vector fields X_i, $i = 1, 2$,

$$d\omega(X_1, X_2) = \mathcal{L}_{X_1} \omega(X_2) - \mathcal{L}_{X_2} \omega(X_1) - \omega([X_1, X_2])$$

So let X_i be any smooth vector fields on TM with $X_i(u) = \xi_i$ for $i = 1, 2$. We can write

$$X_i = (U_i, V_i, W_i)$$

where $U_i = \pi(X_i)$, $V_i = D\pi(X_i)$, and $W_i = \nabla_{V_i} U_i$.

We now perform a pair of computations. Let $\beta_1 : (-\varepsilon, \varepsilon) \to TM$ be an integral curve of the vector field X_1 with $\beta_1(0) = u$. Observe that $U_2(\beta_1(t)) = \pi(X_2(\beta_1(t))) = \beta_1(t)$, and that β_1 and $V_2 \circ \beta_1 := V_2$ are vector fields along the curve $\pi \circ \beta_1$. Lastly, let $p = \pi(u)$. Then, since ∇ is a Levi-Civita connection,

$$X_1(\alpha(X_2))(u) = \frac{d}{dt} \bigg|_{t=0} \langle \beta_1(t), Y_2(t) \rangle$$

$$= \langle \langle \nabla_{(\pi \circ \beta_1)'(0)} \beta_1 \rangle(0), Y_2(0) \rangle + \langle u, \langle \nabla_{(\pi \circ \beta_1)'(0)} Y_2 \rangle(0) \rangle$$

$$= \langle w_1, v_2 \rangle + \langle u, \langle \nabla w_2 \rangle(0) \rangle$$

Next,

$$X_1(X_2)(u) = \frac{d}{dt} \bigg|_{t=0} X_2(\beta_1(t))$$

and so we compute

$$\frac{d}{dt} \bigg|_{t=0} X_2(\beta_1(t)) = \frac{d}{dt} \bigg|_{t=0} \langle \beta_1(t), Y_2(t), (W_2 \circ \beta_1)(t) \rangle$$

$$= \langle u, \langle \nabla_{(\pi \circ \beta_1)'(0)} Y_2 \rangle(0), \langle \nabla_{(\pi \circ \beta_1)'(0)} (W_2 \circ \beta_1) \rangle(0) \rangle$$

$$= \langle u, \nabla_{v_1} Y_2(u), \nabla_{v_1} (W_2 \circ \beta_1)(0) \rangle$$
Analogous computations give the same results with X_1 and X_2 flipped (flipping all the numbers). Hence we compute

$$[X_1, X_2](u) = (u, \nabla_{v_1} Y_2(0), \nabla_{v_1} (W_2 \circ \beta_1)(0)) - (u, \nabla_{v_2} Y_1(0), \nabla_{v_2} (W_1 \circ \beta_2)(0))$$

$$= (u, \nabla_{v_1} Y_2(0) - \nabla_{v_2} Y_1(0), (\nabla_{V_1} W_2 - \nabla_{V_2} W_1)(u))$$

using the symmetry of the Levi-Civita connection. Therefore we conclude that

$$X_1(\alpha(X_2)) = \langle w_2, v_1 \rangle + \langle u, \nabla_{v_1} Y_2(0) \rangle$$

and therefore,

$$\text{Problem 1.3} \quad \text{The vector field } \dot{\varphi} \text{ on } TM \text{ given by}$$

$$\dot{\varphi}(u) = (u, u, 0)$$

generates the geodesic flow.

Solution: Let $u \in TM$. There is a unique geodesic γ with $\dot{\gamma}(0) = u$. If φ_t denotes the time t map of the geodesic flow, then $\varphi_t(u) = \dot{\gamma}(t)$. Note $\gamma = \pi \circ \dot{\gamma}$. Then we have

$$\frac{d}{dt} \bigg|_{t=0} \varphi_t(u) = \frac{d}{dt} \bigg|_{t=0} \dot{\gamma}(t) = \langle \dot{\gamma}(0), \gamma'(0), (\nabla_{\dot{\gamma}} \dot{\gamma})(0) \rangle = (u, u, 0)$$

so that $\frac{d}{dt} \varphi_t(u) = \dot{\varphi}(u)$ and thus the vector field $\dot{\varphi}$ on TM generates the geodesic flow.

Problem 1.4 The restriction of the geodesic flow φ to the unit tangent bundle T^1M preserves the restriction of α to $T(T^1M)$.

Solution: Let $\bar{\alpha}$ denote the restriction of α to $T(T^1M)$. To show that $\bar{\alpha}$ is preserved by φ, it suffices to prove that $\mathcal{L}_{\dot{\varphi}} \bar{\alpha} = 0$. By Cartan’s formula,

$$\mathcal{L}_{\dot{\varphi}} \bar{\alpha} = d(\iota_{\dot{\varphi}} \bar{\alpha}) + \iota_{\dot{\varphi}} d\bar{\alpha}$$

We now show that each of the 1-forms on the right is zero. Observe that

$$\iota_{\dot{\varphi}} \bar{\alpha}(u) = \bar{\alpha}(\dot{\varphi}(u)) = \langle u, u \rangle = 1$$

for any $u \in T^1M$. Hence the function $\iota_{\dot{\varphi}} \bar{\alpha}$ is constant on T^1M and therefore $d(\iota_{\dot{\varphi}} \bar{\alpha}) = 0$.

2
Now observe that $\tilde{\alpha} = i^*(\alpha)$, where $i : T^1 M \to TM$ is the inclusion. Hence $d\tilde{\alpha} = d(i^*\alpha) = i^*(d\alpha)$. Thus, for any vector $(u, v, w) \in T(T^1 M)$,

$$
i_\varphi d\tilde{\alpha}((u, v, w)) = d\alpha(\dot{\varphi}(u), (u, v, w)) = -\langle u, w \rangle = 0$$

since for $(u, v, w) \in T(T^1 M)$, we have $\langle u, w \rangle = 0$. Hence $\mathcal{L}_\varphi \tilde{\alpha} = 0$ and so $\tilde{\alpha}$ is preserved by the geodesic flow φ.

Problem 1.5 α is a contact 1-form on $T^1 M$.

Solution: Let $n = \dim M$. We must prove that $|\alpha \wedge (d\alpha)^{n-1}|$ is a volume element on $T^1 M$, i.e. $\alpha \wedge (d\alpha)^{n-1}$ is nonvanishing on $T^1 M$.

Let (x^1, \ldots, x^n) be local coordinates on M, and let $(x^1, \ldots, x^n, y^1, \ldots, y^n)$ be local coordinates on TM coming from a local trivialization. We can take this trivialization to be orthogonal, i.e., to be inner product preserving on the fibers. We will evaluate α in this local coordinates. For a curve $\beta : (-\varepsilon, \varepsilon) \to TM, \beta(t) = (a^1(t), \ldots, a^n(t), b^1(t), \ldots, b^n(t))$ in local coordinates, and

$$
\dot{\beta}(t) = \sum_{i=1}^n \dot{a}^i(t) \frac{\partial}{\partial x^i} + \sum_{i=1}^n \dot{b}^i(t) \frac{\partial}{\partial y^i}
$$

The horizontal component of $\dot{\beta}(t)$ is $(a^1(t), \ldots, a^n(t), \dot{a}^1(t), \ldots, \dot{a}^n(t))$. α evaluated on $\dot{\beta}(0)$ is the inner product in TM of the horizontal component of $\dot{\beta}(t)$ at $t = 0$ with the tangent vector $\beta(0)$. Hence in local coordinates,

$$
\alpha(\dot{\beta}(0)) = \sum_{i=1}^n \dot{a}^i(0) b^i(0)
$$

Hence we conclude that in these coordinates,

$$
\alpha = \sum_{i=1}^n y^i dx^i
$$

and therefore

$$
d\alpha = \sum_{i=1}^n dy^i \wedge dx^i
$$

Hence, we easily compute that

$$
(d\alpha)^{n-1} = \sum_{j=1}^n \left(\bigwedge_{i \neq j} (dy^i \wedge dx^i) \right)
$$

Finally,

$$
\alpha \wedge (d\alpha)^{n-1} = \sum_{j=1}^n y^j dx^j \left(\bigwedge_{i \neq j} (dy^i \wedge dx^i) \right)
$$

This form is nonzero if and only if $y^j \neq 0$ for some j. If we restrict to $T^1 M$, this imposes the restriction that $\sum_{j=1}^n (y^j)^2 = 1$, which forces that $y^j \neq 0$ for some j. So the restriction
of $\alpha \wedge (d\alpha)^{n-1}$ is nowhere vanishing and therefore α is a contact 1-form on $T^1 M$. As a last note, by moving dx^j to the right, we can write this form as

$$\alpha \wedge (d\alpha)^{n-1} = (-1)^{n-1} \left(\sum_{j=1}^{n} (-1)^{j+1} y^j \wedge dy^j \right) \wedge \left(\bigwedge_{i=1}^{n} dx^i \right)$$

Up to sign, this is the product of the standard volume form on $S^{n-1} \subset \mathbb{R}^n$ with the standard volume form on \mathbb{R}^n. Pulling back to $T^1 M$, this shows that $\alpha \wedge (d\alpha)^{n-1}$ is locally the product of the Riemannian volume on M with the volume on S^{n-1} in the tangent space given by the Riemannian structure.

\[\square \]

Problem 2

Problem 2.1 Let M be compact without conjugate points. Prove the limits defining the Busemann functions on \tilde{M} exist, and that

$$b^+_v (\pi(v)) = 0$$

$$|b^+_v (p) - b^+_v (q)| \leq d(p,q)$$

Solution: We will prove these properties for b^+_v, as exactly analogous proofs work for b^-_v. For $v \in T^1 M$, let

$$b^+_{v,t} (p) = d(\gamma_v(t), p) - t$$

where γ_v is the unique parametrized geodesic with $\gamma_v(0) = v$ (note γ_v is unit-speed). Since M has no conjugate points, the metric universal cover \tilde{M} is diffeomorphic to \mathbb{R}^n via the exponential map at any point, where $n = \dim M$, and further, in \tilde{M} any two points are connected by a unique geodesic which realizes the minimal distance between those two points. For $s \geq t \geq 0$, we have by the triangle inequality,

$$d(\gamma_v(s), p) - d(\gamma_v(t), p) \leq d(\gamma_v(s), \gamma_v(t)) = s - t$$

Rearranging this gives

$$d(\gamma_v(s), p) - s \leq d(\gamma_v(t), p) - t$$

which implies that $b^+_{v,s} \leq b^+_{v,t}$. Further, for any $t \geq 0$, we have

$$d(\gamma_v(t), p) - t = d(\gamma_v(t), p) - d(\gamma_v(t), \gamma_v(0)) \geq -d(\gamma_v(0), p)$$

again by the triangle inequality. So for each p, the function $t \to b^+_{v,t}(p)$ is decreasing and bounded below. Hence the limit $\lim_{t \to \infty} b^+_{v,t}(p)$ exists for each $p \in \tilde{M}$, and the Busemann function b^+_v is thus well-defined.

For each t, we have

$$d(\gamma_v(t), \pi(v)) = d(\gamma_v(t), \gamma_v(0)) = t$$

and therefore $b^+_{v,t}(\pi(v)) = 0$ for every t, and hence $b^+_v (\pi(v)) = 0$. Also,

$$|b^+_{v,t}(p) - b^+_{v,t}(q)| = |d(\gamma_v(t), p) - d(\gamma_v(t), q)| \leq d(p,q)$$
for any $t, p, q \in \tilde{M}$, and therefore taking $t \to \infty$, we conclude that

$$|b^+_v(p) - b^+_v(q)| \leq d(p, q)$$

Problem 2.2

$$b^\pm_{\varphi_s(v)} = b^\pm_v - t$$

Solution: Let $v \in T^1\tilde{M}$. For any $p \in \tilde{M}$, we calculate

$$b^+_{\varphi_s(v)}(p) = \lim_{t \to \infty} d(\gamma_{\varphi_s(v)}(t), p) - t$$

$$= \lim_{t \to \infty} d(\gamma_v(t + s), p) - t$$

$$= (\lim_{t \to \infty} d(\gamma_v(t + s), p) - (t + s)) + s$$

$$= b^+_v(p) + s$$

and similarly,

$$b^-_{\varphi_s(v)}(p) = \lim_{t \to \infty} d(\gamma_{\varphi_s(v)}(-t), p) - t$$

$$= \lim_{t \to \infty} d(\gamma_v(-t + s), p) - t$$

$$= (\lim_{t \to \infty} d(\gamma_v(-t + s), p) - (s - t)) + s$$

$$= b^-_v(p) + s$$

(I am not sure how I am computing these signs incorrectly.)

Problem 3

I will skip the verification of the curvature of \mathbb{H}, the isometries of \mathbb{H} and \mathbb{D}, and the geodesics of these models. I’ll do the identification of $\text{PSL}(2, \mathbb{R})$ with $T^1\mathbb{H}$.

Problem 3.1 *The stabilizer of a point under the action of $\text{PSL}(2, \mathbb{R})$ is the compact subgroup $K = \text{SO}(2)/\{\pm I\}$, so there is an identification of \mathbb{H} with the coset space of K, $\mathbb{H} = \text{PSL}(2, \mathbb{R})/K$.***

Solution: $\text{PSL}(2, \mathbb{R})$ consists of all orientation-preserving isometries of \mathbb{H}, acting by Mobius transformations. These isometries consist of 3 types: translations along a geodesic, limit rotations about a point on ∂H, and rotations about a point in \mathbb{H}. Of these, only rotations fix a point in \mathbb{H}. So the stabilizer of a point is the group of all rotations about that point, and since a rotation by any angle can be realized by a hyperbolic isometry, this subgroup is isomorphic to $\text{SO}(2)/\{\pm I\}$. (I am not sure how I am computing these signs incorrectly.)

Problem 3.2 *The derivative action of $\text{PSL}(2, \mathbb{R})$ on $T^1\mathbb{H}$ is free and transitive and gives an analytic identification between $T^1\mathbb{H}$ and $\text{PSL}(2, \mathbb{R})$. Under this identification, the action of $\text{PSL}(2, \mathbb{R})$ on $T^1\mathbb{H}$ by isometries corresponds to left multiplication in $\text{PSL}(2, \mathbb{R})$.***

Solution: We first show the derivative action of $\text{PSL}(2, \mathbb{R})$ is transitive. $\text{PSL}(2, \mathbb{R})$ acts transitively on \mathbb{H} by isometries, so it suffices to restrict to a single point (say i) and prove
that \(\text{PSL}(2, \mathbb{R}) \) acts transitively on \(T^1_i \mathbb{H} \), the fiber of \(T^1 \mathbb{H} \) over \(i \). But \(\text{PSL}(2, \mathbb{R}) \) has a subgroup which acts by rotations about \(i \), namely the collection of isometries

\[
z \mapsto \frac{\cos \theta z + \sin \theta}{-\sin \theta z + \cos \theta}
\]

for \(\theta \in \mathbb{R} \), corresponding to a rotation of angle \(\theta \). In particular, for \(\theta \in [0, 2\pi) \), this will rotate the vertical unit speed geodesic \(t \mapsto e^{t\theta} \) through \(i \) to the unit speed geodesic which makes an angle \(\theta \) with this vertical geodesic, measured counterclockwise. Since all angles \(\theta \) are realized, it follows that \(\text{PSL}(2, \mathbb{R}) \) acts transitively on \(T^1_i \mathbb{H} \).

We next show the derivative action of \(\text{PSL}(2, \mathbb{R}) \) is free on \(T^1 \mathbb{H} \). For suppose we have a vector \(v \in T^1 \mathbb{H} \) fixed by the derivative action of some element \(A \in \text{PSL}(2, \mathbb{R}) \). Since this action is transitive, by conjugating by an element of \(\text{PSL}(2, \mathbb{R}) \) we can assume that \(v \) is the vertical unit tangent vector corresponding to the geodesic \(\gamma \) given by \(\gamma(t) = e^{it} \). If \(A \) fixes \(v \), then since \(A \) is an isometry and therefore takes geodesics to geodesics, \(A \) must fix the entire geodesic \(\gamma \). Hence \(A \) fixes the line \(\text{Re}(z) = 0 \) in \(\mathbb{H} \). But by the classification of orientation-preserving isometries of \(\mathbb{H} \), any such isometry has at most one fixed point unless it is the identity. Hence we conclude that \(A = I \), and therefore the derivative action is free.

Fix \(v \) now to be the vertical unit tangent vector at \(i \). We identify \(T^1 \mathbb{H} \) with \(\text{PSL}(2, \mathbb{R}) \) by taking \(v = I \), the identity in \(\text{PSL}(2, \mathbb{R}) \), and then identifying \(A \) with \(dA(v) \). This identification makes sense since the derivative action of \(\text{PSL}(2, \mathbb{R}) \) is free and transitive, and is analytic since the derivative action of \(\text{PSL}(2, \mathbb{R}) \) on \(T^1 \mathbb{H} \) is clearly analytic. The fact that the derivative action corresponds to left multiplication in \(\text{PSL}(2, \mathbb{R}) \) is essentially by definition, since for \(w \in T^1 \mathbb{H}, A \in \text{PSL}(2, \mathbb{R}) \), we have that \(w = dB(v) \) for a unique \(B \in \text{PSL}(2, \mathbb{R}) \), and therefore

\[
dA(w) = dA(dB(v)) = d(A \circ B)(v)
\]

and composition of Möbius transformations corresponds to multiplication in \(\text{PSL}(2, \mathbb{R}) \).

Problem 3.3 By endowing \(\text{PSL}(2, \mathbb{R}) \) with a suitable left-invariant metric, the identification \(\mathbb{H} \cong \text{PSL}(2, \mathbb{R})/K \) becomes an isometry. In this metric, called the Sasaki metric, geodesics in \(\mathbb{H} \) lift to geodesics in \(T^1 \mathbb{H} \) via \(\gamma \mapsto \dot{\gamma} \).

Solution: We can think of each vector \(v \in T^1 \mathbb{H} \) as a pair \((z, \theta) \in \mathbb{H} \times S^1 \), where \(z = \pi(v) = a + bi \) and \(\theta \) is the angle that the unit speed geodesic through \(v \) makes with the vertical unit speed geodesic \(t \mapsto a + e^{t\theta}ib \) through \(z \), measured counterclockwise from the vertical. This gives a bundle isomorphism \(T^1 \mathbb{H} \cong \mathbb{H} \times S^1 \). We then put a metric on \(T^1 \mathbb{H} \) by giving the fiber \((S^1)_z \) the metric it carries at each point \(z \) as the unit circle centered at \(z \) in the metric of \(\mathbb{H} \).

We claim that in this metric, \(\text{PSL}(2, \mathbb{R}) \) acts by isometries on \(T^1 \mathbb{H} \). This is trivial, since \(\text{PSL}(2, \mathbb{R}) \) acts by isometries on \(\mathbb{H} \), and therefore an element \(A \) takes the unit circle centered at \(z \) in \(\mathbb{H} \) isometrically onto the unit circle centered at \(A(z) \) in \(\mathbb{H} \). Call this metric \(d \).

We give \(\text{PSL}(2, \mathbb{R}) \) the metric induced from the metric \(d \) on \(T^1 \mathbb{H} \) by the identification of Problem 3.2. This metric is trivially left-invariant, since the derivative action of \(\text{PSL}(2, \mathbb{R}) \)
on $T^1\mathbb{H}$ corresponds to left multiplication in $\text{PSL}(2,\mathbb{R})$ under this identification, and we just verified above that the derivative action of $\text{PSL}(2,\mathbb{R})$ on $T^1\mathbb{H}$ is by isometries in the metric d that we are pulling back.

To see that the identification $\text{PSL}(2,\mathbb{R})/K \leftrightarrow \mathbb{H}$ is an isometry, note that this corresponds to the identification in $T^1\mathbb{H}$ given by fixing an angle $\theta \in S^1$ and looking at points (z,θ) for $z \in \mathbb{H}$. This is isometric to \mathbb{H} by definition.

Lastly, we should check that geodesics in \mathbb{H} lift to geodesics in $T^1\mathbb{H}$ via the map $\gamma \rightarrow \dot{\gamma}$. Observe first that the geodesic $\gamma(t) = e^t i$ through i with tangent vector the vertical through i lifts to the curve $\dot{\gamma}(t) = (e^t i, 0)$ in $T^1\mathbb{H}$. This is a geodesic in \mathbb{H} since for a fixed angle (0 here), the resulting submanifold of $T^1\mathbb{H}$ is canonically isometric to \mathbb{H}. Since $\text{PSL}(2,\mathbb{R})$ acts on $T^1\mathbb{H}$ by isometries, we can find other geodesics by applying elements A of $\text{PSL}(2,\mathbb{R})$. But if $\pi: T^1\mathbb{H} \rightarrow \mathbb{H}$ denotes the projection, then $\pi(dA(\dot{\gamma}(t))) = A(\gamma(t))$ and it follows that the geodesic $dA(\dot{\gamma})$ is the lift of the geodesic $A(\gamma)$ in \mathbb{H}, which gives the claim, since $\text{PSL}(2,\mathbb{R})$ acts transitively on the geodesics of \mathbb{H}.

Problem 4 The geodesic flow satisfies flip invariance: For $v \in TM$,

$$\varphi_{-t}(-v) = -\varphi_t(v)$$

Solution: Let γ_v be a parametrized geodesic with $\dot{\gamma}_v(0) = v$. Observe that the curve $\beta_v(t) = \gamma_v(-t)$ is also a geodesic, with $\dot{\beta}_v(t) = -\dot{\gamma}_v(-t)$. Then

$$\varphi_{-t}(-v) = \dot{\beta}_v(-t) = -\dot{\gamma}_v(t) = -\varphi_t(v)$$

Problem 5 Show that on $T^1\mathbb{H} = \text{PSL}(2,\mathbb{R})$, the geodesic flow is given by right multiplication by the 1-parameter subgroup:

$$G = \left\{ a_t := \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix} : t \in \mathbb{R} \right\}$$

(renamed to avoid notation conflict)

Solution: We consider first the geodesic $\gamma(t) = e^t i$ in \mathbb{H}. Observe that

$$a_t(z) = e^t z$$

for $z \in \mathbb{H}$. In particular, $a_t(i) = \gamma(t)$. Letting φ denote the geodesic flow on $T^1\mathbb{H}$, and putting $\dot{\gamma}(0) = I \in \text{PSL}(2,\mathbb{R})$ (under our identification) we conclude that the time t map of the geodesic flow applied to this point is

$$\varphi_t(I) = a_t = I \cdot a_t$$

The geodesic flow is preserved by isometries. Since elements of $\text{PSL}(2,\mathbb{R})$ acting by left multiplication act by isometries on $\text{PSL}(2,\mathbb{R})$, we conclude that for any $B \in \text{PSL}(2,\mathbb{R})$,

$$\varphi_t(B) = B \cdot \varphi_t(I) = B \cdot a_t$$

Thus the time t map of the geodesic flow is given by right multiplication by a_t.

\[\square\]
Problem 6

Problem 6.1 Verify that the horocyclic foliations H^\pm are the foliations of $\text{PSL}(2, \mathbb{R})$ by cosets of the horocyclic subgroups

$$P^+ = \left\{ h^+_t = \begin{pmatrix} 1 & t \\ 0 & 1 \end{pmatrix} : t \in \mathbb{R} \right\}$$

$$P^- = \left\{ h^-_t = \begin{pmatrix} 1 & 0 \\ t & 1 \end{pmatrix} : t \in \mathbb{R} \right\}$$

Solution: We will begin by computing the Busemann functions for H^\pm. We need the following general fact: for any $v \in T^1 \tilde{M}$, $p \in \tilde{M}$, where \tilde{M} is a simply connected nonpositively curved manifold, the Busemann function b^+_v (and similarly b^-_v), we have

$$\nabla b^+_v(p) = -\dot{c}_v(0),$$

where c_v is the unique geodesic in \tilde{M} with $c_v(0) = p$ and $c_v(\infty) = \gamma_v(\infty)$ (the two geodesics are asymptotic at infinity).

We also compute how the Busemann functions transform under an isometry $f : \tilde{M} \to \tilde{M}$ and switching from $+$ to $−$. We have

$$b^+_{df(v)}(f(p)) = \lim_{t \to \infty} d(\gamma_v(t), f(p)) - t$$

$$= \lim_{t \to \infty} d(f(\gamma_v(t)), f(p)) - t$$

$$= \lim_{t \to \infty} d(\gamma_v(t), p) - t$$

$$= b^+_v(p)$$

from which we see that $b^+_{df(v)} \circ f = b^+_v$.

To switch directions, we note that $b^+_v = b^-_{-v}$, which is clear by the flip invariance of the geodesic flow.

With all this in mind, we first compute b^+_I, where $I \in \text{PSL}(2, \mathbb{R})$ is identified with the vertical unit tangent vector at i. Of course $\gamma_I(t) = e^{ti}$, so $\gamma_I(\infty) = \infty \in \partial H$. The geodesics γ with $\gamma(\infty) = \infty$ are the vertical lines in \mathbb{H}, oriented toward ∞. Hence we conclude that the integral curves of the gradient field ∇b^+_I are all geodesics of the form

$$t \to a + e^{-t}bi, \ a + bi \in \mathbb{H}$$

It follows that the gradient field consists entirely of vertical vectors of norm 1 pointing toward the real axis. Hence the vectors orthogonal to this vector field (which form the tangent space of the level sets of b^+_I) are all vectors parallel to the real axis. It follows that

$$b^+_I(bi) = b^+_I(e^{\log b}i) = -\log b$$

and it follows that

$$b^+_I(a + bi) = -\log b$$
for any $a + bi \in \mathbb{H}$. Hence it follows, for any $A \in \text{PSL}(2, \mathbb{R})$, that
\[b_A^+(z) = (b_A^+ \circ A^{-1})(z) = -\log(\text{Im}(A^{-1}z)) \]

If we put J to be the counterclockwise rotation by π about the point i (so $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$) then
\[J(z) = -\frac{1}{z} \]
and $J = J^{-1}$, and it’s easy to see that
\[b_J^-(z) = b_J^+(z) = b_J^+(J(z)) = -\log(\text{Im}(-z^{-1})) = -\log(|z|^{-2}\text{Im}(z)) \]
and therefore
\[b_A^-(z) = -\log(|A^{-1}(z)|^2\text{Im}(A^{-1}z)) \]

In particular, this verifies that the Busemann functions are C^∞. The dependence on A here is also C^∞, incidentally.

The Busemann function b_J^+ has level sets $\text{Im}(z) = \text{const}$. These level sets are the orbits of points on the imaginary axis under the isometry $t \to z + t$, for $t \in \mathbb{R}$. This corresponds to h_t^+. Since b_J^+ is easily seen to be invariant under precomposition with h_t, h_t^+ takes gradient vectors to gradient vectors. We thus see that
\[\nabla b_J^+(t + i) = h_t^+ \]
so that
\[\mathcal{H}^+(I) = \{ h_t^+ : t \in \mathbb{R} \} \]

For an isometry f, its effect on Busemann functions computed earlier implies that
\[\nabla b_{df(v)}^+ \circ df = \nabla b_v^+ \]
and therefore
\[\mathcal{H}^+(df(v)) = df(\mathcal{H}^+(v)) \]

Hence we immediately see that
\[\mathcal{H}^+(A) = \{ A \cdot h_t^+ : t \in \mathbb{R} \} \]

since the derivative action is left multiplication. Thus the horocyclic foliation \mathcal{H}^+ coincides with the foliation by cosets of the 1-parameter subgroup P^+.

It’s easily checked that $b_I^- \circ h_I^- = b_I^-$, by direct calculation, where
\[h_t(z) = \frac{1}{tz + 1} \]
for $t \in \mathbb{R}$. Then in the same way as before, we conclude that
\[\mathcal{H}^-(A) = \{ A \cdot h_I^- : t \in \mathbb{R} \} \]
so that the horocyclic foliation \mathcal{H}^- coincides with the foliation by cosets of the 1-parameter subgroup P^-. \qed
Problem 6.2 Verify that the geodesic flow on $T^1 \mathbb{H}$ is Anosov.

Solution: We identify $T^1 \mathbb{H}$ with $\text{PSL}(2, \mathbb{R})$ in the usual way. We have three foliations of $T^1 \mathbb{H}$: the horocyclic foliations \mathcal{H}^+ and \mathcal{H}^-, as well as the foliation by flow lines \mathbb{R}_φ. In $\text{PSL}(2, \mathbb{R})$, these become the 1-parameter subgroups generated by h_t^+, h_t^-, and a_t respectively. From the relation
\[b^\pm_{\varphi_t(v)} = b^\pm_v - t \]
one sees immediately that the horocyclic foliations are preserved by the geodesic flow, i.e.
\[\mathcal{H}^\pm(\varphi_t(v)) = \varphi_t(\mathcal{H}^\pm(v)) \]
for any $t \in \mathbb{R}$.

Our first goal is to prove that these foliations are everywhere transverse to one another. $\text{SL}(2, \mathbb{R})$ is a 2-fold cover of $\text{PSL}(2, \mathbb{R})$ by the map $A \rightarrow -A$, so the Lie algebra of $\text{PSL}(2, \mathbb{R})$ can be identified with the Lie algebra of $\text{SL}(2, \mathbb{R})$,
\[\mathfrak{sl}(2, \mathbb{R}) = \left\{ \begin{pmatrix} a & b \\ c & -a \end{pmatrix} : a, b, c \in \mathbb{R} \right\} \]
Left multiplication acts as an isometry on $\text{PSL}(2, \mathbb{R})$, so it suffices to verify these three foliations are transverse at I, i.e. that their tangent vectors at I together span $\mathfrak{sl}(2, \mathbb{R})$. We compute
\[T_I G = \mathbb{R} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]
\[T_I P^+ = \mathbb{R} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \]
\[T_I P^- = \mathbb{R} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \]
and it is evident that these three subspaces together span $\mathfrak{sl}(2, \mathbb{R})$.

It follows that we have a splitting $\mathfrak{sl}(2, \mathbb{R}) = T_I G \oplus T_I P^+ \oplus T_I P^-$ which gives rise via the left multiplication isometry action to a splitting of this type at every point into three subspaces, one of which, G, is the flow direction, and the other two, corresponding to P^+ and P^-, remain invariant under the flow.

To prove that the geodesic flow φ is Anosov, we will show that the leaves of the foliation P^+ are exponentially contracted by the geodesic flowing forward in time, and the leaves of the foliation P^- are exponentially contracted flowing backward in time. Since the left multiplication isometry action is transitive, it suffices to prove these assertions for the leaves through I. First we consider P^+. Take two points h^+_i and h^+_s in P^+. We will flow these points forward by a time t, taking
\[h^+_i \rightarrow h^+_i a_t \]
for $i = s, t$. Let d denote the distance on $\text{PSL}(2, \mathbb{R})$. Observe that on the horocycle $\text{Im}(z) = 1$ which lifts to P^+, the lift is an isometry onto its image since all of the gradient
vectors of B^+_I along $\mathcal{H}^+(I)$ are vertical. Further, distance on $\text{Im}(z) = 1$ coincides with Euclidean distance. We conclude that

$$d(h^+_s, h^+_r) = |s - r|$$

By the fact that left multiplication is an isometry, it follows that for any $A \in \text{PSL}(2, \mathbb{R})$,

$$d(A \cdot h^+_s, A \cdot h^+_r) = |s - r|$$

Now observe the following commutation relation: for any $s, t \in \mathbb{R}$,

$$h^+_s a_t = a_t h^+_e t_s$$

It follows that

$$d(h^+_s a_t, h^+_r a_t) = d(a_t h^{-t_s}, a_t h^{-t_r}) = d(h^{-t_s}, h^{-t_r}) = e^{-t}|s - r| = e^{-t}d(h^+_s, h^+_r)$$

where we have used the fact that left multiplication is an isometry. So we have exponential contraction along P^+ going forward in time.

Now we calculate that $h^-_s = Jh^-_{-s}J^{-1}$, where $J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$. Hence

$$d(h^-_s, h^-_r) = |s - r|$$

as well, since conjugation by J is an isometry at the level of \mathbb{H}, which takes the horocycles $\text{Im}(z) = \text{const}$ to the horocycles corresponding to limit rotations about $0 \in \partial \mathbb{H}$.

We then compute the commutation relation

$$h^-_s a_t = a_t h^e t_s$$

which leads in an analogous way to the + case to the formula

$$d(h^-_s a_t, h^-_r a_t) = e^t d(h^-_s, h^-_r)$$

which proves that the leaves of P^- are exponentially contracted as we flow backward in time. This completes the verification that the geodesic flow is Anosov.