Minicourse on Quadratic Reciprocity: Supplementary Problems

Dr. Aaron Michael Silberstein
Sài Gòn, August 2013

1 Finite Fields

1. (Rabin’s irreducibility test). Let \(f(x) \in \mathbb{F}_p[x] \). Prove that \(f(x) \) is irreducible if and only if it divides \(x^{p^{(\deg f)}} - x \) but not \(x^{p^{(nk)}} - x \) for any \(k \mid \deg f \).

2. Let \(f \in K[x] \) for a field. Prove that \((f(x), f'(x)) = 1 \) if and only if \(f \) is squarefree in \(L[x] \) for every field \(L \) containing \(K \).

3. Let \(f(x) \in \mathbb{F}[x] \) for some finite field \(\mathbb{F} \). Prove that if \(f \) is squarefree in \(\mathbb{F}[x] \) then \(f \) is squarefree in every extension of \(\mathbb{F} \). Prove that this is not true when I make \(\mathbb{F} = \mathbb{F}(t) \) for a finite field \(F \). We say that finite fields are perfect.

2 Uchida’s Theorem

This theorem appeared in the Osaka Journal of Mathematics, No. 14 (1977), pp. 155-157. Let \(R \) be a Dedekind domain — that is, \(R \) is an integral domain in which every prime ideal is maximal. Let \(K \) be the field of fractions of \(R \), and let \(L \) be a finite extension of \(K \). For each \(\alpha \in L \) we let \(\mu_\alpha(x) \) be its monic minimal polynomial over \(K \); we call \(\alpha \) \(R \)-integral if and only if \(\mu_\alpha(x) \in R[x] \). The integral closure \(M \) of \(R \) in \(L \) is the set of all \(R \)-integral elements of \(L \). We say that \(M = R[\beta] \) if every element of \(M \) can be written as a polynomial with \(R \)-coefficients in \(R \).

Recall that \(M \) is an \(R \)-module of rank \([L : K]\).

1. Let \(m \) be a maximal ideal of \(R[X] \). Prove that if \(m \) contains a monic polynomial, then \(m \) is of the form \(m = (p, f(X)) \) where \(p \) is a prime ideal of \(R \) and \(f(X) \) is an integral polynomial irreducible mod \(p \).

2. Let \(\alpha \in M \). Suppose there is a maximal ideal \(m \) of \(R[X] \) such that \(\mu_\alpha \in m^2 \). Using the above lemma, \(m = (p, f(X)) \) for some \(f \in R[X] \). Show that there exists \(t(X) \in R[X] \) and \(p \in p \) such that \(f(\alpha)t(\alpha)/p \in M \) but \(f(\alpha)t(\alpha)/p \notin R[\alpha] \).
3. Prove the converse: if $\mu_\alpha \notin m^2$ for any maximal ideal $m \subseteq R[x]$, then $R[\alpha] = M$ (hint: prove that every maximal ideal is invertible).

4. Use this to prove that the ring of integers in $\mathbb{Q}[\zeta_n]$ is exactly $\mathbb{Z}[\zeta_n]$.