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Abstract. We survey and sketch some of the recent progress made
regarding Yau’s Conjecture and the existence of minimal hypersurfaces.

1. Introduction

Let (Mn+1, g) be an (n + 1)-dimensional closed Riemannian manifold.
We assume, for convenience, that (M, g) is isometrically embedded in some
Euclidean space RJ .

A closed embedded hypersurface Σ ⊂M is called a minimal hypersurface
if it is a critical point for the area functional, meaning that for every ambient
vector field X in M we have

d

dt
vol(φt(Σ))t=0 = 0,

where {φt}t∈R is a one-parameter family of diffemorphisms generated by the
vector field X. From the first variation formula we know that

d

dt
vol(φt(Σ))t=0 = −

∫
Σ
〈H,X〉dΣ,

where H is the mean curvature vector of Σ, and so minimal hypersurfaces
are those which have H = 0.

The simplest example of a minimal surface in R3 is given by plane and
in the unit 3-sphere S3 ⊂ R4 simple examples can be given by equators
(intersection of a hyperplane in R4 with S3). Many more examples exist in
R3 (like the catenoid, helicoid, or Schwarz P surface) and Lawson [16] showed
in the 70’s that S3 has closed orientable minimal surfaces of arbitrary genus.

One of the most fundamental questions question one can ask regarding
closed minimal hypersurfaces is whether they exist and this was answered
in the early 80’s through the combined work of Almgren-Pitts [3, 27] and
Schoen-Simon.

Theorem 1.1. Every closed Riemannian manifold (Mn+1, g) has a closed
minimal hypersurface that is smooth and embedded outside a set of Hausdorff
dimension less than or equal to n− 7.

Around the same time Yau [35] made the following conjecture:
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Yau’s Conjecture 1.2. Every closed Riemannian three-manifold contains
infinitely many smooth, closed minimal surfaces.

The purpose of these notes is to present some of the recent progress made
regarding Yau’s Conjecture and the existence of minimal hypersurface. For
the sake of brevity, we will not do an exhaustive account of the historical
developments (which means we will not mention the long list of beautiful
results regarding existence of geodesics), nor will we cover all the recent
developments in neighboring areas (such as free boundary minimal surfaces
or the Allen-Cahn regularization). We focus mainly in providing the back-
ground needed in order to prove some of the recent developments.

Around the time the conjecture was made, the combined work of Almgren-
Pitts [3, 27] Schoen-Simon [28] showed the following result:

Theorem 1.3. Every closed Riemannian manifold (Mn+1, g) has a closed
minimal hypersurface that is smooth and embedded outside a set of Hausdorff
dimension less than or equal to n− 7.

Not much progress was done regarding Yau’s conjecture until we showed
[20] (see also [20, Remark 1.6]) the following result:

Theorem 1.4. Every closed Riemannian manifold (Mn+1, g) with positive
Ricci curvature has infinitely many distinct minimal hypersurfaces that are
smooth and embedded outside a set of Hausdorff dimension less than or equal
to n− 7.

Recently, jointly with Irie [14], we showed a denseness result that implies
Yau’s conjecture in the generic case.

Denseness Theorem 1.5. Let Mn+1 be a closed manifold of dimension
(n+ 1), with 3 ≤ (n+ 1) ≤ 7.

For a C∞-generic Riemannian metric g on M , the union of all closed,
smooth, embedded minimal hypersurfaces is dense.

Later, jointly with Song [24], we showed the existence of a sequence of
closed embedded minimal hypersurfaces that becomes equidistributed.

Equidistribution Theorem 1.6. Let Mn+1 be a closed manifold of di-
mension (n+ 1), with 3 ≤ (n+ 1) ≤ 7.

For a C∞-generic Riemannian metric g on M , there exists a sequence
{Σj}j∈N of closed, smooth, embedded, connected minimal hypersurfaces that
is equidistributed in M : for any f ∈ C0(M) we have

lim
q→∞

1∑q
j=1 volg(Σj)

q∑
j=1

∫
Σj

f dΣj =
1

volgM

∫
M
fdV.

Actually, the equidistribution proven in [24] is slightly more general be-
cause the test functions are allowed to be symmetric 2-tensors.

Shortly after these results were proven, two serious contributions to the
field were made: Firstly, Song [31] settled Yau’s conjecture by showing the
following result.
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Theorem 1.7. Every closed Riemannian manifold (Mn+1, g) with 3 ≤
(n + 1) ≤ 7 has infinitely many distinct closed, smooth, embedded minimal
hypersurfaces.

Secondly, X. Zhou [38] used a novel regularization of the area functional
(developed by him and Zhu in [39]) to prove the Multiplicity One Conjec-
ture proposed by the authors in [23] (see also [22]). Before we describe a
consequence of his work we need to introduce some more concepts.

Consider Σ a closed minimal hypersurface of M and let NΣ, Γ(NΣ)
denote, respectively, the normal bundle of Σ and the space of sections of
NΣ. The second variation of Σ is a quadratic form on Γ(NΣ) defined by

δ2Σ(X,X) :=
d2

dt2
vol(φt(Σ))|t=0

=

∫
Σ
|∇⊥X|2 − Ric(X,X)− |A|2|X|2dΣ,

where X ∈ Γ(NΣ), {φt}t∈R denotes the one-parameter family of diffemor-
phisms generated by X (after being extended to vector field on M), ∇⊥ is
the natural connection on NΣ, and |A|2 is the norm of the second funda-
mental form. Elements in the kernel of δ2Σ are called Jacobi vector fields.

White [33] (see also [34]) proved a Bumpy Metrics Theorem which says
that almost every metric (in the Baire category sense) is bumpy, i.e., every
minimal hypersurface has no non-trivial Jacobi vector fields.

The Morse index of Σ is the largest possible dimension of a vector subspace
P ⊂ Γ(NΣ) so that δ2Σ is a negative quadratic form when restricted to
P . Intuitively speaking, the Morse index of Σ (denoted by index(Σ)) is
the number of linearly independent deformations that strictly decrease the
volume of Σ. For instance, on the unit 3-sphere S3 ⊂ R4, the Morse index of
an equator (intersection of a hyperplane in R4 with S3) is one because normal
deformations decrease the area and volume preserving deformations never
decrease the area. One can find an ellipsoid in R4 so that the intersection of
the ellipsoid with each hyperplane {xi = 0} is a minimal sphere with Morse
index i, i = 1, . . . , 4. On RP3 with the round metric, the Morse index of a
equatorial RP2 is zero because it is area-minimizing in its homotopy class.

Combining Zhou’s solution to the Multiplicity One Conjecture with the
Morse index bounds proven by the authors in [23] and with the Weyl Law
for the Volume Spectrum proven by Liokumovich and the authors in [17] we
have

Theorem 1.8. Assume (Mn+1, g) is a closed Riemannian manifold, 3 ≤
(n+ 1) ≤ 7, with a bumpy metric.

For each k ∈ N there is an embedded, two-sided, multiplicity one, minimal
hypersurface Σk with

vol(Σk) ' a(n)vol(M)
n
n+1k

1
n+1 and index(Σk) = k,

where a(n) is a universal constant.
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Organization: In Section 2 we introduce the basic concepts and describe
the main results of Min-max Theory for minimal hypersurfaces. In par-
ticular, in Section 2.3 we explain how Theorem 1.1 follows from Min-max
Theory. Section 3 is dedicated to the concept of volume spectrum and to
the proof of the Weyl Law for the volume spectrum. In Section 3.3 we ex-
plain how Theorem 3.10 follows from the solution to the Multiplicity One
Conjecture, lower bounds for Morse index, and Weyl Law for the Volume
Spectrum. In Section 4.1 we prove the Denseness Theorem 1.5 and the proof
of the Equidistribution Theorem 1.6 is sketched in Section 4.2.

2. Min-max Theory

2.1. Basic notions in Geometric Measure Theory. The following defi-
nitions are taken from [30] and they correspond to extensions of the concept
of a submanifold. In a nutshell, we will be working mostly with the space
of mod 2 codimension one cycles Zk(M ;Z2) which can thought of as the
space of all closed hypersurfaces in M . The reader comfortable with these
concepts can skip this section.

A set S ⊂ RJ is countable k-rectifiable if S ⊂ S0∪j∈NSj , whereHk(S0) = 0
and Sj , j ∈ N, is an embedded k-dimensional C1-submanifold. We assume

in addition that the set S ⊂ RJ is Hk-measurable and Hk(S∩K) < +∞ for
every compact set K ⊂ RJ . In this case, k-rectifiable sets are characterized
by the property that they have a well defined k-dimensional tangent plane
TxS for Hk-a.e. x ∈ S (see [30, Theorem 11.6]). Let S∗ denote the subset
of S for which the k-dimensional tangent plane is well defined.

The Grassmanian of k-planes in RJ is denoted by Gk(RJ). There is a
natural projection π from Gk(RJ) onto RJ . A rectifiable k-varifold V is a
Radon measure on Gk(RJ) so that for every measurable set A ⊂ Gk(RJ)

V (A) =

∫
S∩π(TS∩A)

θ(x)dHk

where S is a countable k-rectifiable set, θ is a positive locally Hk-integrable
function on S, and TS = {(x, TxS) : x ∈ S∗}. There is a natural Radon
measure ||V || on RJ defined as ||V ||(A) = V (π−1(A)) for every measurable
set A ⊂ RJ . We say that ||V ||(RJ) is the mass of V and is the analogue of
k-dimensional volume

We denote by Vn(M) the closure, in the weak topology, of the space of
rectifiable k-varifolds in RJ with support contained inM . When the function
θ is N-valued, V is called an integer k-varifold.

Denote by Dk(RJ) the set of smooth k-forms of RJ with compact support.

Given an element ω ∈ Dk(RJ) we define |ω| = supx∈RJ{〈ω(x), ω(x)〉1/2}.
A k-current T is a continuous linear functional on Dk(RJ). Its boundary

∂T is a k − 1-current that is defined as ∂T (φ) = T (dφ), φ ∈ Dk−1(RJ).
Naturally, ∂2T = 0. We will assume that every k-current has compact
support. The restriction of a current T to an open set U is denoted by TxU .
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Following [30, Section 27], we say that T is an integer multiplicity k-
current (or simply integer multiplicity current) if it can be expressed as

T (φ) =

∫
S
〈φ(x), τ(x)〉θ(x)dHk, φ ∈ Dk(RJ),

where S is a Hk-measurable countable k-rectifiable set, θ is a Hk-integrable
N-valued function, and τ is a k-form so that for all x ∈ S∗, τ(x) is a volume
form for TxS. In particular, τ(x) chooses an orientation for TxS. The mass
of an integer multiplicity k-current T is defined as

M(T ) = sup{T (φ) : φ ∈ Dk(RL), |φ| ≤ 1}

The space of integral currents with finite mass corresponds to the space of
rectifiable currents defined in [8, 4.1.24] (see [8, Theorem 4.1.28]).

The space of k-currents T such that both T and ∂T are integer multiplicity
currents with finite mass and support contained in M is denoted by Ik(M).
This space is called the space of integral k-currents. The space of k-cycles is
defined as those elements T ∈ Ik(M) so that T = ∂Q for some Q ∈ Ik+1(M)
and is denoted at Zk(M). Note that in our notation Zk(M) stands for the
connected component containing zero of the set of integral currents with no
boundary (thus differing slightly from the notation in [30] or [8]).

Given T ∈ Ik(M) there is a natural varifold |T | associated to it and
we denote its Radon measure by ||T ||. We have ||T ||(M) = M(T ). The
following varifolds appear naturally in the context of min-max theory.

Definition 2.1. We say an integer n-varifold V is a smooth embedded mini-
mal cycle if there is a disjoint collection {Σ1, . . . ,ΣN} of closed, smooth, em-
bedded, minimal hypersurfaces in M and a set of integers {m1, . . . ,mN} ⊂
N, such that

V = m1|Σ1|+ · · ·+mN |ΣN |.

The spaces above come with several relevant metrics. Given T1, T2 ∈
Ik(M), the flat metric is defined by

F(T1, T2) = inf{M(Q)+M(R) : T1−T2 = Q+∂R, P ∈ Ik(M), Q ∈ Ik+1(M)}

and induces the so called flat topology on Ik(M). We also use F(T ) = F(T, 0)
and one has that

F(T ) ≤M(T ) for all T ∈ Ik(M).

The F-metric on Vk(M) is defined in the book of Pitts [27, page 66] as:

F(V,W ) = sup{V (f)−W (f) : f ∈ Cc(Gk(RL)),

|f | ≤ 1,Lip(f) ≤ 1},

for V,W ∈ Vk(M) and induces the varifold weak topology on

Vn(M) ∩ {V : ||V ||(M) ≤ c}

for any c > 0.
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Finally, the F-metric on Ik(M) is defined by

F(S, T ) = F(S − T ) + F(|S|, |T |).
We have F(|S|, |T |) ≤ M(S − T ) and hence F(S, T ) ≤ 2M(S − T ) for any
S, T ∈ Il(M).

We assume that Ik(M) and Zk(M) have the topology induced by the flat
metric. Informally, T, S ∈ Zk(M) being very close to each other in the flat
metric means that T − S is the boundary of Q ∈ Ik+1(M) with very small
mass. When endowed with the topology of the F-metric these spaces will
be denoted by Ik(M ; F) and Zn(M ; F), respectively.

The Federer-Fleming Compactness Theorem [8, 4.2.17] states that the set

{T ∈ Zk(M) : M(T ) ≤ C}, C > 0

is compact in the flat topology.
An important fact in the theory is that, while the mass is continuous in the

varifold topology, it is only lower semicontinuous in the flat topology. The
loss of mass in the limit is illustrated with the following standard example:
let

Qi = {(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ i−1}.
Then ∂Qi tends to zero in the flat topology, but M(∂Qi) tends to 2. In this
example |∂Qi| tends to 2([0, 1]× {0}) in the varifold topology.

For our purposes, we are interested in the space of mod 2 integral k-
currents or mod 2 k-cycles that we denote by Ik(M ;Z2) and Zk(M ;Z2),
respectively. This space is defined via an equivalence relation, where we say
that T ≡ S if T − S = 2Q, T, S,Q being in Ik(M), and they were first
introduced by Ziemer [36]. All the concepts we mentioned for Ik(M) and
Zk(M) can be extended to Ik(M ;Z2) and Zk(M ;Z2) as well (see [36] or [9]).
The Constancy Theorem [30, Theorem 26.27] says that if T ∈ In+1(M ;Z2)
has ∂T = 0, then either T = M or T = 0.

The Isoperimetric Inequality of Federer-Fleming (adapted to mod 2 inte-
gral currents in [36, Corollary 4.7]) gives constants aM , bM so that for every
T ∈ Zn(M ;Z2) with M(T ) ≤ aM there is Ω in In+1(M ;Z2) such that

(2.1) ∂Ω = T and M(Ω) ≤ bMM(T )
n+1
n .

When combined with the Constancy Theorem we obtain the following lemma:

Lemma 2.2. There is ε so that for every T ∈ Zn(M ;Z2) with F(T ) < ε
there is a unique S ∈ In+1(M ;Z2) with F(T ) = M(S).

Proof. Choose Q and R so that T = Q+∂R and M(Q)+M(R) ≤ ε. Assum-
ing ε ≤ min{aM , b−nM , vol(M)/3} we have from the Isoperimetric Inequality
the existence of Ω with ∂Ω = Q and M(Ω) ≤ M(Q). As a result, setting
S = Ω +R, we have T = ∂S and

M(S) ≤M(Ω) + M(R) ≤M(Q) + M(R) ≤ vol(M)/3.

From the Constancy Theorem we have that if S′ ∈ In+1(M ;Z2) is such that
∂S′ = T and M(S′) ≤ vol(M)/3 then S = S′. This implies the lemma. �
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2.2. Space of Cycles. The basic principle of min-max theory is to use the
homotopy classes of Zn(M ;Z2) to produce minimal hypersurfaces and so it
is important that we understand the topology of Zn(M ;Z2). There is a map
from RP∞ to Zn(M ;Z2) that we now describe.

Let f : M → R be a Morse function, with f(M) = [0, 1], and consider the

map Φ̂ : RP∞ → Zn(M ;Z2) given by

Φ̂([a0 : a1 : · · · : ak : 0 : · · · ]) = ∂{x ∈M : a0 + a1f(x) + · · ·+ akf(x)k ≤ 0}.
The map is well defined because we are considering mod 2 cycles. In [20]

(Claim 5.6), we proved the map Φ̂ is continuous in the flat topology.

Theorem 2.3. The map Φ̂ is a weak homotopy equivalence.

Almgren computed in [2] the homotopy groups of Zk(M ;Z2) for all 0 ≤
k ≤ n+ 1 but the proof is more complicated than the argument we present
(see [23, Section 5]).

Proof. Consider the continuous map

∂ : In+1(M ;Z2)→ Zn(M ;Z2).

From the Constancy Theorem we know that ∂U = ∂V implies that U = V
or U = M − V , which means that the map is 2 to 1.
Claim 1: In+1(M ;Z2) is contractible.

We define H : [0, 1]× In+1(M ;Z2)→ In+1(M ;Z2) by

H(t, U) = Ux{f ≤ t}.
The map H is continuous, H(1, U) = U and H(0, U) = 0 for every U ∈
In+1(M ;Z2). This proves the claim.

From the definition of Zn(M ;Z2) we have that the map ∂ is surjective
and so it follows from the previous claim that Zn(M ;Z2) is path-connected.

Claim 2: In+1(M ;Z2) is a covering space.

We need to find an open cover {BT }T∈Zn(M ;Z2) of Zn(M ;Z2) such that

each ∂−1(BT ) is a disjoint union of open sets in In+1(M ;Z2), each of which
is mapped by ∂ homeomorphically onto BT .

Choose ε ≤ vol(M)/3 given by Lemma 2.2 and for every T ∈ Zn(M ;Z2)
consider the open set

BT = {R ∈ Zn(M ;Z2) : F(T,R) < ε}.
The family {BT }T∈Zn(M ;Z2) forms an open cover. With ∂−1T = {U1, U2}
set

Ci = {V ∈ In+1(M ;Z2) : F(Ui, V ) < ε}, i = 1, 2.

Note that F(U1, U2) = M(U1−U2) = vol(M) and so C1 and C2 are disjoint.
The reader can check that C1∪C2 ⊂ ∂−1(BT ). To check the reverse inclusion
suppose that R ∈ BT . From Lemma 2.2 we have the existence of W ∈
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In+1(M ;Z2) so that ∂W = R− T and M(W ) < ε. Thus Vi = W +Ui ∈ Ci,
∂Vi = R, i = 1, 2, and so C1 ∪C2 = ∂−1(BT ). It also follows that each Ci is
mapped homeomorphically to BT for i = 1, 2, which proves the claim.

With Sk being a sphere of dimension k, consider a continuous map

Ψ : (Sk, ∗)→ (Zn(M ;Z2), 0), k ≥ 2.

From the lifting criterion [13, Proposition 1.33] we have that the map Ψ
admits a lift

Ψ̃ : (Sk, ∗)→ (In+1(M ;Z2), 0)

because Sk is simply connected. From the fact that In+1(M ;Z2) is con-
tractible we obtain that Φ can be homotoped to the zero map. This proves

πk(Zn(M ;Z2), 0) = 0

for every k ≥ 2. We now check that

π1(Zn(M ;Z2), 0) = Z2.

Given a loop γ in Zn+1(M ;Z2) with γ(0) = γ(1) = 0, the unique lifting
property [13, Proposition 1.34] says there is a unique lift γ̃ to In+1(M ;Z2)
with γ̃(0) = 0. Thus, from Claim 2 one sees that the map

P : π1(Zn(M ;Z2), 0)→ {0,M}
which sends the homotopy class of γ to γ̃(1) is well defined. The map is
surjective because In+1(M ;Z2) is path-connected and the reader can check
that the map is injective.

Finally, we check that Φ̂ induces isomorphisms in every homotopy group.
The curve

t 7→ [cos(πt) : sin(πt) : 0 : · · · ], 0 ≤ t ≤ 1,

generates π1(RP∞, 1) and since the loop

γ(t) = Φ̂([cos(πt) : sin(πt) : 0 : · · · ]) = ∂{f ≤ − cot(πt)}, 0 ≤ t ≤ 1

is homotopically non-trivial (because P (γ) = M), we deduce that the map

Φ̂∗ : π1(RP∞, 1)→ π1(Zn(M ;Z2), 0)

is an isomorphism. The higher homotopy groups of both spaces are trivial,
thus Φ̂ is a weak homotopy equivalence. �

Theorem 2.3 and Hurewicz Theorem imply that

H1(Zn(M ;Z2);Z2) = Z2 = {0, λ̄}.

We call λ the fundamental cohomology class. It has geometric meaning,
namely, if σ : S1 → Zn(M ;Z2) is a loop then λ([σ]) = 1 if and only if σ is
homotopically non-trivial ([σ] denotes the homology class induced by σ).

LetX denote a finite dimensional cubical subcomplex of somem-dimensional
cube Im. Every such cubical complex is homeomorphic to a finite simplicial
complex and vice-versa (see Chapter 4 of [5]).
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Definition 2.4. Let k ∈ N. A continuous map Φ : X → Zn(M ; F;Z2) is
called a k-sweepout if λ = Φ∗(λ̄) ∈ H1(X,Z2) satisfies

λk = λ ^ · · ·^ λ 6= 0 ∈ Hk(X,Z2),

where ^ denotes the cup product.
The set of all k-sweepouts Φ is denoted by Pk.

Remark. In the definition above, the parameter space X = dmn(Φ) of Φ ∈
Pk is allowed to depend on Φ. Furthermore, every F-continuous map Φ′

that is homotopic to Φ in the flat topology is also a k-sweepout.

We now argue that for all k ∈ N the set Pk is nonempty. The map
Φk : RPk → Zn(M ;Z2) given by

Φk([a0 : a1 : · · · : ak]) 7→ Φ̂([a0 : a1 : · · · : ak : 0 : · · · ])

is such that λ = Φ∗k(λ̄) 6= 0 in H1(RPk;Z2) and so λk 6= 0 in Hk(RPk;Z2).
Some work would be required to show that Φk is continuous in the F-metric
and so instead we use Proposition 3.1 of [23] to find Ψk continuous in the
F-topology and homotopic to Φk in the flat topology. Hence Ψk ∈ Pk.

2.3. Min-max Theorems. Let

Φ : X → Zn(M ; F;Z2)

be a continuous map. The homotopy class of Φ is the class Π of all continuous
maps Φ′ : X → Zn(M ; F;Z2) such that Φ and Φ′ are homotopic to each
other in the flat topology.

If Φ is a k-sweepout then the corresponding homotopy class Π is non-
trivial. Notice that our definition of homotopy class is slightly unusual, as
we allow homotopies that are continuous in a weaker topology.

Definition 2.5. The width of Π is defined by:

L(Π) = inf
Φ∈Π

sup{M(Φ(x)) : x ∈ X}.

It is implicitly assumed that every homotopy class Π being considered has
L(Π) <∞.

Lemma 2.6. If Π is a non-trivial homotopy class then L(Π) > 0.

Proof. Consider ε > 0 given by Lemma 2.2. If L(Π) = 0, we can find a map

Φ ∈ Π so that Φ is a k-sweepout and M(Φ(x)) < b−1
M ε

n
n+1 for all x ∈ X =

dmn(Φ), where bM is the constant given by Federer-Fleming Isoperimetric
Inequality. As a result we deduce from (2.1) that F(Φ(x)) < ε for all x ∈ X.
From Lemma 2.2 we have the existence of a unique Ω(x) ∈ In+1(M ;Z2) so
that Φ(x) = ∂Ω(x) and M(Ω(x)) < ε for all x ∈ X, which means that

Φ admits a lift Φ̃ to In+1(M ;Z2) that is continuous in flat topology. But
In+1(M ;Z2) is contractible and so the map Φ is homotopic to a constant
map, which contradicts Π being non-trivial.

�
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The following version of the Min-max Theorem, that follows from combin-
ing the existence theory of Almgren-Pitts [3, 27] with the regularity theory
of Schoen-Simon [28], can be found in Section 3 of [22].

Min-max Theorem 2.7. Suppose L(Π) > 0.There exists an integer n-
varifold V with ||V ||(M) = L(Π) and support a closed minimal hypersurface
that is smooth and embedded outside a set of Hausdorff dimension less than
or equal to n− 7.

This theorem has the following celebrated consequence (after combining
with Lemma 2.6) which corresponds to Theorem 1.1.

Corollary 2.8. Every closed Riemannian manifold (Mn+1, g) has a closed
minimal hypersurface that is smooth and embedded outside a set of Hausdorff
dimension less than or equal to n− 7.

Consider a smooth embedded minimal cycle V so that V = m1|Σ1| +
· · ·+mN |ΣN | for a set {Σ1, . . . ,ΣN} of closed, smooth, embedded, minimal
hypersurfaces in M and a set {m1, . . . ,mN} ⊂ N. The Morse index of V is
the number

index(V ) =

N∑
i=1

index(Σi).

If m1 = · · · = mN = 1, we say V has multiplicity one.
From the definition of width, one sees that we maximize over a cubical

complex X of dimension k and then minimize over an infinite dimensional
space. Thus it is natural to expect that the Morse index of the smooth
embedded minimal cycle should be bounded from above by k. This question
was initially left unanswered in the original work of Almgren and Pitts. In
[22] the authors showed that

Theorem 2.9. Assume that 3 ≤ (n+ 1) ≤ 7. There exists a smooth embed-
ded minimal cycle V so that

||V ||(M) = L(Π) and index(V ) ≤ k.
We expect that a similar result should hold for dimensions higher than

seven.
Lower bounds on the Morse index of smooth embedded minimal hyper-

surfaces is a subtler issue for the following reason: We can simply add some
artificial parameters to the parameter space X so that we increase its di-
mension but the homotopy class of Π does not change. Thus, Morse index
lower bounds have to be given in terms of the some topological property of
Π rather than the dimension of the cubical complex X.

It turns out that obtaining optimal lower bounds for the Morse index is
related with Multiplicity Once Conjecture made by authors in [23] (see also
[22]) which states that

Multiplicity One Conjecture 2.10. For generic metrics on Mn+1, 3 ≤
(n + 1) ≤ 7, any component of a closed, minimal hypersurface obtained by
min-max methods is two-sided and has multiplicity one.
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After this lectures were completed, Zhou [38, Theorem A] made a serious
contribution to the min-max theory and, using a novel regularization of the
area functional (developed by him and Zhu in [39]) proved the Multiplicity
One Conjecture. Previously, in another tour-de-force, Chodosh-Mantoulidis
[6] had proved this conjecture in the 3-dimensional case using the Allen-Cahn
functional.

Multiplicity One Theorem 2.11 (Zhou). Let (Mn+1, g) be a closed Rie-
mannian manifold, 3 ≤ (n+ 1) ≤ 7, with a bumpy metric.

If Π is a non-trivial homotopy class there is an embedded, two-sided, mul-
tiplicity one, minimal hypersurface Σ with

L(Π) = vol(Σ).

The result still holds if g is assumed simply to have positive Ricci curvature.

Remark. Theorem A in [38] is stated assuming that (i) the homotopy class
Π realizes the volume spectrum ωk(M) (to be defined in Section 3.1) and
that (ii) the maps in Π are defined on a cubical complex of dimension k. An
inspection of the proof shows that (i) is not necessary and that (ii) can be
dropped if one is not concerned about having sharp upper bounds on the
Morse index of Σ that are also proven in [38, Theorem A].

The extension of the result to metrics of positive Ricci curvature is stated
in [38, Remark 0.1] and the idea is to consider a sequence of bumpy metrics
{gi}i∈N converging to g with Ric(g) > 0, apply Theorem A in [38] to obtain
a sequence of embedded, two-sided, multiplicity one, minimal hypersurfaces
Σi (with respect to metric gi) and then use Sharp Compactness Theorem
[29] to deduce the result for the metric g.

In [23], the authors showed optimal Morse index lower bounds assuming
the Multiplicity One Conjecture. After Zhou’s work we were able to remove
that requirement (see [23, Addendum]) and showed

Theorem 2.12. Let (Mn+1, g) be a closed Riemannian manifold, 3 ≤ (n+
1) ≤ 7 with a bumpy metric.

Let Π be the homotopy class of a k-sweepout Φ defined on a k-dimensional
cubical complex. There is an embedded, two-sided, multiplicity one, minimal
hypersurface Σ with

L(Π) = vol(Σ) and index(Σ) = k.

Remark. In the Addendum of [23] the result is stated assuming that Π
realizes the volume spectrum but that condition is not necessary.

3. Volume Spectrum and Weyl Law

Gromov [10] introduced the notion of volume spectrum, which will be-
come extremely useful when paired with the min-max theory for minimal
hypersurfaces.
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3.1. Volume spectrum. Recall the definition of k-sweepouts Pk given in
Definition 2.4.

Definition 3.1. The k-width of (M, g) is defined to be

ωk(M, g) := inf
Φ∈Pk

sup
x∈dmn(Φ)

M(Φ(x)).

The non-increasing sequence {ωk(M, g)}k∈N is called the volume spectrum
of (M, g).

When there is no risk of ambiguity, we denote the k-width simply by
ωk(M).

Remark. Because of Proposition 3.1 in [23], the above definition of k-width
coincides with the definition of k-width of [20] (Section 4.3) (or in [14, 17, 24])
where continuity in the F-metric in the definition of a k-sweepout is replaced
by continuity in the flat topology together with a no concentration of mass
property.

The following analogy with the Laplacian spectrum is instructive. The
Rayleigh quotient is defined as

E : W 1,2(M) \ {0} → [0,∞), E(f) =

∫
M |∇f |

2dVg∫
M f2dVg

and the kth-eigenvalue λk(M) of (M, g) is defined via the following min-max
characterization:

λk(M) = inf
(k+1)−planeP

max
f∈P−{0}

E(f).

The Rayleigh quotient is scale invariant, meaning that E(cf) = E(f) for
all c 6= 0 and thus, considering the projectivization PW 1,2(M), where an
element [f ] ∈ PW 1,2(M), f 6= 0, represents the line {cf : c ∈ R} ⊂W 1,2(M),
we see that the Rayleigh quotient descends to a map

E : PW 1,2(M)→ [0,∞), E([f ]) =

∫
M |∇f |

2dVg∫
M f2dVg

.

Note that PW 1,2(M) is homeomorphic to RP∞. In the same vein, a
(k+ 1)-plane in W 1,2(M) projects to a k-dimensional projective subspace of
PW 1,2(M) that we denote simply by Pk and thus λk(M) is given by

λk(M) = inf
Pk⊂PW 1,2(M)

max
[f ]∈Pk

E([f ]).

This identity has a striking similarity with Definition 3.1 and so, in that
sense, {ωk(M)}k∈N can be regarded as a non-linear spectrum.

It is worthwhile to point out that, unlike the spectrum for the Lapla-
cian, the volume spectrum has not been computed on any specific exam-
ple. Considering the unit 3-sphere S3 with the standard metric, it is fairly
straightforward to show that

ω1(S3) = ω2(S3) = ω3(S3) = ω4(S3) = max
θ∈RP4

M(Φ4(θ)) = 4π
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but to show that ω5(S3) = ω6(S3) = ω7(S3) = 2π2, Nurser [26] had to
use some of the work done by the authors in the solution to the Willmore
conjecture [18], which should illustrate the subtleties of the problem. All
other widths for S3 are unknown.

The next result was essentially proven by Gromov [10, Section 4.2.B] and
Guth [12] . A proof can also be found in Theorem 5.1 and Theorem 8.1 in
[20].

Theorem 3.2. There is a constant C = C(M, g) > 0 so that for all k ∈ N

C−1k
1

n+1 ≤ ωk(M) ≤ Ck
1

n+1 .

We postpone the proof of the lower bound to Corollary 3.7. Regarding
the upper bound, we choose to present the different proof given in Theorem
3 of [4] which relies on a connection with the nodal sets of eigenfunctions
that was made by authors in [20, Section 9].

Proof of upper bound. Let ḡ be an analytic metric on M and so we have
g ≤ c1ḡ for some constant c1. With φ0, . . . , φp denoting the first (p + 1)-
eigenfunctions for the Laplace operator of (M, ḡ), where φ0 is the constant
function, we can consider the map

Φk : RPp → Zn(M ;Z2),

Φk([a0, . . . , ak]) = ∂{x ∈M : a0φ0(x) + . . .+ akφk(x) < 0}.

The map is well defined because we are considering mod 2 cycles and it
was shown in [4] that the map is continuous in the flat topology and has no
concentration of mass. This last part is relevant because we can then invoke
Proposition 3.1 of [23] to find a map Ψk ∈ Pk so that

sup
y∈RPk

M(Ψk(y)) ≤ 2 sup
y∈RPk

M(Φk(y)).

Building on the volume estimates of nodal sets for analytic metrics of Don-
nely and Fefferman [7], it was shown in [15] that for some constant c2,

volḡ({x ∈M : a0φ0(x) + . . .+ akφk(x) = 0} ≤ c2k
1

n+1

and thus

volg({x ∈M : a0φ0(x) + . . .+ akφk(x) = 0} ≤ c
n
2
1 c2k

1
n+1

for all k ∈ N and [a0, . . . , ak] ∈ RPk so that a0φ0 + . . . akφk 6= 0. Therefore

sup
y∈RPk

M(Ψk(y)) ≤ 2c
n
2
1 c2k

1
n+1 for all k ∈ N.

�

Consider the C0-topology on the space of all metrics. The next proposi-

tion says that the map g 7→ k
− 1

(n+1)ωk(M, g) is Lipschitz on sets of uniformly
equivalent metrics, with a Lipschitz constant that does not depend on k .
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Proposition 3.3. Let g̃ be a Riemannian metric on M , and let c be a
positive constant. Then there exists K = K(g̃, c) > 0 such that

|k−
1

(n+1)ωk(M, g)− k−
1

(n+1)ωk(M, g′)| ≤ K · |g − g′|g̃
for any Riemannian metrics c−1g̃ ≤ g, g′ ≤ cg̃ and any k ∈ N.

Proof. Given g, g′ as above, we have

sup
v 6=0

g′(v, v)

g(v, v)
≤ 1 + sup

v 6=0

|g(v, v)− g′(v, v)|
g(v, v)

≤ 1 + c|g − g′|g̃.

Assume g 6= g′ and choose a k-sweepout Φ : X → Zn(M ; ; F;Z2) with

sup{Mg(Φ(x)) : x ∈ X} ≤ ωk(M, g) + |g − g′|g̃,
where Mg is the mass with respect to g. Then, considering the constant
C = C(M, g̃) given by Theorem 3.2, we have

ωk(M, g′)− ωk(M, g) ≤ sup{Mg′(Φ(x)) : x ∈ X} − ωk(M, g)

≤

(
sup
v 6=0

g′(v, v)

g(v, v)

)n
2

sup{Mg(Φ(x)) : x ∈ X} − ωk(M, g)

≤

(
sup
v 6=0

g′(v, v)

g(v, v)

)n
2

(ωk(M, g) + |g − g′|g̃)− ωk(M, g)

≤ ((1 + c|g − g′|g̃)
n
2 − 1)ωk(M, g) + c

n
2 |g − g′|g̃

≤ ((1 + c|g − g′|g̃)
n
2 − 1)c

n
2 ωk(M, g̃) + c

n
2 |g − g′|g̃

≤ ((1 + c|g − g′|g̃)
n
2 − 1)c

n
2Ck

1
(n+1) + c

n
2 |g − g′|g̃,

from which the result follows. �

3.2. Weyl Law for Volume Spectrum. A celebrated result concerning
the spectrum of a manifold is the so called Weyl Law, which states that

lim
k→∞

λk(M)k−
2

n+1 = a(n)vol(M)−
2

n+1 ,

where a(n) = 4π2vol(B)−
2

n+1 and B is the unit ball in Rn+1. This was
proven by Weyl [32] in 1911 for domains that are regions of space. The
proof for closed manifolds came later in 1949, by Minakshisundaram and
Pleijel, and uses the asymptotic expansion for the trace of the heat kernel.

Gromov conjectured ([11, 8.4]) that the volume spectrum {ωp(M)}p∈N
satisfies a Weyl’s asymptotic law. Jointly with Liokumovich, the authors
confirmed this conjecture and showed in [17] the following result.

Weyl Law for the Volume Spectrum 3.4. There exists a constant
a(n) > 0 such that, for every compact Riemannian manifold (Mn+1, g) with
(possibly empty) boundary, we have

lim
k→∞

ωk(M)k−
1

n+1 = a(n)vol(M)
n
n+1 .
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Before sketching its proof it is worthwhile to make some comments. Un-
like the spectrum of the Laplacian that is known in several cases (like round
spheres or cubes) the volume spectrum, due in part to being a non-linear
spectrum, has not been computed on any specific example. Nonetheless, we
were able to prove a universal asymptotic law without knowing the value
of the universal constant a(n), which is in stark contrast with both Weyl
and Minakshisundaram-Pleijel proofs. Moreover, Minakshisundaram-Pleijel
proof for closed manifolds uses techniques that do not seem to have an ana-
logue for the volume spectrum and so a new approach had to be developed.

In order to prove the Weyl Law we need to introduce relative cycles and
mention their basic features.

Let (Ω, g) be Riemannian compact (n+1)-manifold with Lipschitz bound-
ary ∂Ω and Hn+1(Ω, ∂Ω,Z2) = Z2. We denoted them by connected Lipschitz
domains.

Consider the space

In(Ω, ∂Ω;Z2) = {T ∈ In(Ω;Z2) : support(∂T ) ⊂ ∂Ω}.

We say that T, S ∈ In(Ω, ∂Ω;Z2) are equivalent if T − S ∈ In(∂Ω;Z2) and
the connected component containing zero of the space of such equivalence
classes, called mod 2 relative n-cycles, is denoted by Zn(Ω, ∂Ω;Z2). We
abuse notation and use T ∈ In(Ω, ∂Ω;Z2) to denote its equivalence class as
a mod 2 relative n-cycle. In [17, Section 2.2] a further subscript appears in
the notation of mod 2 relative n-cycles.

The mass, flat metric, and F-metric on Zn(Ω, ∂Ω;Z2) are defined as

M(T ) = inf{M(T +R) : R ∈ In(∂Ω;Z2)},

F(S, T ) = inf{F(S +R, T ) : R ∈ In(∂Ω;Z2)}
and

F(S, T ) = inf{F(S +R, T ),F(T +R,S) : R ∈ In(∂Ω;Z2)}
for all S, T in Zn(Ω, ∂Ω;Z2). These metrics induced the flat and F-topology,
respectively.

The theory for Zn(Ω, ∂Ω;Z2) mimics the theory for Zn(M ;Z2) (see [17,
Section 2] for details). Namley,

H1(Zn(Ω, ∂Ω;Z2);Z2) = Z2 = {0, λ̄},

and the set of k-sweepouts Pk is defined as in Definition 2.4. One has Pk 6= ∅
for all k ∈ N and the k-width ωk(Ω) is defined exactly like in Definition 3.1.
In [17], k-sweepouts and k-width are defined in terms of maps that are
continuous in the flat topology and have no concentration of mass but using
the approximation results of [17, Section 2.9] one can show that the value
for ωk(Ω) remains the same if one requires the maps to be continuous in the
F-topology instead. Finally, similarly to Theorem 3.2, there is a constant
C = C(Ω, g) so that

(3.1) ωk(Ω) ≤ Ck
1

n+1 for all k ∈ N.
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We first prove Theorem 3.4 for connected Lipschitz domains using a super-
additivity property for the k-widths. The key ingredients are the min-max
definition of k-width and the vanishing property of the cup product. Weyl’s
proof is also based on similar properties for the Laplacian eigenvalues.

Lusternick-Schnirelman Superadditivity 3.5. Consider connected Lip-
schitz domains Ω0, {Ω∗i }Ni=1 such that

• Ω∗i ⊂ Ω0 for all i = 1, . . . , N and the interiors of {Ω∗i }Ni=1 are pair-
wise disjoint.

Then, given positive integers so that ki + . . .+ kN ≤ k, we have

ωk(Ω0) ≥
N∑
i=1

ωki(Ω
∗
i ).

Sketch of proof. Set k̄ =
∑N

i=1 ki. Given Φ a k-sweepout of Ω0 (with X =
dmn(Φ)) and λ = Φ∗λ̄ ∈ H1(X,Z2), we assume for simplicity that the set

Ui = {x ∈ X : M(Φ(x)xΩ∗i ) < ωki(Ω
∗
i )}

is open and the map

Φi : X → Zn(Ω∗i , ∂Ω∗i ; F;Z2) x 7→ Φ(x)xΩ∗i

is well defined for all 1 ≤ i ≤ N . The general argument can be found in
Theorem 3.1 of [17].

Fix 1 ≤ i ≤ N . With ι : Ui → X the inclusion map, we have from the
definition of Ui that Φi ◦ ι is not a ki-sweepout of Ωi, which means that
ι∗λki = (Φi ◦ ι)∗λ̄ki = 0 in Hki(Ui;Z2). Therefore λki vanishes on Ui for
all 1 ≤ i ≤ N . The vanishing property for the cup product [13, page 209]
implies that

λk̄ = λk1 ^ . . . ^ λkN

vanishes on ∪Ni=1Ui. But λk̄ 6= 0 on X because k̄ ≤ k and so X 6= ∪Ni=1Ui.
Choose x ∈ X \∪Ni=1Ui. Combining the definition of Ui with the fact that

the interiors of {Ω∗i }Ni=1 are pairwise disjoint we have that

Φ(x) ≥
N∑
i=1

M(Φ(x)xΩ∗i ) ≥
N∑
i=1

ωki(Ω
∗
i ).

�

We use bxc to denote the integer part.

Corollary 3.6. Under the same conditions of the Lusternick-Schnirelman
Superadditivity, assume also that

• Ω0 has unit volume and Ω0, {Ω∗i }Ni=1 ⊂ Rn+1.

For all i = 1, . . . , N , denote by Ωi a scaling of Ω∗i with unit volume.
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Then, with V = min{vol(Ω∗i )}Ni=1 and ki = bkvol(Ω∗i )c, i = 1, . . . , N , we
have for all k ∈ N

k−
1

n+1ωk(Ω0) ≥
N∑
i=1

vol(Ω∗i )ki
− 1
n+1ωki(Ωi) +O

(
1

kV

)
.

Proof. The p-width scales like n-dimensional area and so we have ωp(Ω
∗
i ) =

vol(Ω∗i )
n
n+1ωp(Ωi) for all i = 1, . . . , N and p ∈ N.

We have
∑N

i=1 ki ≤ kvol(Ω0) = k and so, using Lusternick-Schnirelman
Superadditivity and (3.1), we deduce

k−
1

n+1ωk(Ω0) ≥ k−
1

n+1

N∑
i=1

ωki(Ω
∗
i )

= k−
1

n+1

N∑
i=1

vol(Ω∗i )
n
n+1ωki(Ωi)

=
N∑
i=1

vol(Ω∗i )

(
ki

kvol(Ω∗i )

) 1
n+1

ki
− 1
n+1ωki(Ωi)

≥
N∑
i=1

vol(Ω∗i )

(
1− 1

kvol(Ω∗i )

) 1
n+1

ki
− 1
n+1ωki(Ωi)

=

N∑
i=1

vol(Ω∗i )ki
− 1
n+1ωki(Ωi) +O

(
1

kV

)
.

�

From the Lusternick-Schnirelman Superadditivity 3.5 we can also deduce
the lower bounds for the k-width stated in Theorem 3.2.

Corollary 3.7. There is a constant C = C(M, g) > 0 so that for all k ∈ N

ωk(M) ≥ C−1k
1

n+1 .

Proof. Given p ∈M , let Br(p) denote the geodesic ball in M of radius r and
centered at p, and consider ω1(B), where B is the unit ball in Rn+1. Lemma
2.6 extends to the context of relative cycles to conclude that ω1(B) > 0.

There is r̄ small so that for all r ≤ r̄ and p ∈M we have

ω1(Br(p), g) ≥ rnω1(B)/2.

Moreover, there exists some constant ν = ν(M) > 0 such that, for every k ∈
N, one can find a collection of k disjoint geodesic balls {Bj}kj=1 of radius r =

νk−
1

n+1 . Hence, we deduce from Lusternick-Schnirelman Superadditivity 3.5

ωk(M, g) ≥
k∑
j=1

ω1(Bj , g) ≥ krnω1(B)

2
= kk−

n
n+1 νn

ω1(B)

2
= k

1
n+1 νn

ω1(B)

2
.

�
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We are now ready to show

Weyl Law for Domains 3.8. Let Ω ⊂ Rn+1 be a connected Lipschitz
domain Ω ⊂ Rn+1. There is a universal constant a(n) so that for every
Ω ⊂ Rn+1 we have

lim
k→∞

k−
1

n+1ωk(Ω) = a(n)vol(Ω)
1

n+1 .

In [17, Theorem 3.2] this result was also proven for higher codimension
relative cycles.

Proof. Without loss of generality we assume that vol(Ω) = 1. Let C denote
the unit cube in Rn+1 and set

a−(n) = lim inf
k→∞

k−
1

n+1ωk(C) and a+(n) = lim sup
p→∞

k−
1

n+1ωk(C).

Claim 1: a−(n) = a+(n) and so define a(n) to be that common value.

Choose {kl}l∈N, {pj}j∈N so that

lim
l→∞

k
− 1
n+1

l ωkl(C) = a+(n) and lim
j→∞

p
− 1
n+1

j ωpj (C) = a−(n).

With l fixed and for all j large enough so that δj := kl/pj < 1, consider Nj

to be the maximum number of cubes {C∗i }
Nj
i=1 with pairwise disjoint interiors

contained in C and all with the same volume δj . We must have δjNj → 1
as j →∞. From Corollary 3.6 we obtain

p
− 1
n+1

j ωpj (C) ≥
Nj∑
i=1

vol(C∗i )k
− 1
n+1

l ωkl(C) +O(k−1
l )

= δjNjk
− 1
n+1

l ωkl(C) +O(k−1
l ).

Making j →∞ and then l→∞ we deduce the claim.

Claim 2: lim infk→∞ k
− 1
n+1ωk(Ω) ≥ a(n).

Given any ε > 0, one can find a family of cubes {C∗i }Ni=1 with pairwise
disjoint interiors contained in Ω, all with the same volume δ, and such that

N∑
i=1

vol(C∗i ) ≥ 1− ε.

From Corollray 3.6 we obtain, with kδ = bkδc,

k−
1

n+1ωk(Ω) ≥
N∑
i=1

vol(C∗i )k
− 1
n+1

δ ωkδ(C) +O

(
1

kδ

)
and thus making k →∞ we have

lim inf
k→∞

k−
1

n+1ωk(Ω) ≥ (1− ε) lim inf
k→∞

k−
1

n+1ωk(C) = (1− ε)a(n).
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The claim follows from the arbitrariness of ε.

Claim 3: lim supk→∞ k
− 1
n+1ωk(Ω) ≤ a(n).

Define ω̃k(U) := k−
1

n+1ωk(U) for every connected Lipschitz domain U .
Choose {kj}j∈N so that

β := lim
j→∞

ω̃kj (Ω) = lim sup
k→∞

ω̃k(Ω).

Choose ε > 0. From Lemma 3.5 in [17] we can choose domains {Ω∗i }Ni=1
contained in C so that (i) every Ω∗i is a scaling of Ω, (ii) their interiors are

pairwise disjoint, and (iii)
∑N

i=1 vol(Ω∗i ) ≥ 1− ε.
Fix j ∈ N and pick pj ∈ N so that bpjvol(Ω∗1)c = kj (such choice is possible

because vol(Ω∗1) ≤ 1). With VN = min{vol(Ω∗i )}Ni=1 and ki,j = bpjvol(Ω∗i )c,
we have from Corollary 3.6 that

ω̃pj (C) ≥
N∑
i=1

vol(Ω∗i )ω̃ki,j (Ω) +O

(
1

pjVN

)

= vol(Ω∗1)ω̃kj (Ω) +

N∑
i=2

vol(Ω∗i )ω̃ki,j (Ω) +O

(
1

pjVN

)
.

Making j →∞ and using Claim 2 we have

a(n) ≥ vol(Ω∗1)β + a(n)
N∑
i=2

vol(Ω∗i ) ≥ vol(Ω∗1)β + a(n)(1− ε− vol(Ω∗1)).

Making ε→ 0 we obtain

a(n) ≥ vol(Ω∗1)β + a(n)(1− vol(Ω∗1)),

and so a(n) ≥ β, which finishes the claim. �

We now explain the key ideas to show the theorem below

Weyl Law for Compact Manifolds 3.9. For every closed Riemannian
manifold (Mn+1, g) with (possibly empty) boundary, we have

lim
k→∞

ωk(M)k−
1

n+1 = a(n)vol(M)
n
n+1 .

Sketch of proof. Without loss of generality we assume that vol(M) = 1. We
also assume that ∂M = ∅ for simplicity.

The idea to show

lim
k→∞

k−
1

n+1ωk(M) ≥ a(n)

is the following: We find a sufficiently large number of small pairwise disjoint
geodesic balls {Bi}Ni=1 ⊂ M so that

∑N
i=1 vol(Bi) ' 1 and the metric g on

Bi is close to being the Euclidean metric on a ball. Due to the Weyl Law

for domains 3.8, we have ωk(Bi)k
− 1
n+1 ' a(n)vol(Bi)

n
n+1 for all k very large.
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Thus from the Lusternick-Schnirelman Superadditivity 3.5 we deduce, for
all k sufficiently large,

k−
1

n+1ωk(M) ≥ k−
1

n+1

N∑
i=1

ωbkvol(Bi)c(Bi) =

N∑
i=1

k−
1

n+1ωbkvol(Bi)c(Bi)

'
N∑
i=1

a(n)vol(Bi) ' a(n).

The reader can see the details in Theorem 4.1 of [17].
To prove the other inequality, the first step consists in decomposing M

into regions {Ci}Ni=1 so that:

• Each Ci is (1 + ε)-bilipschitz diffeomorphic to a Lipschitz domain Ci
in Rn+1;
• The regions {Ci}Ni=1 cover M ;
• {Ci}Ni=1 and {Ci}Ni=1 have mutually disjoint interiors, respectively.

We then connect the disjoint regions {Ci}Ni=1 ⊂ Rn+1 with tubes of very
small volume so that we obtain a connected Lipschitz domain Ω. By making
ε smaller, we can make the volume of Ω arbitrarily close to vol(M).

In what follows we will be content with producing sweepouts that are
only continuous with respect to the flat topology (instead of continuous
with respect to the F-topology). The reader can see the general argument
in [17, Theorem 4.2].

Consider Φ a k-sweepout of Ω with X = dmn(Φ), which then induces
k-sweepouts on each Ci given by

Φi : X → Zn(Ci, ∂Ci;Z2), Φi(x) = Φ(x)xCi, i = 1, . . . , N.

In [17, Section 4] we show that, after a possibly small perturbation, the map
Φi is well defined and a k-sweepout with

λ := Φ∗i λ̄ = Φ∗λ̄ for all i = 1, . . . , N.

The general idea is to use the maps {Φi}Ni=1 to construct a k-sweepout of
M as follows: For every x ∈ X the elements Φi(x) have boundary in ∂Ci
and we show in [17, Lemma 4.3] the existence of Zi(x) ∈ In+1(Ci;Z2) so
that the cycle ∂Zi(x) coincides with Φi(x) on the interior of Ci. Because
the choice of Zi(x) is not unique (Ci + Zi(x) would have also been a valid
choice) it is not always possible to construct a continuous map x 7→ ∂Zi(x).
Nonetheless, we will argue that a choice of Z1(x) for a given x will induce

choices of Z2(x), . . . , ZN (x) so that if Z̃i(x) denotes the image of Zi(x) in Ci
under the respective bilipschitz diffeomorphism, then ∂Z̃1(x)+ . . .+∂Z̃N (x)
is a cycle in M that does not depend on the choice of Z1(x) and we use that

to conclude that the map x 7→ (∂Z̃1 + . . .+ ∂Z̃N )(x) is continuous. We now
provide some of the details.

For each i = 1, . . . , N set

SXi = {(x, Z) : x ∈ X,Φi(x)− ∂Z ∈ In(∂Ci;Z2)} ⊂ X × In+1(Ci;Z2).
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From the Constancy Theorem we have that In(∂Ci;Z2) = {0, ∂Ci} for all
i = 1, . . . , N . Thus if (x, Z), (x, Z ′) ∈ SXi we have that either Z = Z ′ or
Z = Ci−Z ′. There is a natural projection τi : SXi → X and in Lemma 4.3
of [17] we show that τi is a 2-cover of X for all i = 1, . . . , N .

Claim 1: SX1 is isomorphic to SXi for all i = 1, . . . , N .

The isomorphism classes of double covers of X are in a bijective corre-
spondence with Hom(π1(X),Z2), which is homeomorphic to H1(X;Z2). It
suffices to see that, for all i = 1, . . . , N , the element σi ∈ H1(X;Z2) that
classifies SXi is identical to λ. Indeed given γ : S1 → X nontrivial in π1(X),
consider a lift to SXi given by θ 7→ (γ(exp(iθ)), Zθ), 0 ≤ θ ≤ 2π. Then σi(γ)
is 1 if Z0 = Ci − Z2π and 0 if Z0 = Z2π. Thus σi(γ) is non-zero if and only
if Φi ◦ γ is a sweepout.

As a result we obtain that SX1 is isomorphic to SXi for all i = 1, . . . , N
and let Fi : SX1 → SXi be the corresponding isomorphism. Given an
element v = (x, T ) in SXi, we denote by Ξi(v) ∈ In+1(Ci;Z2) the image of
T under the bilipschitz diffeomorphism from Ci to Ci, i = 1, . . . , N . Using
this notation we consider the continuous map in the flat topology

Ψ̂ : SX1 → Zn(M ;Z2), Ψ̂(y) =

N∑
i=1

∂ Ξi(Fi(y)).

If (x, Z) ∈ SX1, then Ξi(Fi(x,C1 + Z)) = Ci + Ξi(Fi(x, Z)) for all i =
1, . . . , N , and so

Ψ̂(x,C1 + Z) =
N∑
i=1

∂(Ci + Ξi(Fi(x, Z))) =
N∑
i=1

∂Ci + Ψ̂(x, Z)

= ∂M + Ψ̂(x, Z) = Ψ̂(x, Z).

Thus Ψ̂(x,C1 + Z) = Ψ̂(x, Z) in Zn,(M ;Z2), which means that Ψ̂ descends
to a continuous map in the flat topology Ψ : X → Zn(M ;Z2).

Claim 2: Ψ is a p-sweepout.

Choose γ : S1 → X nontrivial in π1(X) and denote by γ1 its lift to SX1.
Then γi = Fi ◦γ1 gives a lift to SXi for all i = 1, . . . , N and we consider the
continuous map in the flat topology

B : [0, 2π]→ In+1(M ;Z2), B(θ) =
N∑
i=1

Ξi(γi(θ)).

We have (Ψ ◦ γ)(θ) = ∂B(θ) for all 0 ≤ θ ≤ 2π.
Hence Ψ∗λ̄ = λ because, recalling that σi = λ for all i = 1, . . . , N ,

λ(γ) = 0 =⇒ σi(γ) = 0 for all i = 1, . . . , N

=⇒ Ξi(γi(2π)) = Ξi(γi(0)) for all i = 1, . . . , N

=⇒ B(2π) = B(0)
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and

λ(γ) = 1 =⇒ σi(γ) = 1 for all i = 1, . . . , N

=⇒ Ξi(γi(2π)) = Ci + Ξi(γi(0)) for all i = 1, . . . , N

=⇒ B(2π) = M +B(0),

where in the last line we used the fact that {Ci}Ni=1 are pairwise disjoint and
cover M . This implies that Ψ is a p-sweepout because λp 6= 0.

Throughout the rest of the proof we ignore the ε-dependence in some of
the constants for simplicity.

Claim 3: For all x ∈ X we have

M(Ψ(x)) .M(Φ(x)) +
N∑
i=1

vol(∂Ci).

Given (x, Z) ∈ SXi, i = 1, . . . , N , we have that

M(Ξi(∂Z)) 'M(∂Z) ≤M(Φi(x)) + M(∂Ci)

Hence, recalling the definition of the maps Φi, we have

M(Ψ(x)) ≤
N∑
i=1

M(∂ Ξi(Fi(y))) .
N∑
i=1

(M(Φi(x)) + M(∂Ci))

≤
N∑
i=1

M(Φ(x)xCi) +
N∑
i=1

vol(∂Ci) ≤M(Φ(x)) +
N∑
i=1

vol(∂Ci).

Combining Claim 2 with Claim 3 we deduce that for all k ∈ N

ωk(M) . ωk(Ω) +
N∑
i=1

vol(∂Ci).

From Theorem 3.8 we have that

lim sup
k→∞

k−
1

n+1ωk(M) . lim
k→∞

k−
1

n+1ωk(Ω) ≤ a(n)vol(Ω)
n
n+1 ' a(n)vol(M)

n
n+1 .

�

3.3. Min-max Theory and the volume spectrum. Combining the Weyl
Law for the Volume Spectrum 3.4 with Theorem 2.9 and Theorem 2.12 we
obtain

Theorem 3.10. Assume (Mn+1, g) is a closed Riemannian manifold, 3 ≤
(n+ 1) ≤ 7.

For each k ∈ N there exist a smooth embedded cycle V so that

vol(V ) = ωk(M) ' a(n)vol(M)
n
n+1k

1
n+1 and index(V ) ≤ k,

where a(n) is a universal constant.
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If the metric g is bumpy there is an embedded, two-sided, multiplicity one,
minimal hypersurface Σk with

vol(Σk) = ωk(M) ' a(n)vol(M)
n
n+1k

1
n+1 and index(Σk) = k.

Proof. Choose a sequence {Φi}i∈N ⊂ Pk such that

lim
i→∞

sup{M(Φi(x)) : x ∈ Xi = dmn(Φi)} = ωk(M).

Denote by X
(k)
i the k-dimensional skeleton of Xi. Then Hk(Xi, X

(k)
i ;Z2) =

0 and hence the long exact cohomology sequence gives that the natural

pullback map from Hk(Xi;Z2) into Hk(X
(k)
i ;Z2) is injective. This implies

(Φi)|X(k)
i

∈ Pk. The definition of ωk(M) then implies

lim
i→∞

sup{M(Φi(x)) : x ∈ X(k)
i } = ωk(M).

We denote by Πi the homotopy class of (Φi)|X(k)
i

. Its width L(Πi) satisfies

ωk(M) ≤ L(Πi) ≤ sup{M(Φi(x)) : x ∈ X(k)
i }, i ∈ N

and in particular limi→∞ L(Πi) = ωk(M).
Theorem 2.9 implies, for all i ∈ N, the existence of smooth embedded

cycles Vi so that

L(Πi) = vol(Vi) and index(Vi) ≤ k.

The Compactness Theorem of Sharp (Theorem 2.3 of [29]) gives the exis-
tence of a smooth embedded cycles V with index(V ) ≤ k such that, after
passing to a subsequence, vol(Vi) → vol(V ) as i → ∞, which finishes the
proof in the general case.

When g is bumpy we have from Sharp (Theorem 2.3 and Remark 2.4, [29])
that the set of connected, closed, smooth, embedded minimal hypersurfaces
in (M, g) with both area and index uniformly bounded is finite and so there
must exist some j ∈ N so that ωk(M) = L(Πj). The result follows from
Theorem 2.12. �

This theorem, when combined with the Multiplicity One Theorem 2.11
has the following corollary and corresponds to Theorem B in [38].

Corollary 3.11. Assume (Mn+1, g) is a closed Riemannian manifold, 3 ≤
(n+1) ≤ 7 with either a bumpy metric or a metric with positive Ricci curva-
ture. Then there exists infinitely many smooth, connected, closed, embedded,
minimal hypersurfaces.

The argument used to prove Theorem 1.4 in [20] used a different reasoning
from the one presented above because neither the Multiplicity One Theorem
nor the index estimates were available at the time. A detailed sketch of the
argument can be found in [21].
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4. Denseness and Equidistribution of Minimal Hypersurfaces

4.1. Denseness of minimal hypersurfaces. Let M be the set of all
smooth metrics with the C∞-topology. We now present the following re-
sult, due to Irie and the authors [14].

Denseness Theorem 1.5. Let Mn+1 be a closed manifold of dimension
(n+ 1), with 3 ≤ (n+ 1) ≤ 7.

For a C∞-generic Riemannian metric g on M , the union of all closed,
smooth, embedded minimal hypersurfaces is dense.

Proof. Given a metric g ∈ M, let S(g) denote the set of all connected,
smooth, embedded minimal hypersurfaces with respect to the metric g. An
element Σ ∈ S(g) is nondegenerate if every Jacobi vector field vanishes.

Chose an open set U ⊂M and set

MU = {g ∈M : ∃Σ ∈ S(g) with Σ ∩ U 6= ∅ and Σ is nondegenerate}.
The setMU is open because if Σ ∈ S(g) is nondegenerate, an application of
the Inverse Function Theorem implies that for every Riemannian metric g′

sufficiently close to g, there exists a unique nondegenerate closed, smooth,
embedded minimal hypersurface Σ′ close to Σ. In particular, Σ′ ∩ U 6= ∅ if
g′ is sufficiently close to g.

If we show thatMU is dense inM then the result follows: Indeed, choose
{Ui}i∈N a countable basis of M and consider the set ∩iMUi , which is C∞

Baire-generic in M because each MUi is open and dense in M. Thus if g
is a metric in ∩iMUi then for every open set V ⊂M there is Σ ∈ S(g) that
intersects V and this proves the theorem.

Consider the set

M∗U = {g ∈M : ∃Σ ∈ S(g) with Σ ∩ U 6= ∅}.
In Proposition 2.3 of [14] it is shown that MU is dense in M∗U and so it
suffices to see that M∗U is dense in M.

Let g be an arbitrary smooth Riemannian metric on M and B be an
arbitrary neighborhood of g in the C∞-topology. By the Bumpy Metrics
Theorem of White (Theorem 2.1, [33]), there exists g′ ∈ B such that every
closed, smooth immersed minimal hypersurface with respect to g′ is nonde-
generate.

Since g′ is bumpy, it follows from Sharp (Theorem 2.3 and Remark 2.4,
[29]) that the set of connected, closed, smooth, embedded minimal hyper-
surfaces in (M, g′) with both area and index uniformly bounded from above
is finite, which means that the set S(g′) is countable and thus

C = {volg′(V ) : V a smooth embedded cycle}
is also countable.

Consider a small perturbation (g′(t))0≤t≤t0 of g′ that is supported in U
and so that vol(M, g′(t0)) > vol(M, g′). For instance, choose h : M → R a
smooth nonnegative function such that supp (h) ⊂ U and h(x) > 0 for some
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x ∈ U , define g′(t) = (1 + th)g′ for t ≥ 0, and let t0 > 0 be sufficiently small
so that g′(t) ∈ B for every t ∈ [0, t0]. Because vol(M, g′(t0)) > vol(M, g′) it
follows from the Weyl Law for the Volume Spectrum 3.4 that there exists
k ∈ N such that ωk(M, g′(t0)) > ωk(M, g′).

Assume by contradiction B ∩M∗U = ∅. In this case, for every t ∈ [0, t0],
every closed, smooth, embedded minimal hypersurface in (M, g′(t)) is con-
tained in M \ U . Since g′(t) = g′ outside a compact set contained in
U we have S(g′) = S(g′(t)) and so we conclude from Theorem 3.10 that
ωk(M, g′(t)) ∈ C for all t ∈ [0, t0]. But C is countable and we know from
Proposition 3.3 that the function t 7→ ωk(M, g′(t)) is continuous. Hence
t 7→ ωk(M, g′(t)) is constant in the interval [0, t0]. This contradicts the fact
that ωk(M, g′(t0)) > ωk(M, g′).

Therefore B ∩M∗U 6= ∅ and hence M∗U is dense in M.
�

4.2. Equidistribution of minimal hypersurfaces. In this section we ex-
plain the key ideas behind the following result.

Equidistribution Theorem 1.6. Let Mn+1 be a closed manifold of di-
mension (n+ 1), with 3 ≤ (n+ 1) ≤ 7.

For a C∞-generic Riemannian metric g on M , there exists a sequence
{Σj}j∈N of closed, smooth, embedded, connected minimal hypersurfaces that
is equidistributed in M : for any f ∈ C0(M) we have

lim
q→∞

1∑q
j=1 volg(Σj)

q∑
j=1

∫
Σj

f dΣj =
1

volgM

∫
M
fdV.

Before we sketch its proof we discuss an heuristic argument. Fix g ∈M,
choose f ∈ C∞(M) and a small closed interval I ⊂ R containing the origin
in its interior. For each t ∈ I define g(t) = exp(tf)g and, for each k ∈ N,
consider the function

(4.1) t 7→ Wk(t) = lnωk(M, g(t))− n

n+ 1
ln volg(t)(M)− ln k

n
n+1 .

From Proposition 3.3 we have thatWk is uniformly Lipschitz on I (indepen-
dently of k ∈ N). Thus the Weyl Law for the Volume Spectrum 3.4 implies
that

(4.2) lim
k→∞

max{Wk(t)− ln a(n) : t ∈ I} = 0.

Recall the definition of minimal embedded cycles in Definition 2.1. We now
assume the following strong assumption: For all k ∈ N and t ∈ I there is a
unique smooth embedded minimal cycle Σk(t) (with respect to g(t)) so that

• volg(t)(Σk(t)) = ωk(M, g(t));
• Σk(t) is two-sided and multiplicity one.

The uniqueness of Σk(t) and the Sharp Compactness Theorem [29] implies
that, for all k ∈ N, the deformation t ∈ I 7→ Σk(t) is smooth and so, using
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the fact that ∂tg(t) = fg(t), we have

d

dt
ωk(M, g(t)) =

d

dt
volg(t)(Σk(t)) =

n

2

∫
Σk(t)

fdΣk(t)

d

dt
volg(t)(M) =

n+ 1

2

∫
M
fdVg(t).

Hence, we have that for all t ∈ I

W ′k(t) =
n

2

(
1

volg(t)(Σk(t))

∫
Σk(t)

fdΣk(t)−
1

vol(M)

∫
M
fdVg(t)

)
.

Thus we deduce from (4.2) that, after passing to a subsequence,W ′kj (t)→ 0

for almost all t ∈ I. Hence setting Σj = Σkj (t) we deduce

lim
j→∞

1

volg(Σj)

∫
Σj
fdΣj =

1

vol(M)

∫
M
fdV.

Without assuming the strong assumption above, the function Wk is only
uniformly Lipschitz and one can surely find a sequence of uniformly Lipschitz
functions converging to a constant whose derivative (whenever it is well
defined) is uniformly away from zero. Overcoming the lack of differentiability
everywhere ofWk is at the core of the proof of the Equidistribution Theorem
1.6.

Given a Lipschitz function φ on a cube Im ⊂ Rm we know from Rademacher
Theorem that φ is differentiable almost everywhere. Let us consider the gen-
eralized derivative of φ that is defined as

∂∗φ(t) = Conv{ lim
i→∞
∇φ(ti) : ∇φ(ti) exists and lim ti = t},

where Conv(K) denotes the convex hull of K ⊂ Rm. If the function is C1,
the generalized derivative coincides with the classical derivative. The result
we need is the following.

Lemma 4.1. There is a constant C (depending on Im) so that for every
Lipschitz function φ on Im with

|φ(x)− φ(y)| ≤ ε for all x, y ∈ Im,
there is t̄ ∈ Im with dist(0, ∂∗φ(t̄)) ≤ Cε.

Proof. Let us first assume that φ achieves its maximum at an interior point
t̄ ∈ Im. We now argue that 0 ∈ ∂∗φ(t̄).

Consider the compact set

K = { lim
i→∞
∇φ(ti) : ∇φ(ti) exists and lim ti = t̄}.

For almost all unit vector w in Rm we have that the function φw(s) =
φ(t̄ + sw) is defined in an open neighborhood U of zero and ∇φ(t̄ + sw)
is well defined for almost all s ∈ U . The function φw has an absolute
maximum at s = 0, its derivative is given by φ′w(s) = ∇φ(t̄ + sw).w for
s almost everywhere, and thus there is v ∈ K with v.w ≤ 0. Hence we
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deduce that for every unit vector w ∈ Rm there is v ∈ K with v.w ≥ 0. If
0 /∈ Conv(K) there is 0 6= p ∈ Conv(K) that minimizes the distance to the
origin and so v.p ≥ |p|2 for all v ∈ Conv(K), which is a contradiction.

We now handle the general case. Choose a smooth function η : Im → R
with η(0) = 0 and η = 2 on ∂Im. Set ψ = φ− εη. Then ψ(x) ≤ ψ(0)− ε for
all x ∈ ∂Im and so ψ must have an interior maximum t̄. Thus 0 ∈ ∂∗ψ(t̄)
and so dist(0, ∂∗φ(t̄)) ≤ Cε, where C bounds the gradient of η. �

Proof of Equidistribution Theorem 1.6. Given a metric g ∈ M, S(g) de-
notes the set of all connected, smooth, embedded minimal hypersurfaces
with respect to g and V(g) denotes the set of all smooth embedded minimal
cycles. Given S ∈ V(g) we define by µS and µM the unit Radon measures
on M given by, respectively,

µS(f) =
||S||(f)

||S||(M)
and µM (f) =

1

volg(M)

∫
M
fdV, f ∈ C0(M).

Finally, we define by Conv(V(g)) the unit Radon measures µ that are given
by convex linear combinations of Radon measures µS , i.e.,{

J∑
i=1

aiµSi : 0 ≤ ai ≤ 1, Si ∈ V(g), i = 1, . . . , J and a1 + . . .+ aJ = 1

}
.

We say that µ =
∑J

i=1 aiµSi ∈ Conv(V(g)) is non-degenerate if the support
of each Si is a non-degenerate minimal hypersurface.

Choose a subset {ψi}i∈N ⊂ C∞(M) that is dense in C0(M) and set

M(m) = {g ∈M : ∃µ ∈ Conv(V(g)) non-degenerate such that

|µ(ψi)− µM (ψi)| < m−1 for all i = 1, . . . ,m}.

A standard perturbation argument based on the Inverse Function Theorem
shows that M(m) is open in the C∞-topology for all m ∈ N.

We now explain that if M(m) is dense in M for all m ∈ N then the
desired result follows. If so M∞ = ∩m∈NM(m) is a residual set (in the
Baire sense) and we choose g ∈ M∞. In this case we can find a sequence
{µm}m∈N of elements of Conv(V(g)) so that

|µm(ψi)− µM (ψi)| < m−1 for all i = 1, . . . ,m.

Hence every accumulation point ν (in the weak topology) is a Radon measure
with ν(ψi) = µM (ψi) for all i ∈ N. Thus, from the way {ψi}i∈N was chosen,
the sequence {µm}m∈N converges weakly to µM .

We have for some Jm ∈ N

µm =

Jm∑
j=1

aj,mµSj,m , 0 ≤ aj,m ≤ 1, Sj,m ∈ V(g) for all j = 0, . . . , Jm
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and
∑Jm

j=1 aj,m = 1. Choose integers dm, bj,m, j = 1, . . . , Jm so that

(4.3)

∣∣∣∣ aj,m
||Sj,m||(M)

− bj,m
dm

∣∣∣∣ < 1

mJm||Sj,m||(M)

and set Vj,m = bj,mSj,m ∈ V(g). We claim that for all f ∈ C0(M) we have

(4.4) lim
m→∞

∑Jm
j=1 ||Vj,m||(f)∑Jm
j=1 ||Vj,m||(M)

= µM (f).

With f ∈ C0(M) fixed and K = supM |f | we have, using (4.3),

µm(f) =

Jm∑
j=1

aj,mµSj,m(f) =

Jm∑
j=1

bj,m
dm
||Sj,m||(f) +

Jm∑
j=1

O

(
K

mJm

)

=

Jm∑
j=1

bj,m
dm
||Sj,m||(f) +O

(
K

m

)
=

∑Jm
j=1 ||Vj,m||(f)

dm
+O

(
K

m

)
.

Furthermore, combining
∑Jm

j=1 aj,m = 1 with (4.3) we have∑Jm
j=1 ||Vj,m||(M)

dm
=

∑Jm
j=1 bj,m||Sj,m||(M)

dm
= 1 +O

(
1

m

)
,

which when combined with the previous identities gives

µm(f) =

(
1 +O

(
1

m

)) ∑Jm
j=1 ||Vj,m||(f)∑Jm
j=1 ||Vj,m||(M)

+O

(
K

m

)
.

Making m → ∞ we deduce (4.4). One immediate consequence is that we

obtain the existence of a finite sequence {Σi,m}Pmi=1 of elements in S(g) so
that for all f ∈ C0(M) we have

lim
m→∞

1∑Pm
i=1 volg(Σi,m)

Pm∑
i=1

∫
Σi,m

fdΣi,m =
1

volg(M)

∫
M
fdV.

Using this identity, a further combinatorial argument (see [24, pages 15, 16])

shows that we can extract a sequence {Σi}i∈N of elements of ∪m∈N{Σj,m}Pmj=1

so that for all f ∈ C0(M)

lim
q→∞

1∑q
j=1 volg(Σj)

q∑
j=1

∫
Σj

f dΣj =
1

volgM

∫
M
fdV.

We now show thatM(m) is dense inM with respect to the C∞-topology.
Consider the slightly larger set

M∗(m) = {g ∈M : ∃µ ∈ Conv(V(g)) such that

|µ(ψi)− µM (ψi)| < m−1 for all i = 1, . . . ,m}.
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The first remark is that using Lemma 4 of [24] one can see thatM∗(m) and
M(m) have the same closure in M (the reader can see the details at the
end of Section 3 of [24]). Thus it suffices to see thatM∗(m) is dense inM.

Choose Im ⊂ Rm a small cube centered at the origin. For every vector
t ∈ Im define g(t) = exp(

∑m
i=1 tiψi)g and, for each k ∈ N, consider the

functions Wk(t) defined in (4.1). Like it was explained during the heuristic
argument, we have from Proposition 3.3 that Wk is uniformly Lipschitz on
Im (independently of k ∈ N) and the Weyl Law for the Volume Spectrum
3.4 implies that

(4.5) lim
k→∞

max{Wk(t)− ln a(n) : t ∈ Im} = 0.

From Lemma 2 of [24] (which is based on Smale’s Transversality Theorem)
there are arbitrarily small smooth perturbations of the map t 7→ g(t) that
are bumpy for almost all t ∈ Im. We leave the details for the reader to see
in [24] and instead assume, for simplicity, that g(t) is a bumpy metric for
almost all t ∈ Im. Using the fact that ∂tig(t) = ψig(t), it is shown in [24,
Lemma 2] that for a full measure set t ∈ A ⊂ Im we have

(4.6)
∂

∂ti
ωk(M, g(t)) =

n

2
||Sk(t)||(ψi), i = 1, . . . ,m,

where Sk(t) ∈ V(g(t)) is a smooth embedded minimal cycle with

ωk(M, g(t)) = ||Sk(t)||(M) and index(Sk(t)) ≤ k.
Combining with the fact that

∂

∂ti
volg(t)(M) =

n+ 1

2

∫
M
ψidVg(t)

we have that for almost all t ∈ Im

(4.7)
∂

∂ti
Wk(t) =

n

2

(
µSk(t)(ψi)− µM (ψi)

)
i = 1, . . . ,m.

The sequence of functions {Wk}k∈N converges uniformly to a constant (4.5)
as k → ∞ and so we deduce from Lemma 4.1 the existence of k ∈ N and
t̄ ∈ Im so that dist(0, ∂∗Wk(t̄)) < n/(2m).

Choose v ∈ ∂∗Wk(t̄) with |v| < n/(2m) and set

K = { lim
i→∞
∇Wk(ti) : ∇Wk(ti) exists and lim ti = t̄} ⊂ Rm.

From Caratheodory Theorem, there are v0, . . . , vm ∈ K and 0 ≤ a0, . . . , am ≤
1 so that

v =

m∑
l=0

alvl and a0 + . . .+ al = 1.

Claim: For each l = 0, . . . ,m there is a smooth embedded cycle Vl so that

vl.ei =
n

2
(µVl(ψi)− µM (ψi)) i = 1, . . . ,m,

where ei is the ith coordinate vector.



30 FERNANDO C. MARQUES AND ANDRÉ NEVES

There is a sequence {tj}j∈N ∈ A ⊂ Im so that tj → t̄ and ∇Wk(tj)→ vl
as t → ∞. Considering the smooth embedded minimal cycles Sk(tj) that
appear in (4.7), we have from Sharp Compactness Theorem [29, Theorem
2.3] the existence of a smooth embedded minimal cycle Vl so that, after
passing to a subsquence, Sk(tj) converges to Vl in the varifold sense. Thus
||Sk(tj)||(M) → ||Vl||(M) and ||Sk(tj)||(ψi) → ||Vl||(ψi), i = 1, . . . ,m, as
j →∞. Therefore we have from (4.7) that

vl.ei = lim
j→∞

∇Wk(tj).ei = lim
j→∞

∂

∂ti
Wk(tj)

= lim
j→∞

n

2

(
µSk(tj)(ψi)− µM (ψi)

)
=
n

2
(µVl(ψi)− µM (ψi))

for all i = 1, . . . ,m.

The claim implies that if we consider µ =
∑m

l=0 alµVl ∈ Conv(V(g(t̄)))
then

v.ei =
m∑
l=0

alvl.ei =
m∑
l=0

al
n

2
(µVl(ψi)− µM (ψi)) =

n

2
(µ(ψi)− µM (ψi))

for all i = 1, . . . ,m. Recalling that |v| < n/(2m), the identity above implies
that g(t̄) ∈ M∗(m). Because the cube Im ⊂ Rm can be chosen arbitrarily
small, we deduce that M∗(m) is dense in M. �
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