Math 312, Midterm 2

Aaron M. Silberstein

March 22, 2013

1. (5 points) 51.

2. (5 points) 51 (the dual space has the same dimension as the original vector space; this was also on the first midterm).

3. (10 points) 1; a polynomial with zero derivative is constant.

4. (10 points) 50, by rank-nullity.

5. (Many answers suffice for these problems).

 (a) (10 points) No; 0 \not\in A.

 (b) (10 points) No; 0 \not\in B.

 (c) (10 points) Yes; \langle \cdot, \cdot \rangle is positive-definite.

 (d) (10 points) Yes; D is the kernel of the linear map \(f \mapsto \langle f, x^3 + x^2 + 1 \rangle \).

 (e) (10 points) No; 0 \not\in E.

 (f) (10 points) No; 0 \not\in F.

 (g) (10 points) No; 0 \not\in G.

6. (a) (10 points) 49; \(H = \ker ev_0 \cap \ker ev_1 \), where \(ev_x(f) := f(x) \). There is a polynomial \(f \) so that \(ev_0(f) \neq 0 \). By rank-nullity, \(\ker ev_0 \) has dimension 50. As \(ev_1 : \ker ev_0 \to \mathbb{R} \) has nontrivial image (there is a polynomial \(f \) for which \(ev_0(f) = 0 \) and \(ev_1(f) \neq 0 \): for instance, \(x \)), rank nullity again shows that \(\ker ev_1 \) restricted to \(\ker ev_0 \) has dimension 49.

(b) (15 points)

\[
\int_0^1 Df(x)g(x) \, dx = f(x)g(x) \bigg|_0^1 - \int_0^1 f(x)Dg(x) \, dx.
\]

But

\[
f(x)g(x) \bigg|_0^1 = 0
\]
\langle Df(x), g(x) \rangle = \langle f(x), -Dg(x) \rangle.