The Chern character does not commute with proper pushforward. In other words, let $f : X \to Y$ be a proper morphism of nonsingular varieties. Then the square

$$
\begin{array}{ccc}
K(X) & \xrightarrow{f_*} & K(Y) \\
\downarrow^{\text{ch}_X} & & \downarrow^{\text{ch}_Y} \\
A(X) \otimes_{\mathbb{Z}} \mathbb{Q} & \xrightarrow{f_*} & A(Y) \otimes_{\mathbb{Z}} \mathbb{Q}
\end{array}
$$

doesn’t commute, where $A(X)$ denotes the Chow ring and ch is the Chern character. The Grothendieck-Riemann-Roch theorem states that

$$
\text{ch}(f_*\alpha) \cdot \text{td}(T_Y) = f_* (\text{ch}(\alpha) \cdot \text{td}(T_X)),
$$

where td denotes Todd genus. We describe the proof when f is a projective morphism.

1 Statement of the theorem

Fix a field k. In this document the word ‘scheme’ will mean ‘k-scheme of finite type.’ Let X be a scheme. $K^\circ(X)$ denotes the Grothendieck group of vector bundles on X. $K_c(X)$ denotes the Grothendieck group of coherent sheaves on X. If X is quasiprojective nonsingular, the canonical homomorphism

$$
K^\circ(X) \to K_c(X)
$$

is an isomorphism. This is because the local rings of X are regular, and hence of global dimension equal to their finite Krull dimension, which is bounded above by the dimension of X. Therefore any coherent sheaf \mathcal{F} on X admits a finite locally free resolution

$$
\text{ch}(f_*\alpha) \cdot \text{td}(T_Y) = f_* (\text{ch}(\alpha) \cdot \text{td}(T_X)),$$
0 \to E_n \to E_{n-1} \to \cdots \to E_1 \to E_0 \to \mathcal{F} \to 0,

yielding an inverse of the above homomorphism which takes \([\mathcal{F}]\) to \(\sum_{i=0}^{\infty}(-1)^i[E_i]\).

So, when we are studying a nonsingular variety \(X\), we can write \(\mathcal{K}(X)\) with no ambiguity. The notation \(H^i(X, \mathcal{F})\) denotes the \(i\)th right derived functor of the global sections functor \(\Gamma\) on \(X\) with coefficients in the sheaf \(\mathcal{F}\).

Let \(X, Y\) be schemes. For any morphism \(f: Y \to X\) there is an induced homomorphism
\[
f^*: \mathcal{K}(X) \to \mathcal{K}(Y),
\]
taking a vector bundle \([E]\) to \([f^*E]\) where \(f^*E = Y \times_X E\) is the pullback bundle. For any proper morphism of schemes \(f: X \to Y\) there is a homomorphism
\[
f_*: \mathcal{K}(X) \to \mathcal{K}(Y)
\]
which takes \([F]\) to \(\sum_{i \geq 0}(-1)^i[R^i f_* \mathcal{F}]\), where \(R^i f_* \mathcal{F}\) denotes \(i\)th higher direct image. For the remainder of this document, \(X\) will denote a smooth quasiprojective algebraic variety.

We consider for the moment the situation when \(X\) is moreover a complex variety. Then, we have the usual resolution of the constant sheaf \(\mathcal{Z}\) by the complex of singular cochains, and characteristic classes of vector bundles on \(X\) lying in \(H^*(X, \mathcal{Z})\).

The Chern character \(\text{ch}(E)\) of a vector bundle \(E\) on \(X\) is defined by the formula
\[
\text{ch}(E) = \sum_{i=1}^{r} \exp(\alpha_i).
\]
Here \(\alpha_i\) are Chern roots for \(E\). When \(E\) has a filtration with line bundle quotients \(L_i\), then \(\alpha_i = c_1(L_i) \in H^2(X, \mathcal{Z})\). The Todd class \(\text{td}(E)\) of a vector bundle \(E\) is defined by the formula
\[
\text{td}(E) = \prod_{i=1}^{r} Q(\alpha_i), \quad \text{where} \quad Q(x) = \frac{x}{1 - e^{-x}}.
\]
Since Chern roots are additive on exact sequences of bundles, \(\text{td}\) is multiplicative and \(\text{ch}\) additive. Moreover, if \(E\) and \(E'\) are vector bundles, \(\text{ch}(E \otimes E') = \text{ch}(E) \cdot \text{ch}(E')\). Therefore, \(\text{ch}\) descends to a homomorphism
\[
\text{ch}: \mathcal{K}(X) \to H^*(X, \mathcal{Z}) \otimes \mathcal{Q} \cong H^*(X, \mathcal{Q}).
\]
Note that the image of \(\text{ch}\) is contained in even cohomology.

Let \(f: X \to Y\) be a proper morphism of smooth quasiprojective complex varieties. Then the Grothendieck-Riemann-Roch theorem states that for \(\alpha \in \mathcal{K}(X)\),
\[
\text{ch}(f_* \alpha) \cdot \text{td}(T_Y) = f_*(\text{ch}(\alpha) \cdot \text{td}(T_X))
\]
in the ring \(H^*(Y, \mathcal{Q})\). The map \(f_*\) on cohomology can be described in the following way. The class \(\text{ch}(\alpha) \cdot \text{td}(T_X) \in H^*(X, \mathcal{Q})\) can be represented by an algebraic cycle
W on X. This cycle admits a locally finite triangulation, i.e. such that a compact subset of X intersects only finitely many simplices. This triangulation defines the class of W in Borel-Moore homology of X, which is by definition the homology of the complex of locally finite singular chains. The functoriality of these chains for a proper map $f : X \rightarrow Y$ is evident, since if $C \subset Y$ is compact, $f^{-1}C$ is also, and hence only finitely many (singular) simplices have image in Y intersecting C. By assumption, X and Y are smooth quasiprojective complex varieties. Poincaré duality extends to give an isomorphism

$$H^i(X, \mathbb{Z}) \cong H_{2n-i}^{BM}(X, \mathbb{Z}),$$

where X has algebraic dimension n and H_i^{BM} denotes Borel-Moore homology (likewise for Y). This defines the map f_*. By taking the theorem in the special case of $f : X \rightarrow \{\cdot\}$, one recovers the theorem of Hirzebruch-Riemann-Roch (HRR), which in our case says, for E a vector bundle on a nonsingular complex projective variety X,

$$\chi(X, E) = \int_X \text{ch}(E) \cdot \text{td}(T_X).$$

Here, the notation \int_X means to take the cohomology in the highest degree, represent it as a linear combination of points via Poincaré duality, and count these points with multiplicity. Let us recover from this the statement of classical Riemann-Roch, which applies when X is a complete nonsingular curve of genus g. The geometric genus of a curve is by definition $\dim_k H^0(X, \omega_X)$, the dimension of the global sections of the canonical sheaf $\omega_X = \Omega_X/k$ (our remarks so far restrict us in what follows to the case $k = \mathbb{C}$). The arithmetic genus of a curve is $\dim_k H^1(X, O_X)$. It happens that ω_X is a dualizing sheaf on X, and by Serre duality the vector spaces $H^0(X, \omega_X)$ and $H^1(X, O_X)$ are dual to one another. Their dimension can be taken as the definition of the genus of a (complete nonsingular) curve. In any event, since $H^0(X, \omega_X) = k$, this, together with HRR and the computation of the first two terms of the Todd class of a line bundle

$$\frac{x}{1 - e^{-x}} = 1 + \frac{1}{2} x + \sum_{k=1}^{m} (-1)^{k-1} \frac{B_k}{(2k)!} x^{2k},$$

reveals that

$$1 - g = \chi(X, O_X) = \frac{1}{2} \int_X c_1(T_X).$$

If E is a vector bundle of rank e on X, then since ch is additive on short exact sequences and $c_1(E)$ is simply the sum of the Chern roots of E, $\text{ch}(E) = e + c_1(E)$, and we have

$$\chi(X, E) = \int_X c_1(E) + e(1 - g).$$

In particular, when $E = O(D)$ is a line bundle,
The Chow ring. Let X be a smooth scheme. The Chow group $A_k^*(X)$, resp. $A^k(X)$ denotes the group of algebraic cycles of dimension, resp. codimension, k on X modulo rational equivalence. We denote algebraic cycles of dimension (resp. codimension) k on X by Z_k^X, resp. Z^k_X. Since X is smooth, the intersection product gives $A^*(X)$ the structure of commutative, graded ring with unit $[X]$. The notation $A(X)_\mathbb{Q}$ denotes $A(X) \otimes \mathbb{Z}[X]$.

Characteristic classes can be defined very easily as operators on the Chow ring. When L is a line bundle on X, find a Cartier divisor on X with $\mathcal{O}(D) \cong L$. Then $c_1(L) \cdot \alpha = [D] \cdot \alpha$ for $\alpha \in A^*(X)$; i.e. the action of $c_1(L)$ on the Chow ring of X is simply intersection with D. The first Chern class of a bundle E of rank r can be defined simply in terms of determinants, as $c_1(E) = c_1(\wedge^r E)$. To define the higher classes, we mention the splitting construction.

Given a finite collection of vector bundles \mathcal{S} of vector bundles on a scheme X, there is a flat morphism $f : X' \to X$ such that

1. $f^* : A(X) \to A(X')$ is injective, and
2. for each E in \mathcal{S}, f^*E has a filtration by subbundles

$$f^*E = E_r \supset E_{r-1} \supset \cdots \supset E_1 \supset E_0 = 0$$

with line bundle quotients $L_i = E_i/E_{i-1}$.

The flag varieties of vector bundles provide the desired X'.

Now, with f as in the splitting construction, f^*E is filtered with line bundle quotients L_i. Define the Chern polynomial

$$c_i(f^*E) = \prod_{i=1}^r (1 + c_1(L_i)t).$$

Then $c_i(f^*E)$ is simply the coefficient of t^i in $c_j(f^*E)$. By insisting that the $c_i(E)$ are natural under flat pullback, we determine the $c_i(E)$ completely.

We then define Chern character ch and Todd class td identically to as before. Defined algebraically in this way, the Chern character actually induces an isomorphism

$$\text{ch} : K(X)_\mathbb{Q} \to A(X)_\mathbb{Q}$$

of \mathbb{Q}-algebras. To see this, one passes to associated graded groups, giving $A_\mathbb{X}$ its natural filtration and $K_\mathbb{X}$ its topological filtration defined by letting $F_iK_\mathbb{X}$ be the subgroup generated by coherent sheaves whose support has dimension at most k. There is a surjection $A_k^X \to Gr_k K_\mathbb{X}$, which, composed with ch, gives the natural inclusion of $A_\mathbb{X}$ in $A(X)_\mathbb{Q}$. Since, after tensoring with \mathbb{Q}, ch determines an isomorphisms on associated graded groups, the same must hold on the original groups.
The Grothendieck-Riemann-Roch theorem remains true if you replace ordinary cohomology with the Chow ring. Namely, for $\alpha \in K^*(X)$, $f: X \to Y$ a projective morphism of nonsingular schemes (over any field),

$$\text{ch}(f_*\alpha) \cdot \text{td}(T_Y) = f_*(\text{ch}(\alpha) \cdot \text{td}(T_X))$$

in the ring $A^*(Y)$. Here f_* is the proper pushforward of algebraic cycles.

2 Proof of the theorem

Let X be a nonsingular scheme. The proof of the theorem is organized in the following way. First we consider the toy case of the zero-section imbedding of X in a vector bundle on it. After turning briefly to discuss the K-theory of a projective bundle on X, we discuss the deformation to the normal cone of a closed imbedding. In the final subsection, we use the results for the K-theory of a projective bundle to prove the main theorem in the case of a projection, and the deformation to the normal cone to prove the theorem in the case of a closed imbedding. Together, these constitute the proof of Grothendieck-Riemann-Roch in the case of a projective morphism.

2.1 The toy case

Let us first consider the special case of a closed imbedding $f: X \to Y$ where $Y = P(N \oplus 1)$ for N an arbitrary vector bundle of rank d on X; in particular, f is the zero section imbedding of X in N, followed by the canonical open imbedding of N in $P(N \oplus 1)$. Let p denote bundle projection $Y \to X$, and let Q be the universal quotient bundle, of rank d, on Y. Let s denote the section of Q determined by the projection of the trivial factor in $p^* (N \oplus 1)$ to Q. Then s is a regular section, and

$$f_* (f^* \alpha) = c_d(Q) \cdot \alpha. \quad (1)$$

Additionally, the Koszul complex

$$0 \to \wedge^d Q^\vee \to \ldots \to \wedge^2 Q^\vee \to Q^\vee \xrightarrow{s^\vee} \mathcal{O}_Y \to f_* \mathcal{O}_X \to 0$$

is a resolution of the sheaf $f_* \mathcal{O}_X$. For any vector bundle E on X, we therefore have the explicit resolution of E

$$0 \to \wedge^d Q^\vee \otimes p^* E \to \ldots \to Q^\vee \otimes p^* E \to p^* E \to f_* E \to 0.$$

Hence,

$$\text{ch}_{f_*}[E] = \sum_{p=0}^d (-1)^p \text{ch}(\wedge^p Q^\vee) \cdot \text{ch}(p^* E). \quad (2)$$
Chern character ch and Todd class td are related by the formula
\[
\sum_{p=0}^{d} (-1)^p \text{ch}(\wedge^p Q) = c_d(Q) \cdot \text{td}(Q)^{-1}.
\] (3)

Combining (1), (2), and (3), we write
\[
\text{ch}_f^* E = c_d(Q) \cdot \text{td}(Q)^{-1} \cdot \text{ch}(p^* E) = f_*(f^* \text{td}(Q)^{-1} \cdot f^* \text{ch}(p^* E)).
\]

Since $f^* Q = N$ and $f^* p^* E = E$, this can be rewritten as
\[
\text{ch}_f^* E = f_*(\text{td}(N)^{-1} \cdot \text{ch}(E)).
\] (4)

By the multiplicativity of td and the exact sequence of vector bundles arising from a regular imbedding of a nonsingular subvariety in a nonsingular variety
\[
0 \to T_X \to f^* T_Y \to N_X Y \to 0,
\]
we find
\[
\text{td}(N)^{-1} = f^* \text{td}(T_Y)^{-1} \cdot \text{td}(T_X).
\]

The right side of (4) is therefore
\[
f_*(f^* \text{td}(T_Y)^{-1} \cdot \text{td}(T_X) \cdot \text{ch} E) = \text{td}(T_Y)^{-1} \cdot f_*(\text{td}(T_X) \cdot \text{ch} E),
\]
and (4) can be rewritten as
\[
\text{ch}(f_! E) \cdot \text{td}(T_Y) = f_*(\text{ch}(E) \cdot \text{td}(T_X)).
\] (5)

2.2 $K(P)$

Theorem 1. Let X be a nonsingular scheme, E a vector bundle on X of rank $n + 1$, $q : P = P(E) \to X$ the projection. Then, $K(P)$ is a free $K(X)$-module generated by the classes of $\mathcal{O}(-i)$, $i = 0, \ldots, n$.

Proof (of Theorem). There are two steps: first, showing that the classes of $\mathcal{O}(-i)$, $i = 0, \ldots, n$ generate a free submodule of $K(P)$ over $K(X)$; second, showing that these classes generate $K(P)$ as a module over $K(X)$. The below commutative diagram establishes notation.
For the first step, it suffices to write down projection maps $K(P) \to K(X)$. For $i = 0, 1, \ldots, n,$

$$R^i q_* (\Omega^j_{P/X} (j - i)) = \begin{cases} \mathcal{O}_X & \text{if } a = i = j \\ 0 & \text{otherwise.} \end{cases}$$

Therefore, if $H = \Omega^1_{P/X}(1)$, and $e_i : K(P) \to K(X)$ is given by

$$e_i(?) = (-1)^i q_* (? \otimes \wedge^i H),$$

then e_i assumes the value $[\mathcal{O}_X]$ on $[\mathcal{O}(-i)]$ and 0 on $[\mathcal{O}(-j)]$ for $0 \leq j \neq i \leq n$. Hence the classes of $\mathcal{O}(-i), i = 0, \ldots, n$ generate a free module over $K(X)$.

For the second step, we must show that every coherent sheaf on projective space is equal to a linear combination of the $\mathcal{O}(-i), i = 0, \ldots, n$, in $K(P)$. The Koszul complex

$$0 \to \mathcal{O}(-n) \boxtimes \wedge^n H \to \cdots \to \mathcal{O}(-2) \boxtimes \wedge^2 H \to \mathcal{O}(1) \boxtimes H \to \mathcal{O}_{P \times P} \to \mathcal{O}_\Delta \to 0$$

is in fact a resolution of the diagonal $\mathcal{O}_\Delta = \Delta_* \mathcal{O}_P \subset P \times X P$ for projective space. Therefore, for a coherent sheaf $?_1$ on P,

$$?_1 = p_1_*(\mathcal{O}_\Delta \otimes p_2^*(?)$$

$$= p_1_*(\sum_{i=0}^{n} (-1)^i \mathcal{O}(-i) \otimes \wedge^i H \otimes p_2^*(?)$$

$$= p_1_*(\sum_{i=0}^{n} (-1)^i \mathcal{O}(-i) \otimes (\wedge^i H \otimes ?))$$

$$= \sum_{i,j=0}^{n} (-1)^{i+j} \mathcal{O}(-i) \otimes_{\mathcal{O}_X} R^i q_* (\mathcal{P}, \wedge^i H \otimes ?)$$

in $K(P)$, where we have written simply $?$, etc. for the class $[?]$ in $K(P)$, and the last equality is by K"unneth. This proves step 2, and the theorem.
2.3 Deformation to the normal cone

Let X be a closed subscheme of Y. The claim is that there is a scheme $M = M_X Y$, a closed imbedding $X \times \mathbb{P}^1 \hookrightarrow M$, and a flat morphism $\rho : M \to \mathbb{P}^1$ so that

$$
\begin{array}{c}
X \times \mathbb{P}^1 \\
\downarrow \text{pr} \\
\mathbb{P}^1
\end{array} \quad \quad \quad \quad \quad \quad \begin{array}{c}
\quad M \\
\downarrow \rho \\
\mathbb{P}^1
\end{array}
$$

commutes, and such that

1. Over $\mathbb{P}^1 - \{\infty\} = \mathbb{A}^1$, $\rho^{-1}(\mathbb{A}^1) = Y \times \mathbb{A}^1$ and the imbedding is the trivial one

$$X \times \mathbb{A}^1 \hookrightarrow Y \times \mathbb{A}^1.$$

2. Over ∞, the divisor $M_\infty = \rho^{-1}(\infty)$ is the sum of two effective divisors

$$M_\infty = P(C \oplus 1) + \tilde{Y}$$

where \tilde{Y} is the blowup of Y along X. The imbedding of $X = X \times \{\infty\}$ in M_∞ is the zero-section imbedding of X in C followed by the canonical open imbedding of C in $P(C \oplus 1)$. The divisors $P(C \oplus 1)$ and \tilde{Y} intersect in the scheme $P(C)$, which is imbedded as the hyperplane at infinity in $P(C \oplus 1)$, and as the exceptional divisor in \tilde{Y}. In particular, the image of X in M_∞ is disjoint from \tilde{Y}. Letting $M^0 = M_X^0 Y$ be the complement of \tilde{Y} in M, one has a family of imbeddings of X:

$$
\begin{array}{c}
X \times \mathbb{P}^1 \\
\downarrow \text{pr} \\
\mathbb{P}^1
\end{array} \quad \quad \quad \quad \quad \quad \begin{array}{c}
\quad M^0 \\
\downarrow \rho^0 \\
\mathbb{P}^1
\end{array}
$$

which deforms the given imbedding of X in Y to the zero-section imbedding of X in C.

Such an M is found by blowing up $Y \times \mathbb{P}^1$ along $X \times \{\infty\}$.

2.4 Proof of Riemann-Roch for a projective morphism

Theorem 2. Let $f : X \to Y$ be a projective morphism of nonsingular varieties. Then for all $\alpha \in K(X)$,

$$
\text{ch}(f_* \alpha) \cdot \text{td}(T_Y) = f_*(\text{ch}(\alpha) \cdot \text{td}(T_X))
$$

in $A(Y)_Q$.

Let
\[\tau_X : K(X) \to A(X)_Q \]

be defined by
\[\tau_X(\alpha) = \ch(\alpha) \cdot \td(T_X). \]

Then the theorem can be reformulated as ‘\(\tau \) commutes with pushforward under a projective morphism’; i.e. \(f_\ast \circ \tau_X = \tau_Y \circ f_\ast \). It follows that if the theorem is valid for a closed imbedding \(g : X \to Y \times \mathbb{P}^m \) and for the projection \(p : Y \times \mathbb{P}^m \to Y \), then it is valid for the projective morphism \(g \circ p \).

Riemann-Roch for closed imbeddings The name of the game is to reduce the case of \(f : X \to Y \) a closed imbedding to the toy case. Let \(N \) denote the normal bundle to \(X \) in \(Y \). We shall use the deformation to the normal bundle to deform the imbedding \(f \) into the imbedding \(\tilde{f} : X \to P(N \oplus 1) \) discussed at the beginning of this section.

We have a diagram

\[
\begin{array}{c}
 X \xrightarrow{\tilde{f}} P(N \oplus 1) + Y \xrightarrow{\tau} M_\infty \to \{\infty\} \\
 \downarrow i_\infty \quad \downarrow k \quad \downarrow f_\infty \\
 X \times \mathbb{P}^1 \xrightarrow{f} M \xrightarrow{\tau} \mathbb{P}^1 \\
 \downarrow i_0 \quad \downarrow j_0 \\
 X \xrightarrow{f} Y \xrightarrow{\tau} M_0 \to \{0\}
\end{array}
\]

where \(M \) is the blowup of \(Y \times \mathbb{P}^1 \) along \(X \times \{\infty\} \). We may assume \(\alpha = [E] \), with \(E \) a vector bundle on \(X \). Let \(\tilde{E} = p^* E \), where \(p \) is the projection from \(X \times \mathbb{P}^1 \) to \(X \).

Choose a resolution \(G \), of \(F_\ast(\tilde{E}) \) on \(M \):
\[
0 \to G_n \to G_{n-1} \to \ldots \to G_0 \to F_\ast(\tilde{E}) \to 0. \tag{*}
\]

Since \(X \times \mathbb{P}^1 \) and \(M \) are both flat over \(\mathbb{P}^1 \), the restrictions of the sequence (*) to the fibers \(M_0 \) and \(M_\infty \) remains exact. Therefore \(j_0^\ast G \) resolves \(j_0^\ast(F_\ast(\tilde{E})) \) and \(j_\infty^\ast G \) resolves \(j_\infty^\ast(F_\ast(\tilde{E})) \). Since \(j_0^\ast F_\ast \tilde{E} = f_\ast i_0^\ast \tilde{E} = f_\ast(E) \),

(i) \(j_0^\ast G \) resolves \(f_\ast(E) \) on \(Y = M_0 \).

Similarly, \(j_\infty^\ast G \) resolves \(f_\ast(E) \) on \(M_\infty \). But, \(f(X) \) is disjoint from \(\tilde{Y} \). Therefore

(ii) \(k^\ast G \) resolves \(f_\ast(E) \) on \(P(N \oplus 1) \), and

(iii) \(l^\ast G \) is acyclic.

For a complex \(F \), of vector bundles, we write \(\ch(F) \) for the alternating sum \(\sum (-1)^i \ch(F_i) \). We compute the image of \(\ch(F_\ast E) \) in \(A(M)_Q \) (writing \(\ch(F_\ast E) \) in lieu of \(\ch(f_\ast E) \cdot [Y] \)):

\[
\begin{align*}
 j_0 \ast (\ch(F_\ast E)) &= j_0 \ast (\ch(j_0^\ast G),) \quad &\text{by (i)} \\
 &= \ch(G_\ast) \cdot j_0 \ast [Y] \quad &\text{(projection formula for Chern classes)} \\
 &= \ch(G_\ast) \cdot (k_\ast[P(N \oplus 1)] + l_\ast[\tilde{P}])
\end{align*}
\]
Proof of the theorem

(by the basic fact that \([M_0] - [M_\infty] = [\div \rho] = 0\) in \(A(M)_Q\))

\[= k_*(\ch(k^*G_1)) + l_*(\ch(l^*G_2)) \quad \text{(projection formula)} \]

\[= k_*(\ch(\overline{f}_*E)) + 0 \quad \text{by (ii) and (iii)}. \]

The morphism \(\overline{f}\) was precisely the object of study at the beginning of this section. Equation (4) of that section allows us to write

\[(iv) \quad j_0* \ch(f_*E) = k_*((f_*((\td(N)^{-1} \cdot \ch(E)))) \quad \text{in} \quad A(M)_Q. \]

Let \(q: M \to Y\) be the composite of the blowdown \(M \to Y \times \mathbb{P}^1\) followed by the projection. By construction of \(M\), \(q \circ j_0 = \text{id}_Y\), and \(q \circ k \circ \overline{f} = f\). Applying \(q_*\) to (iv), we find

\[\ch(f_*E) = f_*((\td(N)^{-1} \cdot \ch(E))). \]

The theorem now follows from the same manipulations as were used to pass from (4) to (5) in the toy case.

Riemann-Roch for the projection Consider first more generally the projection \(f: Y \times Z \to Y\), with \(Z\) nonsingular. There is a commutative diagram

\[
\begin{array}{ccc}
K(Y) \otimes K(Z) & \xrightarrow{\gamma \otimes \tau} & A(Y)_Q \otimes A(Z)_Q \\
\downarrow \times & & \downarrow \times \\
K(Y \times Z) & \xrightarrow{\gamma \times \tau} & A(Y \times Z)_Q.
\end{array}
\]

Since the Todd class is multiplicative, \(\td(T_{Y \times Z}) = \td(T_Y) \times \td(T_Z)\). If \(Z = \mathbb{P}^m\), the left vertical map is surjective, and \(K(\mathbb{P}^m)\) is generated by \([\mathcal{O}(-i)]\), \(i = 0, 1, \ldots, m\), both statements following from Theorem 1. It suffices therefore to verify the theorem for the projection from \(\mathbb{P}^m\) to a point and \(\alpha = [\mathcal{O}(-i)]\); i.e. to verify the formula

\[\int_{\mathbb{P}^m} \ch(\mathcal{O}(-i)) \cdot \td(T_{\mathbb{P}^m}) = \chi(\mathbb{P}^m, \mathcal{O}(-i)). \]

Here, if \(p: \mathbb{P}^m \to \text{Spec} k\) is the projection, the notation \(\int_{\mathbb{P}^m}\) denotes the extension of the proper pushforward \(p_*: A_0(\mathbb{P}^m) \to A_0(\text{Spec} k)\) by zero to the whole Chow ring \(A(\mathbb{P}^m)\). As both \(\ch\) and \(\chi\) are homomorphisms of rings, in particular it suffices to verify the formula after flipping sign

\[\int_{\mathbb{P}^m} \ch(\mathcal{O}(n)) \cdot \td(T_{\mathbb{P}^m}) = \chi(\mathbb{P}^m, \mathcal{O}(n)), \]

\(n = 0, 1, \ldots, m\).

Now, \(\td(T_{\mathbb{P}^m}) = (x/1 - e^{-x})^{m+1}\), where \(x = c_1(\mathcal{O}_{\mathbb{P}^m}(1))\), and compute

\[\int_{\mathbb{P}^m} e^{nx} x^{m+1} / (1 - e^{-x})^{m+1} = \binom{n+m}{n}. \]
To see this, note that the integrand is a power series in x, for which we want the coefficient of x^m. Dividing the integrand by x^m, this is the same as computing the residue of $e^{nx}/(1 - e^{-x})^{m+1}$. Changing variables $y = 1 - e^{-x}$ this is the same as asking for the residue of $(1 - y)^{-n-1}y^{-m-1}$, or the coefficient of the term of degree m in $(1 - y)^{-n-1} = (1 + y + y^2 + \cdots)^{n+1}$, which is $\binom{n+m}{n}$. On the other hand, the sheaves $\mathcal{O}(n)$ for $n = 0, 1, \ldots, m$ are generated by global sections and have no higher cohomology; hence

$$\chi(P^n, \mathcal{O}(n)) = \dim_k \text{Sym}^n k^{m+1} = \binom{n+m}{m}.$$

Acknowledgements I am grateful to Sasha Beilinson for teaching me the mathematics described in this report. Everything in this document I learned either him or from the sources below.

References
