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Introduction

In an important paper [4], Golyshev and Zagier introduce what we will refer to as
an Apéry series κ(s) associated to an ordinary differential operator L. Assuming L has
a regular singularity at t = 0 with a unique local exponent ρ, and t = c is a nearby
conifold point, κ(s) =

∑
n≥0 κns

n ∈ CJsK is a power series which describes the variation
around c of an inhomogeneous Frobenius solution Φ =

∑
n≥0 φn(t)sn to L near t = 0

(see Definition 17 and Definition 18 below). Golyshev and Zagier show in certain cases
that the κn are periods, and they raise the question quite generally how to describe the
κn motivically.

The purpose of this work is to develop the theory (first suggested to us by Golyshev) of
motivic Mellin transforms or motivic gamma functions. Our main result (Theorem 19)
relates the motivic Mellin transform associated to a solution of L with the corresponding
Apéry series. It follows from this that the κ’s are always periods when L is a Picard–
Fuchs differential operator, (Remark 22).

Finally, in Section 4 we relate the κ’s to periods of limiting mixed Hodge structures.

1. Motivic Γ-functions

Let C be a compete, smooth algebraic curve over C, and let S ⊂ C be a non-empty,
finite set of points. Let M be an algebraic connection on U := C − S. The de Rham
cohomology of the connection, H∗DR(U,M) is the cohomology of the 2-term complex of
modules (placed in degrees 0, 1) over Γ(U,OU)

M
∇M−−→M ⊗ Ω1

U .

Recall by definition a solution for M is a horizontal section of the dual connection
µ ∈ M∨,∇∨=0

an . Whereas M and H∗DR(U,M) are purely algebraic in nature, interesting
horizontal sections are usually multi-valued and only defined locally analytically, so we
consider the analytic connection M∨

an on Uan. By coupling solutions to suitable topo-
logical chains in Can, one defines rapid decay homology groups H∗,rd(Uan,M

∨
an), [1], and

there is a period pairing which is perfect pairing of finite dimensional vector spaces

H1
DR(U,M)×H1,rd(U,M

∨)→ C.
This construction is valid even when M has irregular singular points. It can be used,
for example, to construct the classical Bessel and confluent hypergeometric differential
equations. In this paper, we will consider only the motivic case, where M has regular
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singular points. In this case, one can ignore the rapid decay condition for homology and
work with the standard topological homology of the local system of solutions. We write
M∨ := M∨,∇∨=0

an for the local system. Note that this local system can often be defined
over a subfield K ⊂ C). Homology can be computed over K, e.g., by fixing a basepoint

p ∈ Uan and interpreting M∨ as a representation of π1(Uan, p) on M∨
p . Let Ũan → Uan

be the universal cover, and let C∗(Ũan, K) be the complex of topological chains on the
universal cover. Homology is then defined by coupling the chains to the representation

H∗(Uan,M∨) := H∗(C∗(Ũan, K)⊗K[π1(U,p)]M∨
p ).

Concretely, in degree 1, the period pairing can be represented as follows. For us, Ω1
U will

always be a free, rank 1 module. We fix ω ∈ Ω1
U a generator. A de Rham 1-cocycle c lifts

to an element m⊗ω ∈M⊗Ω1
U . An homology class µ ∈ H1(U,M∨) (to simplify notation,

we no longer write the subscript an) can be represented by a finite sum
∑

j σj⊗ εj where

σj ∈ π1(U, p), εj ∈ M∨
p and

∑
j σ
−1
j εj =

∑
j εj. The latter condition means that µ is a

1-cycle (and not just a 1-chain). The resulting period is

(1) 〈c, µ〉 =
∑
j

∫
σ−1
j

〈m, εj〉ω.

Remark 1. The inverse sign in σ−1
j arises because the inhomogeneous bar complex B∗[π1]

for the group π1 = π1(U, p) is a complex of left π1-modules. Bn is a free Z[π1]-module
on symbols [g1, . . . , gn] with gi ∈ π1. To compute homology with values in a left π1-
module V , we view B∗[π1] as a complex of right π1-modules with g ∈ π1 acting by left
multiplication by g−1. The homology H∗(π1, V ) is identified with the homology of the
complex B∗[π1] ⊗Z[π1] V . We will use the following formulas for the differentials in low
degrees in computations throughout the paper:

(2) ∂([g1]⊗ v) = g−1
1 v − v

and

(3) ∂([g1, g2]⊗ v) = [g2]⊗ g−1
1 v − [g1g2]⊗ v + [g1]⊗ v.

For 1-chains we will often omit [∗] and write [g] ⊗ v simply as g ⊗ v. Using (2) one
can easily see that the period pairing (1) vanishes when c = ∇M(m′) is a de Rham
coboundary:

〈∇M(m′), µ〉 =
∑
j

∫
σ−1
j

d〈m′, εj〉 = 〈m′,
∑
j

(σ−1
j εj − εj)〉 = 0.

The reader may also check that (1) vanishes when µ is a boundary given by (3).

Example 2. Let f : X → U be a smooth, proper map of algebraic varieties. Let
M := Hn

DR(X/U) be the relative de Rham cohomology, endowed with the algebraic Gauß–
Manin connection ∇. Here, again, we are totally in the realm of algebraic geometry so
if, for example, f,X, U are all defined over a subfield k ⊂ C, then our connection M
will be defined over k as well. In the Gauß–Manin setup, solutions typically arise from
continuously varying closed chains on the fibres. Since the homology of the fibres is a
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local system defined over Q, we can think of M∨
an as having a Betti structure and take

K = Q.

Example 3. The category of connections on U has a tensor product, so we can add
interest to our study by coupling e.g. a Gauß–Manin connection M as in the previous
example to one of a number of standard connections on U . The effect of tensoring
connections is to multiply solutions appearing in the period integral.

Three examples are
(i)(Mellin transform). Fix t ∈ O×U a unit on U and take the connection on OU given
by ∇Mellin(1) := sdt/t. Somewhat abusively, this connection is denoted ts. It has ts

as solution. The period integrals for M ⊗ ts are of the shape
∫
σ
〈m, ε〉tsω. Here s is a

parameter, so in fact our periods become functions of s.
(ii) (Fourier transform). Let t ∈ OU and define a connection on OU by ∇Fourier(1) = sdt.
Again s is a parameter. The solution is est.
(iii)(Kummer). Take t ∈ O×U , and let Kt be the rank 2 connection with solutions given by
1, log t. As an exercise, the reader can write out the connections Symn(Kt) and describe
the integrands involved in calculating periods for M ⊗ Symn(Kt).

Definition 4. A Γ-function is the function of s associated to a period of the Mellin
transform of a regular singular point connection M on U . If M is a Gauß–Manin
connection, then respective gamma functions are called motivic.

Let us associate explicit gamma functions with homology classes in H1(U,M∨ ⊗ ts).
For that we fix a basepoint p such that t(p) 6= 0 and consider the representation of
π1(U, p) on the stalk

(4) (M∨ ⊗ ts)p =M∨
p ⊗K K[e±2πis],

where the group acts on the second component through the monodromy of ts. That is,
the homotopy group acts through its quotient π1(Gm,t, p) ∼= Z and the generator acts as
multiplication by e2πis.

Definition 4’. Fix m ⊗ ω ∈ M ⊗ Ω1
U . A homology class ξ ∈ H1(U,M∨ ⊗ ts) can be

represented by a 1-cycle

ξ ∼
∑
j

σj ⊗ εj ⊗ e2πisnj ,

where the sum is finite, σj are loops based at p, εj ∈M∨
p are solutions in a neighbourhood

of p and nj ∈ Z. The respective gamma function is given by

(5) Γξ(s) =
∑
j

e2πisnj

∫
σ−1
j

〈m, εj〉tsω.

Here we also assume that a branch of ts at the base point p is fixed. It is thus the same
branch in every integral in the right-hand sum, while the coefficient e2πisnj accounts for
the possibility of choosing different branches.

Lemma 5. Expression in the right-hand side of (5) depends only on the homological
class of ξ in H1(U,M∨ ⊗ ts).
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Proof. According to (3), boundaries of 2-chains are generated over K[e±2πis] by expres-
sions of the form

∂([σ1, σ2]⊗ ε⊗ 1) = [σ2]⊗ σ−1
1 (ε⊗ 1)− [σ1σ2]⊗ ε⊗ 1 + [σ1]⊗ ε⊗ 1 .

Vanishing of (5) on such expressions is the composition formula. Namely, to integrate
〈m, ε〉tsω over (σ1σ2)−1 = σ−1

2 σ−1
1 we first integrate it over σ−1

1 and then integrate

[σ−1
1 ](〈m, ε〉tsω) = 〈m, [σ−1

1 ](ε ⊗ 1)〉tsω over σ−1
2 . If [σ−1

1 ]ts = e2πisn(σ−1
1 )ts we can write

this as ∫
(σ1σ2)−1

〈m, ε〉tsω =

∫
σ−1
1

〈m, ε〉tsω + e2πisn(σ−1
1 )

∫
σ−1
2

〈m, [σ−1
1 ]ε〉tsω .

�

Note that the stalk (4) is a free module over K[e±2πis] of rank dimM∨
p = rank(M).

The action of π1(U, p) commutes with the K[e±2πis]-module structure and therefore
H1(U,M∨ ⊗ ts) is a K[e±2πis]-module. It is clear that evaluation

ξ 7→ Γξ(s)

in (5) is additive and commutes with multiplication by e±2πis. Therefore we obtain a
K[e±2πis]-module of gamma functions. As a module, this is a quotient of H1(U,M∨ ⊗
ts) by classes whose gamma functions vanish. It follows that all gamma functions are
K[e±2πis]-linear combinations of a finite number of them:

Proposition 6. The K[e±2πis]-module of gamma functions is finitely generated.

Proof. Since U is an affine curve then π1 = π1(U, p) is a free group. The chain complex
of the universal cover C∗ will be a chain complex of finitely generated Z[π1]-modules.
Since the stalk representation N =M∨

p ⊗K K[e±2πis] is a finitely generated module over

a Noetherian ring R = K[e±2πis], then C∗ ⊗Z[π1] N is a complex of finitely generated R-
modules, so it has finitely generated homology. In particular, H1(U,M∨ ⊗ ts) is finitely
generated. �

Example 7. The double cover f : P1
y → P1

t given by t = 1− y2 is ramified at t = 1,∞.
We also remove the point t = 0, getting

C◦ := P1
y \ {1,−1, 0,∞} f◦→ U := P1 \ {0, 1,∞} .

We have f ◦∗OC◦ = OU ⊕OU [y]. The line bundle M := OU [y] carries a connection with
∇d/dt[y] = − 1

2(1−t) [y]. Choose a point p ∈ U and a horizontal section of the dual bundle

ε ∈M∨
p . Let σ0 and σ1 be based at p loops around 0 and 1 respectively. InM∨

p⊗Q[e±2πis]

we have [σ0](ε⊗ 1) = ε⊗ e2πis and [σ1](ε⊗ 1) = −ε⊗ 1. The loop σ = σ−1
0 σ1σ0σ1 fixes

ε⊗ 1, hence the element
ξ = σ−1

0 σ1σ0σ1 ⊗ (ε⊗ 1)

is a 1-cycle. The respective gamma function is

Γξ(s) =

∫
σ−1
1 σ−1

0 σ−1
1 σ0

ts〈[y], ε〉ω .

The 1-cycle condition here converts into the fact that σ is a closed path along which
ts〈[y], ε〉 is single-valued, thus the above integral is well defined.
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To be more specific, we choose ω = dt
t

and notice that, since ε is horizontal, the pairing

〈[y], ε〉 is a solution to the differential operator (1− t) d
dt
− 1

2
hence is a constant multiple

of (1− t)−1/2. Possibly rescaling ε, we obtain the following beta integral:

Γξ(s) =

∫
σ−1
1 σ−1

0 σ−1
1 σ0

ts−1(1− t)−1/2dt =

∫ 0

1

+e2πis

∫ 1

0

−e2πis

∫ 0

1

−
∫ 1

0

= 2(e2πis − 1)

∫ 1

0

ts−1(1− t)−1/2dt = 2(e2πis − 1)
Γ(s)Γ(1/2)

Γ(s+ 1/2)
.

This quotient is a motivic gamma function. Note that it is an entire function of s.
This is a feature of all our motivic gamma functions, as one can easily see from their
definition (5).

Remark 8. The reader will have noticed that the classical Γ-function is not a motivic
Γ-function. The connection in this case is ∇(1) = dt which has an irregular singular
point at t = ∞. The notion of period can be extended to the irregular case using some
form of “rapid decay” homology ( [1], [3]). The classical path of integration from 0 to
∞ is not allowed because the Mellin connection ∇Mellin(1) = sdt/t has a singular point
at t = 0. However, if we replace [0,∞] with a “keyhole” path starting at ∞, following
the positive real axis to +ε, looping counterclockwise about 0, and then going back to
+∞, the resulting “period”, (e2πis − 1)Γ(s) suggests a natural generalization of motivic
gammas to the irregular case. Notice that again the period is an entire function of s.

It is a general fact that Mellin transforms satisfy difference equations (see [9]). Re-
member that our choice is to fix m ⊗ ω, in which case we obtain a finitely generated
K[e±2πis]-module of gamma functions indexed by ξ ∈ H1(U,M∨⊗ts). All of them satisfy
the same difference equation which can be found as follows. Our periods depend on m
and ω only through the function-linear tensor m⊗OU

ω. We will assume that ω = fdt/t
for f ∈ OU . In this way, replacing m by fm, we can take ω = dt/t. Put

m⊗ ω = m⊗ dt/t,

in Definition 4’. Let r = rank(M) and consider the derivation D = t d/dt ∈ TC . Then
there exist q0, . . . , qr ∈ OU such that the differential operator

L = q0D
r + q1D

r−1 + . . .+ qr

annihilates m. Here and throughout the paper we shall adopt the convention that D
acts on M via ∇M(D); for example, Lm = 0 means that

r∑
j=0

qr−j∇M(D)jm = 0.

Observe that for a solution ε ∈M∨ the analytic function φ = 〈m, ε〉 ∈ Oan satisfies the
differential equation Lφ = 0.
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Proposition 9. Assume that qj = qj(t) ∈ C[t] for 0 ≤ j ≤ r and rearrange terms in the
differential operator

(6) L =
r∑
j=0

qr−j(t)D
j = p0(D) + t p1(D) + . . .+ ta pa(D)

with polynomials p0, . . . , pa ∈ C[D] of degree at most r. Then for every homological class
ξ the gamma function (5) satisfies the difference equation

(7)
a∑
j=0

pj(−s− j)Γξ(s+ j) = 0 .

Proof. For any m′′ ∈M let us denote

Γξ(m
′′, s) =

∑
j

e2πisnj

∫
σ−1
j

〈m′′, εj〉tsdt/t,

which is just the gamma function (5) corresponding to m′′ ⊗ dt/t ∈M ⊗ Ω1
U . Since ξ is

a 1-cycle, the condition

∂ξ =
∑
j

e2πisnj(σ−1
j − 1)(εj ⊗ 1) = 0

together with the fundamental theorem of calculus imply∑
j

e2πisnj

∫
σ−1
j

D(〈m′′, εj〉ts)dt/t = 0.

Expanding out, using the fact that εj is a horizontal section of M∨, we get

−sΓξ(m′′, s) =
∑
j

e2πisnj

∫
σ−1
j

〈∇Dm
′′, εj〉tsdt/t = Γξ(∇Dm

′′, s).

One also has trivially

Γξ(tm
′′, s) = Γξ(m

′′, s+ 1).

Since
∑

j qj∇
j
Dm = 0, using formula (6) we get

(8) 0 = Γξ(
∑
j

qj(t)∇j
Dm, s) =

r∑
j=0

Γξ(pj(∇D)m, s+ j) = ∑
j

pj(−s− j)Γξ(m, s+ j).

�

Quite generally, the coefficients qj ∈ OU of the differential operator L can be expressed
as analytic functions of t which need not be polynomials (as in Proposition 9) and hence
gamma functions may satisfy difference equations of infinite length. We will not assume
that qj(t) are polynomials in the rest of this paper.
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2. Monodromy and existence of gamma functions

An important class of motivic Γ functions arises when ξ lifts to a class in H1(V,M∨⊗
ts), where V ⊂ U is open in the C-topology and π1(V ) is a free group on 2 generators.

The setting is as in the first section: we are given an algebraic connection M on an
open curve U ; there is a chosen unit t ∈ O×U . Somewhat ambiguously, we will use t as
a local coordinate. Let c ∈ P1 \ {0,∞} be such that t = c is a singular value, that is
the value of t at a singular point of M in S = C \ U . The local system of solutions is
denoted by M∨ = (M∨

an)∇
∨=0. This local system is defined over a field K ⊆ C.

Proposition 10. Let d = dimK Image(σc − 1|M∨) be the rank of the variation of the
local monodromy of M∨ around t = c. Let V ⊂ Uan be an open neighbourhood of a path
between t = 0 and t = c. We assume V = V0 ∪ Vc where V0 and Vc are punctured disks
centered at 0 and c respectively, and V0 ∩ Vc is contractible. The K[e±2πis]-module of
gamma functions

Γξ(s), ξ ∈ H1(V,M∨ ⊗ ts)
is generated by at most d elements.

Proof. The following lemma will be used.

Lemma 11. Write Z ∼= uZ for the free abelian group on one generator, written mul-
tiplicatively. Let A be an abelian group, and suppose we are given φ : A → A an
automorphism. We view A as a uZ-module, with u acting as φ. Then

H1(uZ, A) ∼= Aφ=id.

Proof of lemma. We compute in the bar complex using (2) and (3):

∂([uj]⊗ a) = u−ja− a,
∂([uj, uk]⊗ a) = [uk]⊗ u−ja− [uj+k]⊗ a+ [uj]⊗ a.

Clearly, any 1-chain
∑

i[gi]⊗ ai is equivalent modulo boundaries of 2-chains as above to
a 1-chain of the form

∑
i[u
±1] ⊗ bi. Similarly, taking j = k = 0 shows 1-chains [1] ⊗ a

are coboundaries, and [u−1]⊗ a ∼ −[u]⊗ ua. In this way, any 1-chain is equivalent to a
1-chain of the form

∑
i[u]⊗ ai = [u]⊗ (

∑
i ai). We have

∂([u]⊗
∑
i

ai) = (u−1 − 1)(
∑

ai) ∈ A.

The lemma follows. �

Returning to the proof of the proposition, consider the long exact sequence for the
relative homology with coefficients in L =M∨ ⊗ ts:

(9) . . .→ H1(Vc;L)
Cor→ H1(V ;L)→ H1(V, Vc;L)

b→ H0(Vc;L)→ . . .

Fix the base point p ∈ V0∩Vc. Since ts has no monodromy around c we have H1(Vc;L) =
Lσc=id
p =M∨,σc=id

p ⊗K K[e±2πis]. It follows that gamma functions of classes in the image

of the corestriction map Cor vanish. Indeed, over K[e±2πis] such classes are generated
by ξ = σc⊗ ε⊗ 1 where ε ∈M∨,σc=id

p is σc-invariant and Γξ(s) =
∮
c
ts〈m, ε〉ω = 0. From

exactness, the cokernel of Cor is isomorphic to the kernel of the connecting map b so the
K[e±2πis]-module of Γ’s is a subquotient of Ker(b).
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We remark that K[e±2πis] is a principal ideal domain. Quite generally, if E is a module
generated by d elements over a principal ideal domain, and F is a module which is a
subquotient of E, then F is generated by ≤ d elements. It will therefore suffice to show
Ker(b) is contained in a K[e2πis]-module generated by at most d elements.

We have a diagram

(10)

0 −→H1(V0,L) −→H1(V0, p;L) −→ H0(p,L) −→H0(V0,L) −→0y ∼=
yexcision

yα
H1(V,L) −→H1(V, Vc;L) −→

b
H0(Vc,L)

The top line is identified with the exact sequence

0→ Lσ0=id
p → Lp

σ0−1−−−→ Lp → Lp/(σ0 − 1)Lp → 0.

(To see this, one can, for example, think of H1 as being given by 1-chains coupled to
sections of L. Chains with boundary at p yield relative homology classes.) The map
α : Lp → Lp/(σc− 1)Lp is the evident one induced from the inclusion p ∈ Vc. A diagram
chase identifies Ker(b) with the kernel of the composition

Lp
σ0−1−−−→ Lp → Lp/(σc − 1)Lp

which is (σ0 − 1)Lp ∩ (σc − 1)Lp ⊂ (σc − 1)Lp. (Note that σ0 − 1 is injective.)
Write Ic := Image(σc − 1 : M∨

p → M∨
p ). By assumption Ic is a vector space of

dimension d over K, and we have

(σc − 1)Lp = Ic ⊗K K[e±2πis],

a K[e±2πis]-module of rank d. As remarked above, this implies that the module of Γ’s
has rank ≤ d. �

Let us focus on the case when Proposition 10 guarantees there is a unique generator
of the module of gamma functions. We make the following

Assumption 12. The variation of the local monodromy of M∨ around the point t = c
has one dimensional image.

We fix a base point t = p and a non-zero solution δ ∈ M∨
p spanning the image

(σc − 1)M∨
p .

A conifold point of a family of algebraic varieties provides an example of a situation
when Assumption 12 is satisfied, in which case M is self-dual and one can take δ to be the
vanishing cycle at c. By the Picard–Lefschetz theorem the variation of the monodromy
around c satisfies

(11) (σc − 1)ε = ±〈ε, δ〉δ

for any section ε ∈M. When fibres of the family have even dimension we have 〈δ, δ〉 =
±2, σc is semisimple on M with σ2

c = 1 and σcδ = −δ. In the case of odd dimensional
fibres one has 〈δ, δ〉 = 0 and σcδ = δ.
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Lemma 13. Let hypotheses on M be as in Assumption 12. Let ε ∈ M∨
p be such that

(σc − 1)ε = δ. For every relation

(12) (
∑
m

λmσ
−m
0 )δ = 0 ( a finite sum with λm ∈ K)

the element

(13) ξ =
∑
m

λmσ
m
0 ⊗ δ ⊗ e2πims + σ−1

c ⊗ ε⊗
∑
m

λme
2πims

is a 1-cycle with coefficients in M∨
p ⊗K K[e±2πis]. The resulting map to the homology of

the local system L =M∨ ⊗ ts

(14) AnnK[σ±1
0 ](δ)→ H1(V,L)

is a homomorphism of K[T±1]-modules, where T acts via multiplication by σ−1
0 on rela-

tions (12) and by multiplication by e2πis on homology. The group H1(V,L) is spanned by
the images of H1(Vc,L) and (14).

Proof. To check that ξ is a cycle, we compute

∂ξ =
∑
m

λm(σ−m0 − 1)(δ ⊗ e2πims) + (σc − 1)ε⊗
∑
m

λme
2πims

=
∑
m

λmσ
−m
0 (δ ⊗ e2πims) = (

∑
m

λmσ
−m
0 δ)⊗ 1 = 0.

The K[T±1]-structure is straightforward and left for the reader.
It remains to check that the map (14) is surjective modulo the image of Cor :

H1(Vc,L) → H1(V,L). Every 1-cycle for 〈σ0, σc〉 can be written modulo boundaries
in the form

(15) σ−1
0 ⊗

(∑
n

ψn ⊗ e2πins
)

+ σ−1
c ⊗

(∑
m

γm ⊗ e2πims
)
.

Here ψn, γm ∈ M∨
p . (The point is that modifying by a boundary can remove any words

in the σc and σ0. See (3).) We write each γm = λmε+ γinvm with γinvm ∈ (M∨
p )σc=id. The

chain (15) is a sum of

σ−1
c ⊗

(∑
m

γinvm ⊗ e2πims
)

which is itself a 1-cycle on the subgroup 〈σc〉, and

(16) ξ̃ := σ−1
0 ⊗

( nmax∑
n=nmin

ψn ⊗ e2πins
)

+ σ−1
c ⊗ ε⊗

∑
m

λme
2πims.

The 1-cycle condition yields

0 = ∂ξ̃ =
∑
n

(σ0ψn−1 − ψn + λnδ)⊗ e2πins.
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(Recall the action of σ0 includes multiplication by e2πis, (4).) This equation can be solved
recursively

λn = 0, n < nmin
ψnmin

= λnmin
δ

ψnmin+1 = λnmin
σ0δ + λnmin+1 δ

...

0 = ψnmax+1 =
∑nmax−nmin+1

j=0 (λnmin+j σ
(nmax−nmin+1)−j
0 )δ

It follows that
(∑

m λmσ
−m
0

)
δ = 0. In fact, (16) is homologous to (13). To check this,

we can assume λm = 0 for m ≤ 0. For v ∈ Lp we have by (3)

σm0 ⊗ v ∼ −σ−1
0 ⊗ (σ−1

0 + · · ·+ σ−m0 )v,

and therefore ∑
m

λmσ
m
0 ⊗ δ ⊗ e2πims ∼ σ−1

0 ⊗Ψ,

with

Ψ = −
∑
m

λm(σ−1
0 + · · ·+ σ−m0 )(δ ⊗ e2πims)

= −
∑
m

λm

m∑
j=1

σ−j0 δ ⊗ e2πi(m−j)s =
∑
n

(
−
∑
m>n

λmσ
n−m
0 δ

)
⊗ e2πins

=
∑
n

(∑
m≤n

λmσ
n−m
0 δ

)
⊗ e2πnis =

∑
n

ψn ⊗ e2πins.

�

Let us assume that the solution 〈m, δ〉 can be integrated between t = 0 and t = c.
(For example, this condition is satisfied when both singularities are regular.) In this case
the above lemma can be used to evaluate gamma functions as follows. For a polynomial
P (T ) =

∑
m λmT

m such that P (σ−1
0 )δ = 0, the gamma function corresponding to the

homology class (13) is given by

Γξ(s) =
∑
m

λme
2πims

∫
σ−m
0

〈m, δ〉tsω + P (e2πis)

∫
σc

〈m, ε〉tsω

=
∑
m

λme
2πims

∫ p

0

〈m, (e−2πimsσ−m0 − 1)δ〉tsω + P (e2πis)

∫ p

c

〈m, (σc − 1)ε〉tsω

=

∫ p

0

〈m,P (σ−1
0 )δ〉 − P (e2πis)

∫ c

0

〈m, δ〉tsω

= −P (e2πis)

∫ c

0

〈m, δ〉tsω.

Example 14 (polylogarithm). For an integer n ≥ 1, the nth polylogarithm is a multival-
ued holomorphic function, one of whose branches in the open unit circle |t| < 1 is given
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by the convergent series Lin(t) =
∑∞

k=1 k
−ntk. One can easily see that this function is

annihilated by the differential operator

L =

(
(1− t)t d

dt
− 1

)(
t
d

dt

)n
.

The operator L has regular singularities and the local system of its solutions on U =
P1 \ {0, 1,∞} is spanned by Lin(t) and logk(t) for 0 ≤ k ≤ n− 1. The local monodromy
at c = 1 satisfies Assumption 12 with

δ(t) := (σ1 − 1)Lin(t) = −2πi
logn−1(t)

(n− 1)!
,

see e.g. [5, Proposition 2.2]. The annihilator of δ(t) in C[σ±1
0 ] is generated by (σ0 − 1)n

and hence the C[e±2πis]-module of gamma functions for the nth polylogarithm is generated
by

(1− e2πis)n
∫ 1

0

δ(t)ts−1dt = 2πi

(
e2πis − 1

s

)n
.

Note that for connections on U = P1 \ {0, c,∞} Proposition 10 applies globally, that
is with V = U . It follows that there is a unique gamma function attached to every
hypergeometric connection, of which Example 14 is a degenerate case. We will return to
hypergeometric connections in Example 20.

As above, we consider gamma functions restricted to the neighbourhood V ⊂ Uan of a
path between t = 0 and t = c. Under Assumption 12 there is a unique generator of the
module of gamma functions in Proposition 10. In what follows we will relate this gamma
function to the monodromy of Frobenius deformations introduced in [4] by Golyshev and
Zagier. We shall work under the following

Assumption 15. t = 0 is a regular singular point for M and there is a unique eigen-
vector for the local monodromy operator σ0 on M∨.

The unique eigenvalue of σ0 is denoted by λ ∈ C×. We also denote K ′ = K(λ).

Remark 16. One can check that if Assumptions 12 and 15 hold for M then they also
hold for the dual connection M∨. The unique eigenvalue of σ0 on M∨ is given by λ−1.

The following is a slight generalization of the object introduced in [4]:

Definition 17. With the notation D = t d
dt

, let L =
∑r

j=0 qj(t)D
r−j be an ordinary

differential operator of order r which has a regular singularity at t = 0 with a unique
local exponent equal to ρ.

Assuming that q0(0) 6= 0, a Frobenius deformation for L at t = 0 is a formal series
Φ =

∑
n≥0 φn(t)sn whose coefficients φn(t) are analytic functions in a neighborhood of

the base point p 6= 0 such that Φ satisfies the unhomogeneous differential equation in the
variable t

(17) LΦ = srts+ρ

and transforms under the local monodromy at t = 0 as

(18) σ0Φ = e2πi(s+ρ)Φ.
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Existence of Frobenius deformations was shown in [4]. Later we shall also check their
existence and show that, as soon as the branch of of ts is fixed, the Frobenius deformation
Φ is unique (Proposition 30 in Section 3.) Let us denote by Sol(L) the local system of
solutions to L and let Solp(L) be the stalk of this local system at t = p, which is the
r-dimensional C-vector space of solutions near p. Note that the first r coefficients of
the Frobenius deformation φ0(t), . . . , φr−1(t) give a basis in Solp(L) called the Frobenius
basis in the classical theory of differential equations.

Proposition-Definition 18. Suppose there is a non-zero solution ψ ∈ Solp(L) such
that (σc− 1)Solp(L) = Cψ. The monodromy of a Frobenius deformation around t = c is
then given by

(19) (σc − 1)Φ = κ(s)ψ

for some formal series κ(s) =
∑

n≥0 κns
n ∈ CJsK. We will call κ(s) an Apéry series for

L; its coefficients κn will be called Apéry constants.

We will prove this proposition in Section 3. The Apéry series is defined up to multi-
plication by an integral power of e2πis (this ambiguity comes from the choice of branch
of ts in Definition 17) and a constant in C× (due to the choice of ψ.) Note that, since
φ0, . . . , φr−1 is a basis in Solp(L), at least one of the first N Apéry constants κ0, . . . , κr−1

is non-zero. We can now state our result. The equality in (20) below is to be understood
modulo the ambiguity in the definition of κ∨ discussed above and a similar ambiguity in
the definition of ξ0.

Theorem 19. Let M be a connection of rank r satisfying Assumptions 12 and 15. We
choose a generator m ∈M and consider gamma functions for m⊗dt/t as in Definition 4’.
Let L =

∑r
j=0 qj(t)D

r−j with D = t d
dt

and q0(0) 6= 0 be a differential operator annihilating

m and denote by ρ ∈ C the unique local exponent of L at t = 0 (it satisfies exp(2πiρ) =
λ). Let V ⊂ Uan be a neighborhood of a path between t = 0 and t = c as in Proposition 10.
Then the K ′[e±2πis]-module of gamma functions

Γξ(s), ξ ∈ H1(V,M∨ ⊗ ts)⊗K K ′

has rank 1 and its generators satisfy Γξ0(−ρ) 6= 0. Moreover, we have

(20) Γξ0(s− ρ) =
(e2πis − 1

s

)r−ν κ∨(s)
sν

,

where κ∨(s) is an Apéry series for the adjoint differential operator

L∨ = (−D)rq0(t) + (−D)r−1q1(t) + . . .+ qr(t)

and 0 ≤ ν < r is the order of vanishing of κ∨(s) at s = 0.

We will prove this theorem in Section 3. One can easily check that L∨ has a unique
local exponent at t = 0 which is equal to −ρ. In Section 3 we will show that L∨

corresponds to the dual connection M∨ (see also [7, §2.9]).
Let us finish this section with a few examples of Apéry series. In Example 7 the

connection is self-dual and we can take the differential operator to be L = D−t(D+1/2).
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For this operator the local exponent at t = 0 is ρ = 0, L∨ = −L and Theorem 19 implies
that

κ(s) = s
Γ(s)Γ(1

2
)

Γ(s+ 1
2
)

= 22s Γ(1 + s)2

Γ(1 + 2s)

= exp
(

(2 log 2)s+
∞∑
j=2

ζ(j)

j
(2− 2j)(−s)j

)
is an Apéry series for L.

Example 20 (hypergeometric connections). A hypergeometric connection of rank N ≥ 1
is a connection on U = P1 \ {0, 1,∞} such that its solutions are annihilated by the
differential operator

(21) L =
r∏
j=1

(D + βj)− t
r∏
j=1

(D + αj).

Here α1, . . . , αr, β1, . . . , βr ∈ C are fixed parameters, and the global monodromy repre-
sentation is irreducible if and only if αi − βj 6∈ Z for any pair of indices i, j. Under
this assumption the variation of the local monodromy around t = 1 has 1-dimensional
image. By Proposition 10 there is a unique generator of the C[e±2πis]-module of gamma
functions Γξ(s), ξ ∈ H1(U, Sol(L)⊗ ts). It follows from the functional equation (Proposi-
tion 9) that every Γξ(s) is a multiple of

∏r
j=1 Γ(αj− s)/

∏r
j=1 Γ(1 +βj− s) by a function

invariant under the translation s 7→ s+ 1.
Let us consider the case β1 = . . . = βr = 0. The local monodromy around t = 0 is

maximally unipotent and the unique local exponent is ρ = 0. One can check that the
Frobenius deformation for L is given by Φ(s, t) =

∑
k≥1Ak(s)t

k+s with Ak(s) = Ak+s/As
and

Ax =

∏r
j=1 Γ(αj + x)

Γ(1 + x)r
.

Note that Φ(0, t) =
∑∞

k=0Ak(0)tk is the unique solution to L analytic at t = 0, and
this solution is not analytic at t = 1. (Indeed, if there was a solution preserved by both
σ0 and σ1, then the global monodromy representation would be reducible when r > 1 or
trivial when r = 1.) It follows that Apéry series κ(s) do not vanish at s = 0. Such a
series normalized as κ(0) = 1 can be found from the condition that Φ(s, t)− κ(s)Φ(0, t)
is invariant under σ1. Following the arguments in [4, §2.2] we find that

κ(s) = lim
k→∞

Ak(s)

Ak(0)
= lim

k→∞

Ak+sA0

AkAs
=
A0

As
=

Γ(1 + s)r
∏r

j=1 Γ(αj)∏r
j=1 Γ(αj + s)

.

One can now use Theorem 19 to obtain the unique generator of the C[e±2πis]-module
of gamma functions attached to the hypergeometric differential operator (21) with maxi-
mally unipotent monodromy around t = 0. In the case ρ = 0 (that is, all βj = 0) we have
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(−1)rL∨ = Dr − t
∏r

j=1(D+ 1−αj) and the module of gamma functions is generated by

Γξ0(s) =

(
e2πis − 1

2πis

)r
κ∨(s) =

(
e2πis − 1

2πis

)r Γ(1 + s)r
∏r

j=1 Γ(1− αj)∏r
j=1 Γ(1− αj + s)

=

∏r
j=1(e2πiαj − e2πis)Γ(αj − s)

Γ(1− s)r
∏r

j=1(e2πiαj − 1)Γ(αj)
.

The reader may check this is an entire function satisfying the difference equation corre-
sponding to L (see Proposition 9).

Example 21 (Apéry family). The equation 1− tf(x1, x2, x3) = 0 with

f(x) =
(x1 − 1)(x2 − 1)(x3 − 1)(1− x1 − x2 + x1x2 − x1x2x3)

x1x2x3

defines a family X/U of K3 surfaces of Picard rank 19 over

U = P1
t \ {0, 17± 12

√
2,∞}.

The variation M = H2(X/U)/NS is of rank 3 and there is a class of differential 2-forms
m ∈M annihilated by the differential operator

(22) L = D3 − t(34D3 + 51D2 + 27D + 5) + t2(D + 1)3,

see [8]. The local monodromy of L around t = 0 is maximally unipotent with the local
exponent ρ = 0. The closest singularity c = 17−12

√
2 is a conifold point. In [4] Golyshev

and Zagier computed the Apéry constants along with the first higher one for the direct
path joining t = 0 and t = c:

κ0 = 1, κ1 = 0, κ2 = −π
2

3
= −2ζ(2), κ3 =

17

6
ζ(3).

(In loc.cit. the authors use the term Frobenius limits for κn.) Note that the objective of
their paper is the computation of κ3 for the 17 similar families of K3 surfaces, in order
to verify the Gamma Conjecture in mirror symmetry. Golyshev and Zagier also evaluate
a few more of the higher constants experimentally (see [4, page 46]):

κ4 =
π4

45
=

4

5
ζ(2)2 = 2ζ(4)

κ5 =
7

5
ζ(5)− 17

3
ζ(2)ζ(3)

. . .

κ11 =
2

3
ζ(3, 5, 3) + a Q-linear combination of products of

zeta values of total weight 11

Remarkably, κ11 is the first one involving multiple zeta values along with ordinary zeta
values. David Broadhurst was able to find similar experimental expressions in terms of
MZVs for the Apéry constants κn in this example up to n = 15, [2].
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The fact that κ3 for the differential operator (22) is a rational multiple of ζ(3) is
essentially related to the proof of irrationality of this number given in 1978 by Roger
Apéry. The above example greatly motivated our study of the series κ(s), that is why
we named its coefficients Apéry constants.

Remark 22. Let us remark that even if we start from a Gauss–Manin connection M with
a conifold point, as in Examples 7 and 21, the definition of the higher Apéry constants (κn
with n ≥ rank(M)) involves extensions of M by powers of the Kummer connection. We
don’t know whether these extensions are geometric, and from this point of view the fact
that the higher Apéry constants are periods is surprising. On the other hand, Theorem 19
implies that all Apéry constants are periods and gives an expression for them in terms
of explicit iterated integrals.

3. Computation of the gamma function associated to a conifold point

In this section we prove Theorem 19. We start with some preparations. Let M be an
algebraic connection of rank r on an open subset U ⊆ Gm and O = OU be the ring of
functions of U . The ring of differential operators D = DU is generated over O by the
derivation D = t d

dt
. We fix a generator m ∈M and a differential operator

L = q0(t)Dr + q1(t)Dr−1 + . . .+ qr(t), qi ∈ O

such that Lm = 0. Possibly after passing to a smaller open set U , we assume that
q0 ∈ O× is a unit. It follows that M ∼= D/DL is a free O-module of rank r with the
basis m,Dm, . . . , Dr−1m.

The dual connection on M∨ = HomO(M,O) is determined by the identity

(23) 〈ξ,Dη〉+ 〈Dξ, η〉 = D〈ξ, η〉, ξ ∈M, η ∈M∨.

Let e0, . . . , er−1 ∈ M∨ be the basis dual to m,Dm, . . . , Dr−1m ∈ M , that is we have
〈Djm, ei〉 = δi,j. The adjoint differential operator is defined as

L∨ = (−D)rq0(t) + (−D)r−1q1(t) + . . .+ qr(t).

In the next series of lemmas we check that M∨ ∼= D/DL∨ and give an explicit form of
pairing on horizontal sections.

Lemma 23. Let u ∈ O× be a unit. Then we have isomorphisms of left D-modules

D/DL ∼= D/DuL ∼= D/DLu.

Proof. The two left ideals DuL and DL coincide, so the lefthand identity is clear. On
the other hand, right multiplication by u is an isomorphism of left D-modules D/DL ∼=
D/DLu. �

Scholie 24. In our case, q0(t) ∈ O× is a unit. Using the lemma, the left D-module
structure on D/DL and D/DL∨ is reduced to the case q0 = 1. We will assume this
throughout.

It will be convenient to define

ēi := er−1−i; 0 ≤ i ≤ r − 1.
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Using (23) one can easily check that the D-module structure on M∨ is given by

(24) Dēi + ēi+1 = qi+1ē0, i 6= r − 1; Dēr−1 = qrē0.

Lemma 25. We have L∨ē0 = 0. Thus, the map 1 7→ ē0 yields an isomorphism D/DL∨ ∼=
M∨.

Proof. We compute

L∨ē0 =
r∑
i=0

(−D)iqr−iē0 =
r−1∑
i=0

(−D)i(Dēr−i−1 + ēr−i) + (−D)rē0 = 0.

�

Lemma 26. Recall {ei} ⊂ M∨ is the dual basis to {Dim} ⊂ M . Let {ρi} ⊂ M be dual
to {Diē0} ⊂M∨. With this notation, define η : O →M∨ (resp. ξ : O →M) by

(25) η(φ) =
r−1∑
i=0

(Diφ)ei; ξ(ψ) =
r−1∑
i=0

(Diψ)ρi.

(We can also write

η(φ) : M → O; η(φ)(Dim) = Diφ, 0 ≤ i ≤ r − 1(26)

ξ(ψ) : M∨ → O; ξ(ψ)(Diē0) = Diψ, 0 ≤ i ≤ r − 1.)

We define a bracket {∗, ∗} : O ⊗C O → O by composing the tensor product

ξ ⊗ η : O ⊗C O →M ⊗OM∨;

(ξ ⊗ η)(ψ ⊗ φ) =
∑
j,i

(Djψ)(Diφ)ρj ⊗ ei

with the duality map 〈∗, ∗〉 : M ⊗OM∨ → O:

(27) {ψ, φ} =
∑
j,i

(Djψ)(Diφ)〈ρj, ei〉 =
∑
j,k

(Djψ)(DN−k−1φ)〈ρj, ēk〉.

Then

(28)

{ψ, φ} =
∑
h, ν, i ≥ 0

h+ ν + i = r − 1

(−D)h(qνψ)Diφ.

.

Proof. As a consequence of (24) we get

ēk = (−D)kē0 + (−D)k−1(q1ē0) + · · · −D(qk−1ē0) + qkē0.

It follows that

(29) 〈ρj, ēk〉 =


0 j > k

(−1)k j = k∑k−j
ν=1(−1)k−ν

(
k−ν
j

)
Dk−ν−jqν j < k.
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What we must show, then, is that the coefficient of Dj(ψ)Dr−k−1(φ) when we expand
the right-hand side of (28) coincides with (29). Expanding (28), the coefficient at
Dj(ψ)Di(φ) is ∑

h+ν+i=r−1

(−1)h
(
h

j

)
Dh−jqν ,

which is equal to (29) when i = r − 1− k. �

Lemma 27. With notation as above, we have

D (η(φ)) = (Lφ)ē0; D (ξ(ψ)) = (L∨ψ)m.

Proof. This follows directly from (24) and (25). Note that replacing ēi in (24) by er−1−i
yields the identity Dej + ej−1 = qr−jer−1 with the convention that e−1 = 0. �

Lemma 28. With notation as above, we have

〈ξ(ψ), D (η(φ))〉 = ψ(Lφ); 〈D (ξ(ψ)) , η(φ)〉 = (L∨ψ)φ.

Proof. For example, we have from (29)

〈ξ(ψ), D (η(φ))〉 = (Lφ)〈
r−1∑
i=0

(Diψ)ρi, ē0〉 = L(φ)ψ.

The other identity is proved similarly. �

The above lemmas give an identification of M∨ = M∨,∇∨=0
an and M = M∇=0

an (after
⊗KC) with the local systems of solutions Sol(L) and Sol(L∨) respectively. Moreover,
the bracket

(30)

{∗, ∗} : Oan ⊗C Oan → Oan

{ψ, φ} =
∑
h, ν, i ≥ 0

h+ ν + i = r − 1

(−D)h(qνψ)Diφ

satisfies

(31) D{ψ, φ} = ψ(Lφ) + (L∨ψ)φ .

In particular, this bracket is constant on Sol(L∨) ⊗C Sol(L) and coincides with the
duality pairing 〈∗, ∗〉 onM⊗KM∨. In the next lemma we use (31) to perform integra-
tion by parts, which shows the basic relation between gamma functions and Frobenius
deformations.

Lemma 29. Let ξ ∈ H1(U,M∨⊗ts). We identify this homology group with H1(π1(U, p),M∨
p⊗K

K[e±2πis]) and choose a 1-cycle presentation

ξ ∼
∑
j

σj ⊗ εj ⊗ e2πisnj

with σj ∈ π1(U, p), εj ∈M∨
p , nj ∈ Z. Let Φ =

∑
n≥0 φn(t)sn ∈ OanJsK be a solution to

L∨Φ = srts+α, α ∈ C
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near t = p. Then

sNΓξ(s+ α) =
∑
j

e2πi(s+α)nj(σ−1
j − 1){Φ, ψj},

where the gamma function is (5) with ω = dt/t and m ∈M satisfying Lm = 0, {∗, ∗} is
the bracket (30) and ψj = 〈m, εj〉 ∈ Solp(L) for each j.

Proof. Using (5) and (31) we have

srΓξ(s+ α) = sr
∑
j

e2πi(s+α)nj

∫
σ−1
j

ts+α−1ψj(t)dt =
∑
j

e2πi(s+α)nj

∫
σ−1
j

(L∨Φ)ψj
dt

t

=
∑
j

e2πi(s+α)nj

∫
σ−1
j

D{Φ, ψj}
dt

t
=
∑
j

e2πi(s+α)nj(σ−1
j − 1){Φ, ψj}.

�

To prove Theorem 19 we shall use Lemma 29 for Φ being a Frobenius deformation for
L∨ (see Definition 17). Let us now demonstrate existence and uniqueness of Frobenius
deformations and Apéry series.

Proposition 30. Under the assumptions of Definition 17, there exists a unique Frobe-
nius deformation Φ =

∑
n≥0 φn(t)sn. It can be written as Φ = ts+ρΦan, where Φan =∑

n≥0 φ
an
n (t)sn is a formal series whose coefficients φann (t) are uniquely determined ana-

lytic at t = 0 functions taking values

φan0 (0) = q0(0)−1, φann (0) = 0 for all n > 0.

Proof. It is sufficient to give a proof in the case ρ = 0. Indeed, Φ is a Frobenius
deformation for L if and only if t−ρΦ is a Frobenius deformation for L′ = t−ρLtρ =∑

j qj(t)(D + ρ)r−j, which is a differential operator with the local exponent 0 at t = 0.

Case ρ = 0. Let L =
∑r

j=0 qr−j(t)D
j be a differential operator with q0(0) 6= 0

and qj(0) = 0 for j > 0. Condition (18) is equivalent to the series Φan := t−sΦ =∑
n≥0 φ

an
n (t)sn being σ0-invariant. Therefore we shall look for sequences of meromorphic

at t = 0 functions {φann (t)} such that the unhomogeneous differential equation (17) is
satisfied. One can write

LΦ = ts
r∑
j=0

sj

j!
L(j)Φan with L(j) :=

∂jL

∂Dj
.

Therefore Φ is a Frobenius deformation if and only if
∑r

j=0

sj

j!
L(j)Φan = sr, which is

equivalent to the infinite system of equations

(32) Lφann + L(1)φann−1 +
1

2!
L(2)φann−2 + . . .+

1

r!
L(r)φann−r = δn,r

for all n ≥ 0. We will first show that there is a unique solution to the system (32) in
formal Laurent series φann ∈ CJtK[t−1], n ≥ 0.
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Let us write L =
∑

i≥0 t
ipi(D) with pi ∈ C[D] of degree at most r and p0(D) = αDr,

where α = q0(0) 6= 0. Equation L(
∑
ant

n) =
∑
bnt

n is then equivalent to the recurrence
relation

(33) αnran + p1(n− 1)an−1 + p2(n− 2)an−2 + . . . = bn.

One can easily see that there is a unique (up to multiplication by a constant in C×)
non-zero Laurent series solution φan0 (t) =

∑
n ant

n to Lφan0 = 0, and this solution has
φan0 (0) 6= 0. Secondly, we observe that L(CJtK) ⊂ tCJtK and, more generally, we have

L(j)(CJtK) ⊂ tCJtK, 0 ≤ j < r.

The third observation we can make from formula (33) is that the map

L : tCJtK→ tCJtK

is invertible. With these three observations we can now solve (32) as follows. We start
with n = 0 and make an arbitrary choice in the normalization of φan0 . For 1 ≤ n < r
equation (32) has shape Lφann = b with b ∈ tCJtK, which has a unique solution in
tCJtK to which we can add an arbitrary constant multiple of φan0 (t). So far we make
an arbitrary choice of φann (0) for each 0 ≤ n < r. When n = r we have 1

r!
L(r)φan0 =

q0(t)φan0 (t) ∈ q0(0)φan0 (0) + tCJtK, and hence (32) can be solved for φanr ∈ CJtK if and
only if φan0 (0) = q0(0)−1. Again, there is a unique solution in tCJtK to which one can add
an arbitrary constant multiple of φan0 (t). We make an arbitrary choice for φanr (0) and
continue. For n > r we have 1

r!
L(r)φann−r = q0(t)φann−r(t) ∈ q0(0)φann−r(0) + tCJtK and (32)

can be solved for φann ∈ CJtK if and only if φann−r(0) = 0. By induction in n we conclude
that there is a unique sequence of formal Laurent series {φann , n ≥ 0} satisfying the
system of equations (32) and these series satisfy

φan0 ∈ q0(0)−1 + tCJtK, φann ∈ tCJtK for n ≥ 1.

Finally, we observe that for k ≥ 0 series φn(t) =
∑n

j=0
log(t)j

j!
φann−j(t) ∈ CJtK[log t] with

0 ≤ n ≤ N − 1 + k are solutions to the differential equation DkLφn = 0. It then follows
from the classical Cauchy theorem in the theory of ordinary differential operators that
each φann (t) is an actual analytic function (i.e. convergent series) in a neighborhood of
t = 0. �

Proof of Proposition 18. Coefficients of the Frobenius deformation Φ =
∑

n φn(t)sn sat-
isfy differential equations (D − ρ)kLφn = 0 when n < r + k. Therefore it is enough
to show that if Assumption 12 holds for M = D/DL, then it also holds for M ′ =
D/D(D+α)L with any α ∈ C. Indeed, iterating this statement with α = −ρ we obtain
that (σc − 1)Solp((D − ρ)kL) = Cψ for all k ≥ 0.

Suppose that Assumption 12 holds for M = D/DL. Then it also holds for M∨ ∼=
D/DL∨ (see Remark 16). If we show that the same assumption holds for M ′′ =
D/DL∨(D − α), then it also holds for (M ′′)∨ ∼= D/D(D + α)L = M ′. To show that
Assumption 12 holds for M ′′, let φ ∈ Ker(σc − 1) be a solution of L∨. Then any φ′

such that (D − α)φ′ = φ can be recovered (up to adding a constant multiple of tα) as
φ′ = tα

∫
t−α−1φ(t)dt. Since φ is an analytic function at t = c, we see that φ′ will be also

analytic at t = c. It follows that the space of invariant under σc solutions of L∨(D − α)
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is at least one dimension bigger than the same space for L∨, and therefore the image of
σc − 1 stays of dimension 1. �

Proof of Theorem 19. Recall that for an order r differential operator L =
∑r

j=0 qj(t)D
r−j

with a regular singularity at t = 0 the respective local exponents are solutions to the
indicial equation, which is the algebraic equation

∑r
j=0(qj/q0)(0)Xr−j = 0. Since m

generates M as a D-module, Assumption 15 implies that the indicial equation for L
reads as (X − ρ)r = 0 for a unique ρ ∈ C satisfying exp(2πiρ) = λ. It is then clear
that the indicial equation for the adjoint operator L∨ is given by (X + ρ)r = 0. By
Proposition 30 there exists a Frobenius deformation at t = 0 for L∨. Let Φ =

∑
n φn(t)sn

be such Frobenius deformation, where φn(t) are analytic functions near our base point
p. This series satisfies

(34) L∨Φ = sr ts−ρ

and

(35) σ0Φ = e2πi(s−ρ)Φ.

Possibly passing to a smaller open subset of our curve, we can assume that q0 ∈ O×
and hence M ∼= D/DL. Assumption 12 for M implies the same assumption for M∨,
which by Lemma 25 is isomorphic to D/DL∨. Therefore the conditions of Proposition-
Definition 18 are satisfied and we have

(36) (σc − 1)Φ = κ∨(s)ψ,

where ψ ∈ Solp(L∨) is a solution spanning the one dimensional subspace (σc−1)Solp(L
∨).

Consider homology with coefficients in the local system L = M∨ ⊗ ts. It is clear
from the proof of Proposition 10 that gamma functions Γξ(s) vanish when ξ ∈ H1(V,L)
comes from H1(Vc,L). By Lemma 13, the quotient of H1(V,L) by the image of the
corestriction map is a K[e±2πis]-module of rank 1 isomorphic to the K[σ±1

0 ]-module of
relations AnnK[σ±1

0 ](δ). For a polynomial P (T ) =
∑

m λmT
m such that P (σ−1

0 )δ =

0 the respective homology class is represented by the 1-cycle (13). Let us evaluate
Γξ(s − ρ) using Lemma 29. We denote ψδ = 〈m, δ〉, ψε = 〈m, ε〉 ∈ Solp(L) and use
properties (35), (36) of the Frobenius deformation Φ:

srΓξ(s− ρ) =
∑
m

λme
2πim(s−ρ)(σ−m0 − 1){Φ, ψδ}+ P (e2πi(s−ρ))(σc − 1){Φ, ψε}

=
∑
m

λme
2πim(s−ρ)

(
{e−2πim(s−ρ)Φ, σ−m0 ψδ} − {Φ, ψδ}

)
+ P (e2πi(s−ρ))

(
{σcΦ, σcψε} − {Φ, ψε}

)
= {Φ, P (σ−1

0 )ψδ} − P (e2πi(s−ρ)){Φ, ψδ}
+ P (e2πi(s−ρ))

(
{Φ + κ∨(s)ψ, ψε + ψδ} − {Φ, ψε}

)
= P (e2πi(s−ρ))κ∨(s){ψ, ψε + ψδ}.

Note that for φ ∈ Solp(L) one has {ψ, φ} = 0 if and only if φ is σc-invariant. One can
easily check that

(σc − 1)(ε+ δ) = δ + (σc − 1)δ = σcδ 6= 0,
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and hence {ψ, ψε + ψδ} ∈ C×. We can now renormalize ψ so that {ψ, ψε + ψδ} = 1.
Now let us extend coefficients to K ′ = K(λ) and take the polynomial P to be of

the minimal possible degree. Denote this minimal degree by d > 0. Since (σ0 − λ)r

vanishes on Solp(L), a minimal polynomial P (T ) should divide (λT − 1)r. Therefore
d ≤ r and with the 1-cycle ξ given by (13) with P (T ) = (λT − 1)d the respective Γξ
will be a generator of the module of gamma functions over K ′[e±2πis]. We then have
P (e2πi(s−ρ)) = (e2πis − 1)d and

(37) sr Γξ0(s− ρ) = (e2πis − 1)dκ∨(s).

It remains to show that Γξ0(−ρ) 6= 0 or, equivalently, that the order of vanishing of
κ∨(s) at s = 0 is given by ν = r − d. Since the gamma function is holomorphic at −ρ,
formula (37) shows that d+ν ≥ r. On the other hand, by the definition of ν we have that
φ0, . . . , φν−1 ∈ Solp(L∨) are σc-invariant and therefore {φj, ψδ} = 0 for 0 ≤ j ≤ ν − 1.

Since σ0 preserves the span A =
∑ν−1

j=0 Cφj ⊂ Solp(L
∨), it follows that A is orthogonal

to the d-dimensional space C[σ0]ψδ ⊂ Solp(L). Therefore we have d + ν ≤ r. The two
estimates that we have imply d+ ν = r, which completes the proof of the theorem. �

4. The limiting MHS and Apéry constants

We are given a Zariski open U ⊂ Gm ⊂ P1
t and a regular singular point connection

∇ : M → M ⊗ Ω1
U defined over a subfield K ⊆ C. We assume that (M,∇) is a direct

summand in the Gauß–Manin connection on Hw
DR(X/U) for some projective, smooth

X → U . In this case M carries a variation of pure Hodge structures of weight w.
We further assume that M satisfies Assumptions 12 and 15 and there is a fixed el-

ement in the lowest Hodge submodule m ∈ FwM and a differential operator L =
Dr +

∑r
j=1 qj(t)D

r−j with D = t d
dt

and some qj ∈ OU such that Lm = 0 and M ∼=
⊕r−1
j=0OU Djm. Let κ(s) =

∑
k≥0 κks

k be an Apéry series for the differential operator L
(as in Definition 18) defined using a Betti-rational solution ψ = 〈m, δ〉, δ ∈ M∨(Q). In
this section we will show that certain expressions in the Apéry constants κ0, . . . , κr−1 and
2πi are periods of the limiting mixed Hodge structure at 0 ∈ P1 \U . In order to include
the higher Apéry constants κr, κr+1, . . . in the picture, we start with building a variation
of mixed Hodge structure on extensions of M by powers of the Kummer connection.

We are interested in the analytic structure of M in a punctured disk ∆∗ about 0 ∈
P1 − U . The following is classic.

Theorem 31. The evident functor is an equivalence of categories between the category
of analytic connections on ∆∗ meromorphic at 0 and having at worst regular singular
points there and the category of all analytic connections on ∆∗.

Proof. See for example [10], théorème (1.1), p. 24. �

Of course, the category of analytic connections is equivalent to the category of local
systems, so, for example, M∆∗ is determined by its monodromy at 0. Our hypotheses
will be as in Assumption 15. To simplify the discussion, we will further suppose that
the monodromy σ0 is maximally unipotent (that is, λ = 1 in Assumption 15), so for
a suitable basis the monodromy for the fibre at a base point p for the local system of



22 SPENCER BLOCH, MASHA VLASENKO

solutions M∨
p is given by σ0 = exp(N) where N is the nilpotent matrix of size r given

by

(38)

0 1 0 . . .
0 0 1 . . .

. . .

 .

We write O for the ring of analytic functions on ∆∗ which are meromorphic at 0. For
an integer n ≥ 0, define a free O-module with basis {ei}

En := Oe−n−1 ⊕Oe−n ⊕ · · ·Oe0 ⊕Oe1 ⊕ · · ·Oer−1.

We define a connection on En

∇ei := ei−1
dt

t
; ∇(e−n−1) = 0.

Let Fn ⊂ En be the submodule spanned by e−1, . . . , e−n−1. The connection restricts to
a connection on Fn, so there is an induced connection on En/Fn. (Note F0 = Oe−1 with
trivial connection.)

Definition 32. The Kummer connection Kt = Oε ⊕ Oη is the rank 2 connection with
∇(ε) = η dt

t
and ∇(η) = 0.

Lemma 33. We have an isomorphism of connections

Fn ∼= SymnKt.

(Here Sym0Kt = O with the trivial connection.)

Proof. The identification is given by

e−1 = εn/n!, e−2 = εn−1η/(n− 1)!, . . . , e−n−1 = ηn.

�

The dual connection on the free O-module E∨n with basis e∨i , −n − 1 ≤ i ≤ r − 1 is
given by

∇∨e∨i = −e∨i+1

dt

t
.

Consider horizontal sections of E∨n , (that is, solutions for En) given by

(39) εk(t) =
log(t)k

k!
e∨r−1 +

log(t)k−1

(k − 1)!
e∨r−2 + · · ·+ log(t)e∨r−k + e∨r−k−1

for k = 0, . . . , n + r. Note that in the basis ρk := (2πi)−kεk operator N = log(σ0) acts
by the nilpotent matrix (38) of size n+ r + 1.

Lemma 34. Under Assumption 15 with λ = 1, we get an exact sequence of meromorphic
connections with regular singular points at the origin

0→ SymnKt → En →M∆∗ → 0.

Proof. The assumption guarantees that the monodromy for En/Fn coincides with that
of M∆∗ , so one can apply Theorem 31. �
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We now proceed to define a variation of Hodge structure on En. Using the ring of
differential operators D = OU [D] we have Assume now that M is a pure variation of
Hodge structure on U , with Hodge filtration 0 ⊂ F pM ⊂ F p−1M ⊂ · · · ⊂ F 0M = M .
We give ourselves m ∈ F pM satisfying a differential equation Lm = 0 with L ∈ D =
C[t, t−1, D] and D = td/dt. We assume further that

(40) M ∼= D/DL;

the isomorphism being such that m 7→ 1. Multiplying L on the left by a power of the
unit t (see Lemma 23), we can assume that the unique local exponent of L at t = 0 is
ρ = 0. In this case the monodromy of solutions of the differential operator Dn+1L around
t = 0 is again maximally unipotent (this follows from Proposition 30) and hence it is the
same as the monodromy of the local system of horizontal sections of E∨n = E∨,∇∨=0

n . We
can again apply Theorem 31 and build a commutative diagram of connections

(41)

0 −→(D/DDn+1)∆∗ −−→
RL

(D/DDn+1L)∆∗ −→(D/DL)∆∗ −→ 0y∼= y∼= y∼=
0 −→ SymnKt −→ En −→ M∆∗ −→0.

(Here RL means right multiplication by L.) The classical Frobenius solutions for Dn+1L
are given by

φk =
k∑
j=0

log(t)j

j!
φank−j(t), 0 ≤ k ≤ n+ r,

where φanj ∈ O are uniquely defined analytic functions satisfying the condition

(42) φan0 (0) = 1; φanj (0) = 0, j > 0.

These solutions were constructed in the proof of Proposition 30; they satisfy

(43)

L(φ0) = · · · = L(φr−1) = 0,

Lφr+j =
log(t)j

j!
; 0 ≤ j ≤ n.

Consider the element

(44) φan :=
n+r∑
j=0

φanj (t)er−1−j ∈ En.

Applying the solutions εk defined in (39), we observe that

(45) φk = 〈φan, εk〉

for each 0 ≤ k ≤ n + r. It then follows that φan ∈ En satisfies Dn+1Lφan = 0. In
particular, one can assume that the vertical isomorphism in the diagram (41) is given
by 1 ∈ D 7→ φan ∈ En and that in the bottom row φan maps to the element m ∈M∆∗

∼=
En/SymnKt.

We can use φan to define a variation of mixed Hodge structure on En as follows. Since
m,Dm,D2m, . . . , Dr−1m form an O-basis for M∆∗ , mapping Dim 7→ Diφan defines an
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O-module splitting s : M∆∗ → En, i.e.

(46) En ∼= SymnKt ⊕ s(M∆∗).

One knows that Kt is the connection underlying a variation of mixed Tate Hodge struc-
ture (Kummer variation). Its nth symmetric power is the variation on SymnKt where
the Hodge filtration is given by

F 0 ⊂ F−1 ⊂ . . . ⊂ F−n = SymnKt, F−k = ⊕kj=0Oεn−jηj

and the weight filtration is given by

W−2n = W1−2n ⊂ W2−2n = W3−2n ⊂ . . . ⊂ W0 = SymnKt,

W−2k = ⊕nj=kOεn−jηj.

The Hodge filtration is opposite to the weight filtration in the sense that F−k⊕W−2(k+1) =
SymnKt, from which one can easily compute that grW−2kSymnKt

∼= Q(k). The correspond-
ing weight-graded Hodge variation is thus given by Q(n) ⊕ . . . ⊕ Q(1) ⊕ Q(0). For our
purposes we will need the twist (SymnKt)(1), which is the variation on the same con-
nection where the respective filtrations are shifted as F i((SymnKt)(1)) = F i+1(SymnKt)
and Wi(SymnKt)(1)) = Wi+2(SymnKt).

We use the splitting (46) to define a Hodge filtration on En as follows

(47)
F iEn = 0⊕ s(F iM∆∗); i ≥ 0

F iEn = F i((SymnKt)(1))⊕M∆∗ ; i < 0.

Proposition 35. The Hodge filtration (47) on En satisfies Griffiths transversality:

∇(F aEn) ⊂ F a−1En ⊗ Ω1
∆∗ .

The following is a curious consequence of the maximal unipotency of the local mon-
odromy of M at t = 0 (Assumption 15 with λ = 1). It will be useful in our proof of
Proposition 35.

Lemma 36. Suppose M is a connection on U ⊂ Gm carriying a polarized variation of
pure HS and such that the monodromy of the local system of its flat sections around t = 0
is maximally unipotent. Let p ∈ ∆∗ ⊂ U and consider the pure Hodge structure on the
fiber Mp. Then for some a < b the Hodge graded is given by

grFMp =
⊕
a≤i≤b

F iMp/F
i+1Mp

with each F iMp/F
i+1Mp

∼= C.

Proof. The point of Schmid’s construction of the limiting mixed Hodge structure for M
at 0 ∈ ∆ is that the Hodge filtration passes to a limit as p → 0, so it suffices to prove
the assertion for the Hodge graded of the limiting mixed Hodge structure Mlim. But
Mlim has a logarithm of monodromy operator N : Mlim → Mlim(−1). The monodromy
weight filtration L∗Mlim has a very simple form

(48) Mlim = LrMlim = Lr−1Mlim; Lr−2Mlim = Lr−3Mlim = NMlim

· · ·L−r+1Mlim = N r−1Mlim; L−rMlim = (0).
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Finally, N iMlim/N
i+1Mlim is a one dimensional vector space. For i ≥ 0, the map N :

griNM → gri+1
N M(−1) is a surjective map of Hodge structures of dimensions ≤ 1. For a

Hodge structure H we have F i(H(−1)) = F i−1H, so there are two possibilities. Either
gri+1

N M = (0), or gri+1
N M = Q(k) for some k, in which case griNM = Q(k − 1). Since

C(k) has Hodge filtration degree −k, the lemma follows. �

Proof of Proposition 35. By Lemma 36, the Hodge filtration on M is 0 = F rM ⊂
F r−1M ⊂ F r−2M ⊂ · · · ⊂ F 0M = M with F i/F i+1 rank 1. Since we assumed that
m ∈ M is chosen in the smallest part of the Hodge filtration, it follows that the weight
is given by w = r − 1 and F kM =

∑r−1−k
j=0 OUDjm.

Recall the O-splitting s : M∆∗ ↪→ En is defined by Dim 7→ Diφan, 0 ≤ i ≤ r − 1. It
follows that F iEn =

∑r−1−i
j=0 ODjφan for i ≥ 0, which immediately implies the statement

of the proposition for all a > 0. To deal with a ≤ 0 we will need the following observation.

Lemma 37. We have DjLφan = e−1−j, 0 ≤ j ≤ n.

Proof of lemma. Since Lm = 0, we can write Lφan = B1e−1 + · · · + Bn+1e−n−1 with
Bi ∈ O. From (43) we get

(log t)k−r

(k − r)!
= Lφk = 〈Lφan, εk〉

= 〈B1e−1 + · · ·+Br+ne−n−1, εk〉 =
k∑
j=r

log(t)k−j

(k − j)!
Bj−r+1.

Since the Bi ∈ O cannot involve powers of log(t), we conclude that B1 = 1 and Bj = 0
for j > 1. Thus, Lφan = e−1 and hence DjLφan = e−1−j. �

Note that F−j
(

(SymnKt)(1)
)

= Oe−1 ⊕ · · · ⊕ Oe−j. Since Lφan = e−1 we see that

Drφan ∈ F−1En (remember we shrank ∆∗ so that the leading coefficient of L is a unit
in O.) The case a = 0 follows from D (F 0En) ⊂

∑r
j=0ODjφan = F−1En. Finally,

(SymnKt)(1) satisfies Griffiths transversality, and the proposition follows for all a. �

It is clear from the proof of Proposition 35 that the filtration (47) is actually given by

(49) F iEn =
r−1−i∑
j=0

ODjφan, −n− 1 ≤ k ≤ r − 1.

With the Hodge filtration (49) and the weight filtration defined as

(50)
WiEn = Wi((SymnKt)(1)) for i < r − 1,

Wr−1En = En,
it is clear that our variation of mixed Hodge structure on En is an extension of the pure
variation of weight w = r − 1 on M∆∗ by the mixed Tate variation (SymnKt)(1).

As it stands, our variation of HS En is only a variation of C-HS. We shall now lift it
to the variation of Q-HS. Recall that the Q-structure on solutions M∨

p ⊂ (E∨n )p is given
by rational Betti homology classes. The subspace M∨

p (Q) is clearly preserved by the
monodromy. Since we assume that the action of σ0 is maximally unipotent, we have the
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nilpotent operator N = log(σ0) acting on Mp and preserving the Q-structure. Quite
generally, associated to a nilpotent operator on a finite dimensional vector space there
is a filtration L∗ (Jacobson filtration). In our case N is maximally nilpotent and the

Jacobson filtration is given by Lk = N b
r−k
2
c(Mp) for 1 − r ≤ k ≤ r − 1, (48). As M

carries a pure HS of weight w = r − 1, then basic result of Schmid and Deligne implies
that there exists the limiting mixed HS Mlim with Mlim(Q) = Mp(Q) and the weight
filtration given by

WkMlim = Lk−w = N r−d k+1
2
e(Mp), 0 ≤ k ≤ 2(r − 1).

It is clear in our case that N r−1−j(M∨
p (C)) = Cε0 + . . . + Cεj. It appears that, in the

situation when the Apéry constants κj are defined and κ0 6= 0, these numbers can be
used to describe the Q-subspaces of the Jacobson filtration. Suppose that δ ∈ M∨

p in
Assumption 12 is chosen to be rational, δ ∈ (σc − 1)M∨

p (Q), and consider the Apéry
constants defined by

(51) (σc − 1)εj = κjδ,

where εj are the horizontal sections (39) yielding the classical Frobenius solutions, (45).
As a connection, we have a natural globalization of En, namely En = D/DDn+1L, (41).
Thus, it makes sense also to talk about the variation around c for horizontal sections
of En. Proposition 18 shows that the variation at c for En also has rank 1. The dual
connection also has variation of rank 1 (see Remark 16) and hence formula (51) with
j ≥ r defines the higher Apéry constants. Recall that solutions ε0, . . . , εn+r form a C-
basis for the multivalued horizontal sections (E∨n )p; it will be convenient to drop the base
point p from our notation and denote their C-span by E∨n = Cε0 + . . .+ Cεn+r.

Proposition 38. Suppose that δ in Assumption 12 for M is chosen in the rational
subspace, δ ∈ M∨

p (Q), and the Apéry constants κ0, κ1, . . . are defined by (51). Assume
further that σc(ε0) 6= ε0. Then there exists a unique Q-structure E∨n (Q) on E∨n such that
(i) κ−1

0 ε0 ∈ E∨n (Q) and the filtration filjE∨n := Cε0 + Cε1 + · · ·+ Cεj is defined over Q;
(ii) E∨n (Q) is stable under both loops σ0, σc around t = 0 and t = c respectively.
A Q-basis for E∨n (Q) is then given by

(52) ηk := (2πi)−k
k∑
j=0

αjεk−j, 0 ≤ k ≤ n+ r,

where αj are the coefficients of the series

(53)

∞∑
j=0

αjs
j : = 1/

(
∞∑
j=0

κjs
j

)

=
1

κ0

+
−κ1

κ2
0

s+
−κ2κ0 + κ2

1

κ3
0

s2 + . . .

(Strictly speaking, in our current setting we only use (53) modulo O(sn+r+1)).

Proof. The ηk defined in (52) are linearly independent over C (because the εk are.) It is
clear that E∨n (Q) :=

∑n+r
k=0 Qηk satisfies (i). Let us check it also satisfies (ii). One can



GAMMA FUNCTIONS, MONODROMY AND APÉRY CONSTANTS 27

easily check that N = log(σ0) acts as Nηk = ηk−1, and hence σ0 = exp(N) preserves
E∨n (Q). As for the action of σc, we observe that

(σc − 1)ηk = (2πi)−k
k∑
j=0

αj(σc − 1)εk−j = (2πi)−k

(
k∑
j=0

αjκk−j

)
δ =

{
0, k ≥ 0,

δ, k = 0.

It remains to show that δ ∈ E∨n (Q). We write δ =
∑r−1

k=0 µkηk with µk ∈ C. Since
δ ∈ M∨

p (Q) and this space is preserved by the monodromy operators, it follows from

(σc − 1)δ = µ0δ that µ0 ∈ Q. To access other coefficients, note that (σc − 1)Nkδ = µkδ
implies that µk ∈ Q for all k.

To show uniqueness, denote Vk = 〈η0, . . . , ηk〉Q and suppose we have another Q-
structure with these properties, say Wk = 〈ν0, . . . , νk〉Q with Wk ⊗ C = Vk ⊗ C for
k ≥ 0. It is clear from (i) that V0 = W0. Suppose k > 0 and assume inductively
that Wk−1 = Vk−1. Due to (ii) we must have that δ = (σc − 1)η0 ∈ Wr+n, and hence
for any w ∈ Wk one has (σc − 1)w ∈ Qδ. It follows that Wk = W0 ⊕ W 0

k where
W 0
k := ker(σc− 1 : Wk → Wr+n). Since (σ0− 1)(W0) = (0), it follows that W 0

k ⊂ Wk de-
fines a splitting of σ0−1 : Wk � Wk−1 = Vk−1. We have V 0

k ⊗C = W 0
k ⊗C ⊂ 〈ε0, . . . , εk〉

and with this identification, the two splittings coincide. Thus V 0
k = W 0

k so Vk = Wk. �

Note that filr−1E∨n (Q) =M∨
p (Q). Indeed, δ = (σc−1)(κ−1

0 ε0) ∈ E∨n (Q) and under the
condition σcε0 6= ε0 the space of Betti cyclesM∨

p (Q) is generated by the images of δ under

σ0 (see the last paragraph in the proof of Theorem 19.) Since filjE∨n = Nn+r−j(E∨n ),
Proposition 38 defines a unique lift of the Betti structure onM∨ to a Q-structure on E∨n
for which the Jacobson filtration for N = log(σ0) is defined over Q.

The final objective in this section is to link the Apéry constants κj to periods of a
limiting mixed Hodge structure. As we mentioned earlier, for a pure variation of Hodge
structure M of weight w the limiting mixed Hodge structure Mlim can be identified with
the fiber Mp with the weight filtration given by the Jacobson filtration for N = log(σ0)
shifted by w. More generally, for a variation of mixed Hodge structure H with the weight
filtration W∗H, a monodromy weight filtration on the fiber Hp is a filtration W∗Hp such
that N(Wj) ⊂ Wj−2 and such that for each k the filtration induced by W∗ on grWk Hp

is the Jacobson filtration defined by N on the pure HS grWk Hp and then shifted by −k.
There is at most one monodromy weight filtration satisfying these conditions, but it can
happen that no such monodromy weight filtration exists. As earlier, we denote the fiber
(En)p simply by En.

Proposition 39. Let L∗ be the Jacobson filtration for N = log(σ0) on En. Then W∗ =
L∗[n+ 2− r] is the monodromy weight filtration on En.

Proof. One can check that Nk(En) = (Cε∨0 + . . . + Cε∨k−1)⊥ = Ce−n−1 + . . . + Cer−1−k,
which yields

WkEn = Lk+n+2−rEn = N b
n+r+1−(k+n+2−r)

2
c(En) = N r−1−b k

2
c(En)

= Ce−n−1 + . . .+ Ceb k
2
c.

The weight filtration W∗En is given by (50). One can check that for k < 0 we have
WkEn =WkEn and hence the filtration induced byW∗ on each grW−2kEn is zero in degrees
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< −2k and everything in degrees ≥ −2k. This is precisely the Jacobson filtration for N
on this rank one subquotient shifted by 2k. It remains to check the rank r graded piece
grWr−1En ∼=M. There the induced filtration is given by

Wkgr
W
r−1En = Ce0 + . . .+ Ceb k

2
c = N r−1−b k

2
c (grWr−1En

)
,

which is again the Jacobson filtration shifted by 1− r. �

Proposition 40. The limiting mixed Hodge structure (En)lim exists. If αk are the coeffi-
cients of the inverse Apéry series (53), then numbers αk(2πi)

−h with 0 ≤ k ≤ h ≤ n+ r
are periods of (En)lim.

The following observation will be a key step in the proof of Proposition 40.

Lemma 41. Let K ⊂ C be a field and L =
∑m

j=0 qj(t)D
m−j, qj ∈ K(t) be a differential

operator such that the monodromy of its solutions around t = 0 is maximally unipotent.
Let V = Solp(L) be the space of solutions near a base point t = p. We further assume
that q0(0) 6= 0 and qj(0) = 0 when j > 0, so that the local exponent of L at t = 0 equals
0. Fix some branch of log(t) near p and consider the classical Frobenius basis in V :

φk(t) =
k∑
j=0

log(t)j

j!
φank−j(t), k = 0, . . . ,m− 1,

where φan0 , . . . , φanm−1 ∈ KJtK are uniquely determined (i.e. independent of the choice of
log(t)) analytic near t = 0 functions satisfying φanj (0) = δj,0.

(i) Consider some Zarisky open set U ⊂ Gm and the ring of differential operators
D = OU [D]. Consider a connection on U given by H = D/DL ∼=

∑m−1
j=0 OUDjω, where

ω ∈ H is the image of 1 ∈ D. Consider a filtration on H given by

(54) F kH =
m−1−k∑
j=0

OUDjω, 0 ≤ k ≤ m− 1.

Then the limiting filtration in the sense of Schmid ([12, (6.15)]) exists and is given on
the dual space V ∨ by

F k
∞ V ∨ = Cφ∨0 + . . .+ Cφ∨m−1−k.

Moreover, limits of algebraic classes yield F k
∞(K) := Kφ∨0 + . . .+Kφ∨m−1−k.

(ii) Consider the nilpotent operator N = log(σ0) and let the respective Jacobson filtra-
tion on V ∨ shifted by m− 1; this filtration is given by

(55) W∗V ∨ := Nm−1−b k
2
c(V ∨).

Then H = (V ∨,W∗, F ∗∞) is a mixed Hodge structure with grWH = ⊕m−1
k=0 C(−k).

Proof. (i) We will apply Schmid’s limiting procedure as in [12, §6] to the filtration (54)
and describe the limit as a filtration on the dual space V ∨. For this we shall restrict our
connection to a small punctured disk ∆∗ = ∆ \ {0} ⊂ Uan. Since q0(0) 6= 0, connection

Han =
∑m−1−k

j=0 O∆∗D
jω extends to a connection on ∆ simply by H̃an =

∑m−1−k
j=0 O∆D

jω

(this extension is a logarithmic connection, it has a simple pole at t = 0). To deal with
the monodromy, we pullback solutions to the universal covering of ∆∗. On a subset of
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the upper halfpalne G ⊂ C we take e : G→ ∆∗, e(z) = exp(2πiz) and identify the space
of solutions with

V :=

{
u(z) =

m−1∑
j=0

uj(e(z))zj | uj ∈ Oan∆ , (e∗L)u = 0

}
∼= V.

For each z ∈ G there is a map πz : Han → V∨. In concerete terms, for an ele-
ment v =

∑
j vj(t)D

jω ∈ Han the pairing of πz(v) with a solution u ∈ V is given

by
∑

j vj(e(z))(Dju)(z) ∈ C. Indeed, if we identify u with 〈ω, ε〉 for a horizontal section

ε ∈ H∨, then 〈Djω, ε〉 = Dj〈ω, ε〉 = Dju and since u is represented by a function of z,

then D = e(z) d
de(z)

= 1
2πi

d
dz

. We now restrict our filtration to F̃kH̃an :=
∑m−1−k

j=0 Oan∆ Djω

and define Fkz V∨ := πz

(
F̃kH̃an

)
. The limiting filtration is defined in [1, (6.15)] by

(56) Fk∞ V∨ := lim
Im(z)→+∞

exp(−zN)Fkz V∨.

Using as a basis in V the Frobenius solutions

φk(z) =
k∑
j=0

(2πiz)j

j!
φank−j(e(z)), 0 ≤ k ≤ m− 1,

we need to compute the limits

(57) lim
Im(z)→+∞

exp(−zN)πz(D
sω)(φk) = lim

Im(z)→+∞
exp(−zN)(Dsφk)(z).

Let us see how to apply exp(−zN) to a function of the shape u =
∑

j≥0 uj(e(z))zj.

Recall that σ0 acts by the shift (σ0u)(z) = u(z + 1). We claim that N = log(σ0) =∑
h≥1(−1)h−1(σ0 − 1)h/h acts by (Nu)(z) =

∑
j≥1 uj(e(z))jzj−1. Indeed, since σ0 is

trivial on each uj(e(z)), we clearly have Nu =
∑

j≥0 uj(e(z))Nzj, and to check that

Nzj = jzj−1 we observe that on the space of polynomials the shift σ0 is equal to exp( d
dz

)
due to the Taylor formula. Finally,

(exp(−zN)u) (z) =
∑
h≥0

(−z)h

h!
(Nhu)(z) =

∑
j≥0

uj(e(z))
∑
h≥0

(−z)h

h!

(
d

dz

)h
zj

=
∑
j≥0

uj(e(z))

(∑
h≥0

(−1)h
(
j

h

))
zj = u0(e(z)).

We see that applying exp(−zN) simply kills the part with the monodromy. Hence to
compute the limit in (57) we need to extract the analytic part of Dsφk and evaluate it
at t = 0. Namely, since

Dsφk =
k∑
j=0

s∑
h=0

(
s

h

)
Dh

(
(2πiz)j

j!

)
(Ds−hφank−j)(e(z))

the analytic part (that is, we gather the terms with z0) consists of the summands where
h = j. Further, if h < s or j < k then (Ds−hφank−j)(0) = 0. Hence the limit (57) vanishes



30 SPENCER BLOCH, MASHA VLASENKO

unless k = s, and in the latter case it is equal φan0 (0) = 1. We conclude that

lim
Im(z)→+∞

exp(−zN)πz (Dsω) = φ∨s

and, more generally,

lim
Im(z)→+∞

exp(−zN)πz

(∑
s

vs(t)D
sω

)
=
∑
s

vs(0)φ∨s .

Part (i) follows immediately from this formula.
For (ii) we note that Na(V ∨) = SpanC(φ∨a , . . . , φ

∨
m−1) and hence filtrations F ∗∞H and

W∗ are opposite in the sense that V ∨ = W2k ⊕ F k+1
∞ for any k. It follows that the

filtration induced by F ∗∞ on grW2k V
∨ is zero in degrees > k and everything in degree

k. �

Remark 42. Suppose that L in Lemma 41 is a Picard–Fuchs differential operator. More
precisely, we assume that for a smooth projective family of algebraic varieties f : X → U
there is a class in the smallest Hodge part ω ∈ Fm−1Hm−1

dR (X/U) annihilated by the
differential operator L. Then H = D/DL carries a polarized variation of Hodge structure
of pure weight m−1, and using Griffiths’ transversality along with Lemma 36 we conclude
that (54) is the Hodge filtration. The limiting MHS is constructed in [12, Theorem (6.16)],
and this is precisely H from (ii) in Lemma 41.

The K-structure from part (i) of our Lemma is the de Rham structure on H. To see
this, we change notation in order to appeal to the work of Steenbrink ([13], as corrected
in [6]). Steenbrink considers a geometric situation where H is the DR-cohomology of a
projective family f : X → S, where X is smooth and S is a smooth, affine curve. t
is a parameter on S and f is smooth away from t = 0. We assume Y := f−1(0) is a
reduced normal crossings divisor. The link with our standard notation f : X → U is
X = X − Y ; U = S − {t = 0}.

Define

ω∗S = Ω∗S(log{0}); ω∗X = Ω∗X (log Y ); ω∗Y = Ω∗X/S(log Y )⊗OS
K.

Steenbrink’s basic result identifies ω∗Y ⊗K C with the nearby cycle complex RΨ(C) for
Y ⊂ X . This identification depends on the choice of t and also of log t. Given n,
Steenbrink’s result enables one to put a mixed Hodge structure on Hn(Y, ω∗Y ) which is
then identified with the limiting MHS Hn

lim as defined by Deligne and Schmid. The fact
that ω∗Y is defined algebro-geometrically automatically endows Hn

lim with a K-structure
(DR structure) which can be used to define periods.

We introduce a variable denoted log t and consider the complexes

ωS[log t]; ωX [log t]; ωX/S[log t].

Sections e.g. of ω∗S[log t] are polynomials in log t with coefficients which are sections of
ω∗. The differential is extended from ω by setting d log t = dt/t. Note that dt/t = 0 in
ωX/S.

Let i : Y ↪→ X be the inclusion, and write i−1 for the sheaf-theoretic restriction
functor from sheaves on X to sheaves on Y . (Note i−1 6= i∗, the pullback in the category
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of sheaves of O-modules.) Steenbrink’s basic result is that the composition

(58) i−1(ωX [log t])
log t7→log t−−−−−−→ i−1(ωX/S[log t])

log t7→0−−−−→ i−1ωX/S → ωY

is a quasi-isomorphism.
Consider the diagram

(59)

0 −→ i−1(ω·−1
X/S ⊗ ω1

S[log t]) −→ i−1(ωX [log t])
α−→ i−1(ωX/S[log t]) −→ 0y ∥∥∥ y

0 −→ ker β −→ i−1(ωX [log t])
β−→ i−1(ωX/S) −→ 0x x ∥∥∥

0 −→ i−1(ω·−1
X/S ⊗ ω1

S) −→ i−1(ω∗X ) −→ i−1(ω∗X/S) −→ 0.y
ωY

A piece of the long-exact sequence of cohomology sheaves on Y associated to the top
line reads (for any p)

(60) 0→ Hp(i−1(ωX [log t]))
Hp(α)−−−→ Hp(i−1(ωX/S[log t]))

∇GM−−−→ Hp(i−1(ω·X/S ⊗ ω1
S[log t]))

The boundary map coincides with the Gauß–Manin connection as indicated. Also, the
result of Steenbrink cited above implies that Hp(α) is injective, both on the sheaf level
and for global cohomology groups. Thus, (60) identifies

(61) Hp(Y, i−1(ω∗X [log t]) ∼= Hp(Y, i−1(ωX/S[log t]))∇GM=0

We know by Frobenius that we have a full set of horizontal sections defined over KJtK[log t],
so we conclude

(62) Hp(Y, i−1(ω∗X [log t]) ∼=
{Horizontal sections of the GM connection on Hp(Y, i−1ω∗X/S)}

∼= Hp(Y, ω∗Y ).

The assignment log t → 0 in (58) coincides with the vanishing of zj, j > 0 in the com-
putation of (57). The K-structure from Hp(Y, ωY ) is Steenbrink’s DR-structure. It
matches the K-structure on H, and if one expresses period functions in the classical
Frobenius basis, the coefficients are periods of the limiting Hodge structure.

Example 43. The period function of the Legendre family of elliptic curves

φ(t) =

∫ ∞
1

dx√
x(x− 1)(x− t)

= π

∞∑
n=0

(
2n

n

)2(
t

16

)n
= π · 2F1(1

2
, 1

2
, 1|t)
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is a Betti-rational solution to the hypergeometric differential operator L = D2−t(D+ 1
2
)2.

Then π here is the period the limiting MHS because the hypergeometric function φ0(t) =

2F1(1
2
, 1

2
, 1|t) is the Frobenius solution analytic at t = 0.

Lemma 41 can be also applied to variations of mixed Hodge structure. Namely, if the
Hodge filtration is a shift of F ∗H and if the same shift of W∗ yields the monodromy
weight filtration, then the respective shift of H is the limiting mixed Hodge structure.

Example 44. L = Dn+1 corresponds to the symmetric power of the Kummer variation
SymnKt. One can check that the Hodge filtration is given by the shift F ∗[n] = F ∗+n of the
filtration (54) and that the shift W∗[n] =W∗+2n of the filtration (55) is the monodromy
weight filtration. It follows that the limiting Hodge structure is (SymnKt)lim = H[n].

The Frobenius basis is given by φk(t) = log(t)k

k!
and the rational structure is spanned by(

log(t)
2πi

)k
= (2πi)−kk!φk(t). Hence (2πi)−k, 0 ≤ k ≤ n are periods of (SymnKt)lim.

Proof of Proposition 40. We apply Lemma 41 for the operator Dn+1L where L is an
operator of order r satisfying the usual assumptions used throughout this section. Here
m = n + r + 1 and as connections we haev H = D/DDn−1L ∼= En, see (41). By (49)
the Hodge filtration F ∗En is the shift of F ∗H in (54) by n + 1. By Proposition 39 the
monodromy weight filtration W∗En is the shift of W∗H by n+ 1. We conclude that the
limiting MHS for our variation En exists and is given by (En)lim = H[n+ 1].

The rational structure on E∨n was defined in Proposition 38. Since ηk ∈ E∨n (Q) and

〈φan, ηk〉 = (2πi)−k(αkφ0 + αk−1φ1 + . . .+ α0φk),

then αk(2πi)
−h with 0 ≤ k ≤ h ≤ n+ r are periods of (En)lim. �

We showed that numbers αk from Proposition 38 divided by certain powers of 2πi are
periods of the limiting MHS associated to the extension

(63) 0→ Symn(Kt)(1)→ En →M∆∗ → 0.

Though we assume M is motivic, i.e. M is the Gauß–Manin connection for a family of
varieties over P1 as in the beginning of this section, it is not clear that the extension
(63) is motivic. Indeed, we do not expect it to be so in general. To better understand
this question, we consider briefly some calculations inspired by work of Kerr [8, Section
5.3]. Kerr considers the example of Apéry which is a pencil of K3-surfaces defined by
1− t f(x1, x2, x3) = 0 with

f =
(x1 − 1)(x2 − 1)(x3 − 1)(1− x1 − x2 + x1x2 − x1x2x3)

x1x2x3

,

as in our Example 21. He shows that the Milnor symbol {x1, x2, x3} defines classes in
motivic cohomology H3

mot(Xλ,Q(3)) where λ = 1/t and Xλ is a suitable compactification
of the divisor f(x1, x2, x3) = λ in G3

m. Associated to such a motivic class, one has the
Beilinson regulator

reg({x1, x2, x3}) ∈ Ext1
MHS(H2(Xλ,Q(0)),Q(1)).

We speculate that, replacing t with λ in (63), the extension reg{x1, x2, x3} coincides
with (63) for n = 0. If so, this will say in particular that (63) for n = 0 is in this case
motivic. (NB. “speculation”<< “conjecture” << “theorem”)
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We may try to go further and consider the Apéry example for n = 1. The extension
(63) becomes

0→ Kλ(1)→ E1 → H2(Xλ,Q)→ 0

This extension lies in

(64) Ext1
MHS(Q(0), H2(Xλ)⊗Kλ(3)) ∼=

Ext1
MHS(Q(0), H3(Xλ × (Gm, {1, λ}),Q(4)))

Formally, we would expect such a class to arise as the Beilinson regulator of a relative
motivic class in H4

mot(Xλ × (Gm, {1, λ}),Q(4)).
Actually, it is more precise to look at the whole family, allowing λ to vary. To this

end, consider the pair (
Gm ×Gm, (Gm × {1}) ∪∆Gm

)
where ∆Gm is the diagonal. We view this as a family over Gm via pr1 : Gm×Gm → Gm,
and we want a class in

H4
mot(X ×Gm (Gm ×Gm, (Gm × {1}) ∪∆Gm),Q(4))

Let u be the coordinate in the righthand Gm factor. We consider the Milnor symbol
{x1, x2, x3, u}. Informally speaking, to define a relative motivic class, we need to trivialize
this symbol along the diagonal u = λ = f(x1, x2, x3). (A convenient and rigorous
treatment of relative motivic cohomology can be given using higher cycle complexes,
but here our intention is merely to suggest a way forward. We do not attempt to give
details.) Informally, one trivializes this symbol by invoking the Steinberg relations, viz.

(65) {x1, x2, x3, u} = {x1, x2, x3, f(x1, x2, x3)} =

{x1, x2, x3,
(x1 − 1)(x2 − 1)(x3 − 1)(1− x1 − x2 + x1x2 − x1x2x3)

x1x2x3

}

= {x1, x2, x3, 1− x1 − x2 + x1x2 − x1x2x3} =

{x1, x2, x3, (1− x1)(1− x2)
(

1− x1x2x3

(1− x1)(1− x2)

)
} =

{x1, x2, x3,
(

1− x1x2x3

(1− x1)(1− x2)

)
} =

{x1, x2,
((1− x1)(1− x2)

x1x2

)
,
(

1− x1x2x3

(1− x1)(1− x2)

)
} = 1

(On the last line we use the identity {x, 1− ax} = {a−1, 1− ax}.)
Intuitively, at least, the above argument can be used in the Apéry example to construct

our extension motivically for n = 1. We may hope to apply a similar aggument for n > 1,
working with

X ×Gm Gn;G = (Gm ×Gm,Gm × 1 ∪∆Gm).

Here Gn = G×Gm · · ·×GmG where the structure maps are again pr1 : Gm×Gm → Gm. The
symbol becomes {x1, x2, x3, u1, . . . , un}. The first order trivializations along diagonals
are as above, but there are now higher order compatibilities on multiple diagonals that
are not understood.
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