Problem Set 1
DUE: To Shanshan’s mailbox, January 18, 1 pm. No extensions.

These problems are intended to be straightforward with not much computation.

1. Solve all of the following equations. [Note that the left sides of these equations are identical.]
 a). $2x + 5y = 5$
 b). $2x + 5y = 0$
 c). $2x + 5y = 1$
 d). $2x + 5y = 2$
 $x + 3y = -1$
 $x + 3y = -2$
 $x + 3y = 0$
 $x + 3y = 1$

2. [Bretscher, Sec.2.1 #13]
 a) Let $A := \begin{pmatrix} 1 & 2 \\ c & 6 \end{pmatrix}$. With your bare hands (not using anything about determinants) show that A is invertible if and only if $c \neq 3$.
 b) Let $M := \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. With your bare hands (not using anything about determinants) show that M is invertible if and only if $ad - bc \neq 0$. [Hint: Treat the cases $a \neq 0$ and $a = 0$ separately.]

3. Let A and B be 2×2 matrices.
 a) If B is invertible and $AB = 0$, show that $A = 0$.
 b) Give an example where $AB = 0$ but $BA \neq 0$.
 c) Find an example of a 2×2 matrix with the property that $A^2 = 0$ but $A \neq 0$.
 d) Find all invertible $n \times n$ matrices A with the property $A^2 = 3A$.

4. [Bretscher, Sec.2.3 #19] Find all the matrices that commute with $A := \begin{pmatrix} 0 & -2 \\ 2 & 0 \end{pmatrix}$.

5. a) Find a real 2×2 matrix A (other than $A = \pm I$) such that $A^2 = I$.
 b) Find a real 2×2 matrix A such that $A^4 = I$ but $A^2 \neq I$.

6. Let L, M, and P be linear maps from the (x_2, x_2) plane to the (y_1, y_2) plane:
 L is rotation by 90 degrees counterclockwise.
 M is reflection across the line $x_1 = x_2$.
 $N\vec{v} := -\vec{v}$ for any vector $\vec{v} \in \mathbb{R}^2$.
 a) Find matrices representing each of the linear maps L, M, and N.
 c) Which pairs of these maps commute?
d) Which of the following identities are correct—and why?

1) \(L^2 = N \)
2) \(N^2 = I \)
3) \(L^4 = I \)
4) \(L^5 = L \)
5) \(M^2 = I \)
6) \(M^3 = M \)
7) \(MNM = N \)
8) \(NMN = L \)