A Harder-Narasimhan theory for Kisin modules

Brandon Levin and Carl Wang Erickson

October 2, 2015
Theorem (Wiles, Taylor-Wiles, BCDT)

Any elliptic curve E/\mathbb{Q} is modular.

A key input into Wiles’ method and subsequent improvements is a good understanding of Galois deformation spaces at $\ell = p$.
Local deformation problem

Let K be a finite extension of \mathbb{Q}_p, and let Γ_K be the absolute Galois group of K. Fix

$$\bar{\rho} : \Gamma_K \to \text{GL}_n(\mathcal{O}_p).$$

There is a universal deformation space $D_{\bar{\rho}}$ represented by a quotient of a power-series ring $R_{\bar{\rho}}$ over \mathbb{Z}_p (when $\bar{\rho}$ is absolutely irreducible).

Brandon Levin and Carl Wang Erickson

HN-theory and Kisin varieties

October 2, 2015
If E is an elliptic curve over K with good reduction, then $E[p^n]$ is a finite flat group scheme over \mathcal{O}_K for all n. The representation of Γ_K on the p^n-torsion points is called flat.

The flat deformation space D_{ρ}^{fl} is the subspace of D_{ρ} of representations that come from finite flat group schemes over \mathcal{O}_K.
What are the connected components of $D_{\rho}^{\text{fl}}[1/p]$?

- (Ramakrishna) When $n = 2$ and $K = \mathbb{Q}_p$, then $D_{\rho}^{\text{fl}}[1/p]$ is connected.
- When $n = 2$, we have full description of connected components for any K by work of Kisin, Imai, Gee, and Hellmann.
- When $n > 2$, the question is open in general (unless K is mildly ramified).
Theorem (Kisin)

There is a projective variety $X_{\overline{\rho}}$ over \mathbb{F}_p such that $X_{\overline{\rho}}(\mathbb{F})$ is the set of finite flat group schemes G over \mathcal{O}_K such that $G(K) \cong \overline{\rho} \otimes_{\mathbb{F}_p} \mathbb{F}$.

Application

Connected components of $D_{\overline{\rho}}^{[1/p]}$ are related to the connected components of $X_{\overline{\rho}}$.
Kisin modules

Definition

Assume K/\mathbb{Q}_p is totally ramified of degree e and F is a finite field. Let $\varphi : F[[u]] \to F[[u]]$ be the homomorphism sending $u \mapsto u^p$. A *Kisin module* of rank n and height $\leq h$ over F is a finite free $F[[u]]$-module M_F with a semilinear map

$$\phi_{M_F} : M_F \to M_F$$

such that the cokernel (of the linearization) is killed by u^{eh}.

Theorem (Kisin)

The category of Kisin modules over F of height ≤ 1 is anti-equivalent to the category of finite flat group schemes over O_K with an F-action.
The generic fiber of \((M, \phi)\) is \((M[1/u], \phi_M[1/u])\). (This is an étale \(\mathbb{F}((u))\)-module).

The degree of \((M, \phi_M)\) is \(\frac{1}{e} \dim_{\mathbb{F}} \ker(\phi_M)\).

The slope is \(\mu(M) := \deg(M)/\text{rank}(M)\).

This was inspired by Fargues’ (2010) theory of Harder-Narasimhan filtrations for finite flat group schemes.
Examples

Let $(\mathcal{M}, \phi_{\mathcal{M}})$ have height ≤ 1 and let $\mathcal{G}_\mathcal{M}$ be corresponding finite flat group scheme over \mathcal{O}_K.

- If \mathcal{M} has slope 1, then $\mathcal{G}_\mathcal{M}$ is étale.
- If \mathcal{M} has slope 0, then $\mathcal{G}_\mathcal{M}$ is multiplicative, i.e., Cartier dual to étale.

Remark

The HN-filtration generalizes the connected-etale sequence for finite flat group schemes.

$$1 \to \mathcal{G}^0 \to \mathcal{G} \to \mathcal{G}^{\text{et}} \to 1$$
Theorem (L.-W. E.)

The function μ defines an HN-theory on the category of Kisin modules. In particular, any M has a canonical HN-filtration

$$0 = M_0 \subset M_1 \subset M_2 \subset \ldots \subset M_k = M$$

by strict subobjects such that M_{i+1}/M_i is semi-stable and $\mu(M_i/M_{i-1}) < \mu(M_{i+1}/M_i)$.

Definition

The HN-polygon is the concave polygon with breakpoints given by $(\text{rank}(M_i), \text{deg}(M_i))$. In particular, it starts at $(0, 0)$ and ends at $(\text{rank}(M), \text{deg}(M))$.
Kisin varieties

Definition

For $\nu = (a_1, a_2, \ldots, a_n)$ with $a_i \in \mathbb{Z}$ and $a_{i+1} \geq a_i$, a Kisin module $(\mathcal{M}, \phi_{\mathcal{M}})$ over \mathbb{F} of rank n has **Hodge type** ν if there exists a basis $\{e_i\}$ of \mathcal{M} such that $u^{a_i}e_i$ generates the image of $\phi_{\mathcal{M}}$.

Definition

Let $(\mathcal{M}_{\overline{\rho}}, \phi)$ be the étale $\mathbb{F}_p((u))$-module of rank n attached to $\overline{\rho}$. The closed **Kisin variety** has points given by

$$X_{\overline{\rho}}^\nu = \{ \mathcal{M}[1/u] \cong \mathcal{M}_{\overline{\rho}} | \mathcal{M} \text{ has Hodge type } \leq \nu \}.$$

It is a projective scheme over \mathbb{F}_p.
Stratification

Theorem (L.-W. E.)

There is a stratification

$$\bigcup_{P} X_{\rho}^{\nu, P} = X_{\rho}^{\nu}$$

by locally closed subschemes indexed by concave polygons P such that the points of $X_{\rho}^{\nu, P}$ are the Kisin modules with HN-polygon P.

Remark

For any point in X_{ρ}^{ν}, the HN-polygon lies above the Hodge polygon ν with the same endpoints. Hence, there are a finite number of such strata.
In the following slides, for different Hodge polygons \(\nu \), we draw the set of possible HN-polygons.

- For any \(\overline{\rho} \) of the appropriate dimension, the strata of \(X^\nu_{\overline{\rho}} \) will be indexed by this finite set of polygons.
- The Hodge polygon \(\nu \) appears in black.
- We color the polygons the same if they share the same segments in common with the Hodge polygon.
- Only strata with the same color can occur on the same connected component (i.e., the union of the strata with same color is open and closed in \(X^\nu_{\overline{\rho}} \)).

Remark

For any particular \(\overline{\rho} \), many of the strata could be empty. For example, if \(\overline{\rho} \) is irreducible, then only the constant slope stratum will appear.
Components for GL_2, $\nu = (0, 3)$
Components for \GL_3, $\nu = (0, 0, 1)$
Components for GL_3, $\nu = (-1, 0, 1)$
Components for $\text{GSp}_4, \nu = (-2, -1, 1, 2)$
Tensor product theorem

Expected Theorem (L.-W. E.)

Let M and N be Kisin modules over \mathbb{F}. If M and N are semistable, then

$$M \otimes_{\mathbb{F}} N$$

is semistable of slope $\mu(M) + \mu(N)$.

Application

Study Kisin varieties for reductive groups G and G-valued flat deformation rings.