1. Prove the Peirce decomposition of an associative algebra: let e_1, \ldots, e_n be elements of a (not necessarily commutative) algebra A with identity 1 such that
\begin{enumerate}
\item $e_i e_j = \delta_{ij} e_i$ (where δ_{ij} is the delta function, 1 if $i = j$ and 0 otherwise).
\item $\sum_i e_i = 1$.
\end{enumerate}
We call this a complete, orthonormal collection of idempotents. Prove that, as an abelian group, $A = \bigoplus_{i,j} e_i A e_j$.

2. Let $\{f_1, \ldots, f_n\}$ be a basis of a finite-dimensional vector space V, and let $\{f_1^*, f_2^*, \ldots, f_n^*\}$ be the dual basis. Prove that the elements
\[v \mapsto f_i^*(v) \cdot f_i \in \text{End}(V) \]
form a complete, orthonormal collection of idempotents of $\text{End}(V)$. Use the Peirce decomposition to prove that, after choosing a basis of V, every endomorphism of V can be written as a matrix.

3. Let V be a finite-dimensional vector space V over an algebraically closed field k, $\text{End}(V)$ the ring of k-linear maps from V to V, and $\text{Aut}(V)$ the set of invertible elements of $\text{End}(V)$. $\text{Aut}(V)$ acts on the ring $\text{End}(V)$ by conjugation. We say a function $\varphi : \text{End}(V) \to k$ is algebraic if it is in the algebra generated by functions of the form $A \mapsto \phi(Av)$ (monomials) where $\phi \in V^*$, the dual space of V, and $v \in V$.
\begin{enumerate}
\item We say that an element of $\text{End}(V)$ is regular if it is conjugate to a linear transformation which is diagonal with all eigenspaces of dimension 1. Prove that there is an algebraic function $\varphi : \text{End}(V) \to k$ such that an element A is not regular if and only if it is a zero of φ. Prove that we may take this algebraic function to have integer coefficients with respect to a suitable generating set of monomials (hint: matrix coefficients). Deduce that any algebraic function is determined by its values on the regular elements of $\text{End}(V)$.
\end{enumerate}
(b) Let $\lambda_1, \ldots, \lambda_\ell$ be a finite set of algebraically independent elements of a commutative k-algebra (that is, there are no nontrivial polynomial relations between them with coefficients in k). The m-th **elementary symmetric polynomial** $E_m(\lambda_1, \ldots, \lambda_\ell)$ (for $1 \leq m \leq \ell$) is defined by:

$$
\prod_{i=1}^{\ell} (x - \lambda_i) = \sum_{i=0}^{\ell} E_m(\lambda_1, \ldots, \lambda_\ell)x^{\ell-m}.
$$

Prove that any symmetric polynomial in the λ_i (any polynomial invariant under changing the indices of i) is a polynomial in the elementary symmetric polynomials.

(c) Let B be a basis of V. Prove that a conjugation-invariant function on $\text{End}(V)$ is determined by its values on elements of $\text{End}(V)$ regular and diagonalizable with respect to B. Prove that the restriction homomorphism of the algebra of conjugation-invariant functions to regular elements of $\text{End}(V)$ diagonalizable on B is an isomorphism onto the symmetric functions of the eigenvalues.