ON ISOMORPHIC CONTACT DIFFEOMORPHISM GROUPS

Adán Medrano Martín del Campo

August 5, 2016

Abstract

Agustin Banyaga proved, in a series of three papers, that contact structures (in a restricted sense) are determined by their isomorphism groups. In this paper, we arrange the arguments used in these papers in a self-contained manner.

1 Introduction

The goal of this paper is to condense Banyaga's proof that contact structures, in their restricted sense, are determined by their automorphism groups, into a single, self-contained paper. This proof can also be found in [3], drawing from the main results from [1] and [2].

In section 2, we present the proof of the main results drawn from [1] and [2]. Then, in section 3 we present a discussion about Epstein's axioms, which are key to the proof of the main theorem in [3], followed by the original proof of the main theorem. To begin our discussion, we present the essential notation and definitions mentioned in [3].

A contact structure ξ on a smooth manifold M is a hyperplane field $\xi \subset TM$ such that there exists an open cover $\{U_i\}$ of M and contact forms α_i on U_i such that $\xi_{U_i} = \ker \alpha_i$ ([8], [9]). The hyperplane field ξ is co-orientable if the contact form α is defined globally. A contact manifold is a pair (M, ξ) consisting of a smooth manifold M and a contact structure ξ on it. If ξ is a co-orientable contact structure, we call (M, ξ) a co-orientable contact manifold.

The automorphism group of the contact structure ker $\alpha = \xi$ is the group

$$\operatorname{Diff}(M,\xi) = \{\varphi \in \operatorname{Diff}^{\infty}(M) \mid \varphi^*\xi = \xi\}$$

Let $\operatorname{Diff}_{K}(M,\xi)$ be the subgroup of $\operatorname{Diff}(M,\xi)$ whose elements have supports in a compact subset K, endowed with the compact-open topology, and let

$$\operatorname{Diff}_{c}(M,\xi) = \operatorname{lim}\operatorname{Diff}_{K}(M,\xi)$$

where K runs over all compact sets, with the direct limit topology. We denote by $G_{\xi}(M)$ the identity component in $\operatorname{Diff}_{c}(M,\xi)$. Namely, $G_{\xi}(M)$ is the group of compactly supported C^{∞} diffeomorphisms of M isotopic to the identity that preserve the contact structure ξ .

The main result we wish to recreate is the following

Theorem 1.1 ([3]). Let (M_i, ξ_i) , i = 1, 2, be connected co-orientable contact manifolds of dimension 2n+1. If $\Phi : G_{\xi_1}(M_1) \to G_{\xi_2}(M_2)$ is a group isomorphism, then there exists a unique C^{∞} diffeomorphism $w : M_1 \to M_2$ such that $w^*\xi_2 = \xi_1$ and

$$\Phi(h) = whw^{-1} \quad \forall h \in G_{\mathcal{E}_1}(M_1).$$

2 Key results

Before we begin the discussion of the main theorem, we shall discuss two results essential for its proof.

The first one guarantees that, given a bijection w between two contact manifolds (M_i, ξ_i) with a co-orientable contact structure, which induces an isomorphism between their groups $G_{\xi_i}(M_i)$, this bijection w is furthermore a contact structure exchanging C^{∞} diffeomorphism between the (M_i, ξ_i) . This result is contained in [1].

The second one guarantees that given two smooth manifolds M and N and an isomorphism between two of their groups of diffeomorphisms $\phi : G(M) \to G(N)$, under certain conditions, there exists a unique homeomorphism h between the two manifolds which induces the isomorphism ϕ . This result is contained in [2].

2.1 Isomorphism-inducing bijections are contact structure exchanging C^{∞} diffeomorphisms

Theorem 2.1 ([1]). Let (M_i, ξ_i) , i = 1, 2, be two co-orientable contact manifolds. Let $w : M_1 \to M_2$ be a bijective map such that for any map $f : M_1 \to M_1$, we have

$$wfw^{-1} \in G_{\xi_2}(M_2)$$
 if and only if $f \in G_{\xi_1}(M_1)$.

Then w is a C^{∞} diffeomorphism and $w^*\xi_2 = \xi_1$.

Proof. First we show that $w: M_1 \to M_2$ is a homeomorphism, as it is done in [7].

For a function f, let Fix $(f) = \{x \in M_1 \mid f(x) = x\}$ and let $\mathscr{A} = \{\text{Fix }(f) \mid f \in G_{\xi_1}(M_1)\}$ be the class of fixed subsets of elements of $G_{\xi_1}(M_1)$. Now, let $\mathscr{B} = \{M_1 - A \mid A \in \mathscr{A}\}$ be the set of complements of elements of \mathscr{A} . Note that \mathscr{B} consists of open sets in M_1 , and that for every $B \in \mathscr{B}$, B is the interior of the support of some diffeomorphism. For each $x \in M_1$, and every open subset $U \subset M_1$ containing x, we can construct and $h \in G_{\xi_1}(M_1)$ such that $x \in \text{Int }(\text{supp }(h))$, and $\text{supp }(h) \subset U$. Namely, there exists $B \in \mathscr{B}$ such that $x \in B \subset U$. Therefore, \mathscr{B} is a basis for the topology on M_1 . Note that for $h \in G_{\xi_1}(M_1)$ and $g \in G_{\xi_2}(M_2)$, we have

Fix
$$(whw^{-1}) = w$$
 (Fix (h)) and Fix $(w^{-1}gw) = w^{-1}$ (Fix (g)).

Therefore w and w^{-1} take open sets to open sets, so both functions are continuous, and therefore w is a homeomorphism.

Let $\mathcal{L}_{\xi_i}(M_i)$ be the Lie algebra of vector fields with compact supports on M_i , generating 1-parameter groups of diffeomorphims h_t belonging to $G_{\xi_i}(M_i)$. Let $X \in \mathcal{L}_{\xi_1}(M_1)$ and let h_t be its 1-parameter diffeomorphisms. For each t, $H_t = wh_t w^{-1} \in G_{\xi_2}(M_2)$ by hypothesis, and the evaluation map

$$\mathcal{H}:\mathbb{R}\times M_2\to M_2$$

given by $\mathcal{H}(t, x) = H_t(x)$, is continuous. Moreover $H_0 = \text{Id}$ and $H_{t+s} = H_t \circ H_s$. Therefore \mathcal{H} is a continuous action of \mathbb{R} on M_2 . By Theorem 3, §5.2 of Montgomery-Zippin [10, p. 212], since \mathbb{R} is a Lie group, this action is C^{∞} (so \mathcal{H} is smooth in both variables t and x). Therefore, the 1-parameter group H_t has an infinitesimal generator, namely, a vector field $X_w \in \mathcal{L}_{\xi_2}(M_2)$ such that

$$\frac{d}{dt}H_{t}\left(x\right) = X_{w}\left(H_{t}\left(x\right)\right).$$

Given $f \in C^{\infty}(M_2)$, we have $X_w \cdot f \in C^{\infty}(M_2)$. For each $X \in \mathcal{L}_{\xi_1}(M_1)$ and $f \in C^{\infty}(M_2)$, we have

$$\frac{d}{dt} \left(f \circ w \right) \left(h_t \left(x \right) \right) |_{t=0} = \left(X_w \cdot f \right) \left(w \left(x \right) \right)$$

We now want to show that w and w^{-1} are C^{∞} maps. It is enough to show that $f \circ w \in C^{\infty}(M_1)$ for all $f \in C^{\infty}(M_2)$ and that $g \circ w^{-1} \in C^{\infty}(M_2)$ for all $g \in C^{\infty}(M_1)$ [11]. The situation is symmetrical, so it suffices to show that $f \circ w \in C^{\infty}(M_1)$ for all $f \in C^{\infty}(M_2)$. We now wish to compute the partial derivatives of $f \circ w$.

Let $\xi_i = \ker \alpha_i$ and let $x \in M_1$ and U be a contractible open neighbourhood of x which is the domain of a local canonical chart $\varphi: U \to \mathbb{R}^{2n+1}$. In this chart, $\alpha_1|_U = \varphi^* \underline{\alpha}$ where

$$\underline{\alpha} = dz - (x_1 dy_1 + \dots + x_n dy_n)$$

The existence of this chart is guaranteed by Darboux's theorem. On U consider the vector fields given by

$$Z = \frac{\partial}{\partial z}, \quad X_k = \frac{\partial}{\partial x_k}, \quad Y_k = \frac{\partial}{\partial y_k} + x_k \frac{\partial}{\partial z}.$$

If η is one of the vector fields above, then $L_{\eta}\underline{\alpha} = 0$, where $L_{\eta}\underline{\alpha}$ is the Lie derivative of $\underline{\alpha}$ in the direction of the vector field η . We wish to show that these vector fields defined in U can be extended into elements of $\mathcal{L}_{\xi_1}(M_1)$ [12].

It is well-known that a contact vector field η on a contact manifold (M, ξ) with co-orientable contact structure, with ker $\alpha = \xi$, is completely determined by the function $\iota_{\eta}\alpha$ [13], where $\iota_{\eta}\alpha$ is the interior product of α and η . Therefore, if λ is a C^{∞} function which is equal to 1 near x and has compact support in U, the function $\lambda(\iota_{\xi}\alpha)$ (where again, η is one of the vector fields above) determines contact vector fields $\overline{Z}, \overline{X_k}, \overline{Y_k}$ which have compact supports and coincide with Z, X_k, Y_k near x.

Denote by $\overline{f \circ w}$ the local expression of $f \circ w$ in the chart (φ, U) . Namely, $\overline{f \circ w} = f \circ w \circ \varphi^{-1} : \varphi(U) \to \mathbb{R}$. For $a \in U$, denote $\varphi(a) = (a_1, \ldots, a_{2n+1}) = \overline{a}$. Let $h_t^z, h_t^{x_k}, h_t^{y_k}$ be the 1-parameter groups of diffeomorphisms generated by $\overline{Z}, \overline{X_k}, \overline{Y_k}$, respectively. Then, we have that near x, the diffeomorphism $\overline{h}_t^z = \varphi h_t^z \varphi^{-1} : \varphi(U) \to \varphi(U)$ is given by

$$\overline{h}_t^z(x_1, x_2, \dots, x_{2n+1}) = (x_1 + t, x_2, \dots, x_{2n+1})$$

This implies that

$$\begin{split} \frac{\partial}{\partial z} \left(\overline{f \circ w} \right) \left(\overline{a} \right) &= \lim_{t \to 0} \frac{\left(f \circ w \circ \varphi^{-1} \right) \left(\varphi h_t^z \varphi^{-1} \left(\overline{a} \right) \right) - \left(f \circ w \circ \varphi^{-1} \right) \left(\overline{a} \right)}{t} \\ &= \lim_{t \to 0} \frac{\left(f \circ w \right) \left(h_t^z \left(a \right) \right) - \left(f \circ w \right) \left(a \right)}{t} \\ &= \frac{d}{dt} \left(f \circ w \right) \left(h_t^z \left(a \right) \right) |_{t=0} \\ &= \frac{d}{dt} f \left(H_t^z \left(w \left(a \right) \right) \right) |_{t=0} \\ &= \left(\overline{Z}_w \cdot f \right) \left(w \left(a \right) \right). \end{split}$$

Similarly, we obtain

$$\frac{\partial}{\partial x_k} \left(\overline{f \circ w} \right) \left(\overline{a} \right) = \left(\left(\overline{X_k} \right)_w \cdot f \right) \left(w \left(a \right) \right)$$
$$\frac{\partial}{\partial y_k} \left(\overline{f \circ w} \right) \left(\overline{a} \right) = \left(\left(\overline{Y_k} \right)_w \cdot f \right) \left(w \left(a \right) \right) + x_k \left(\overline{Z}_w \cdot f \right) \left(w \left(a \right) \right)$$

and this shows that $f \circ w$ is a C^1 mapping. To compute higher order derivatives, one must simply replace f by $\overline{Z}_w \cdot f$, $(\overline{X_k})_w \cdot f$, and $(\overline{Y_k})_w \cdot f$. One can see with this that $f \circ w$ is a C^{∞} map, hence, w is a C^{∞} diffeomorphism.

It remains only to show that w exchanges our contact structures. We have already seen that for each $X \in \mathcal{L}_{\xi_1}(M_1)$ we get $X_w \in \mathcal{L}_{\xi_2}(M_2)$ such that $X_w = w_*X$. Therefore, w induces a Lie algebra isomorphism between the Lie algebras $\mathcal{L}_{\xi_i}(M_i)$. Now, we use the following theorem due to Omori [12], which is a generalization of a result by Pursell-Shanks [14].

Theorem 2.2 ([12], §X). Let (M_i, ξ_i) , i = 1, 2, be connected contact manifolds, with co-orientable contact structures ξ_i . If $\mathcal{L}_{\xi_1}(M_1)$ and $\mathcal{L}_{\xi_2}(M_2)$ are isomorphic, there exists a C^{∞} diffeomorphism $\varphi : M_1 \to M_2$ such that $\varphi^* \xi_2 = \xi_1$.

By theorem 2.2, there exists a C^{∞} map $\rho: M_1 \to M_2$, inducing the isomorphism $X \to X_w = w_*X$ with $\rho^*\xi_2 = \xi_1$. Now, we claim that the condition $\rho_*\eta = w_*\eta \quad \forall \eta \in \mathcal{L}_{\xi_1}(M_1)$ implies that $\rho = w$. Let $\varphi = \rho^{-1}w$ and h_t the 1-parameter group of diffeomorphisms generated by η . Then

$$\varphi h_t \varphi^{-1} = h_t$$

If $\varphi \neq \text{Id}$ then we can take $x \in M_1$ such that $\varphi(x) \neq x$. Take $\eta \in \mathcal{L}_{\xi_1}(M_1)$ such that $\eta(x) \neq 0$, with support not containing $\varphi(x)$. If h is the time-one flow of η , then $h(x) \neq x$ (since $\eta(x) \neq 0$) and $h(\varphi(x)) = \varphi(x)$, but note as well that

$$\left(\varphi h \varphi^{-1}\right)\left(\varphi\left(x\right)\right) = \varphi\left(h\left(x\right)\right) \neq \varphi\left(x\right) = h\left(\varphi\left(x\right)\right)$$

and therefore $\varphi h \varphi^{-1} \neq h$, which is a contradiction. Therefore $\varphi = \text{Id}$ and $\rho = w$. The proof is complete.

2.2 Existence of a unique isomorphism-inducing homeomorphism

Before stating our second key result, we need to introduce some notation employed in [2]. Through this subsection, M will be a *smooth manifold*, where we mean a paracompact connected finite dimensional C^{∞} manifold without boundary.

Let $\operatorname{Diff}^{r}(M)$, with $r \in [1, \infty)$, be the group of all C^{r} -diffeomorphisms of M. Similarly, let $\operatorname{Diff}^{r}_{c}(M) \subseteq \operatorname{Diff}^{r}(M)$ be the subgroup of elements with compact support. A subgroup $G(M) \subseteq \operatorname{Diff}^{r}(M)$ is called a group of C^{r} -diffeomorphisms of M. We say h is G(M)-isotopic to the identity if there exists a map $H : [0,1] \to G(M)$ such that $H(0) = \operatorname{Id}, H(1) = h$, and the evaluation map $\mathcal{H} : [0,1] \times M \to M$ given by $\mathcal{H}(t,x) = (H(t))(x)$, is C^{r} .

Now, we list specific subgroups of, and conditions on a given group G(M) we will need further on.

Subgroup	Description
$G_{c}\left(M ight)$	The group of elements $h \in G(M)$ with compact support, $G(M) \cap \text{Diff}_{c}^{r}(M)$.
$G\left(U ight)$	The group of elements $h \in G(M)$ with compact support in an open subset $U \subseteq M$.
$G\left(M\right)_{x}$	The isotropy group of $x \in M$, that is, the subgroup of $h \in G(M)$ that fix x.
$G^{0}\left(M ight)$	The subgroup of $h \in G(M)$ that are $G(M)$ -isotopic to the identity.
$\left[G\left(M\right),G\left(M\right)\right]$	The group generated by commutators $fgf^{-1}g^{-1}$ for all $f, g \in G(M)$; or the commutator subgroup.

Property	Description
A	(Path transitivity) Given $x, y \in M, x \neq y$, and $c : [0,1] \to M$ with $c(0) = x, c(1) = y$, there is $h \in G(M)$
	such that $h(x) = y$ and supp (h) is contained in an arbitrarily small neighbourhood of $\bigcup_{t \in [0,1]} c(t)$.
В	For any small open ball U in M centered at $x_0 \in U$ there is $h \in G(M)$ such that Fix $(h) = (M - U) \cup \{x_0\}$.
	An open $U \subseteq M$ is an open ball centered at $x_0 \in U$ if there is an embedding $e: D^n_\rho \to M$ of the open
	disk of radius ρ centered at the origin in \mathbb{R}^n , into M and $U = e(D_{\sigma}^n)$ for some $\sigma \leq \rho$ and $e(0) = x_0$.
L	(Locality, this property holds on $F \subseteq G(M)$ a subgroup of $G(M)$) For every open cover $\mathscr{U} = (U_i)_{i \in I}$ of
	M with open balls U_i , we have $\left[G_c^0(M), G_c^0(M)\right] \subseteq F$ if for every $U_i, \left[G^0(U_i), G^0(U_i)\right] \subseteq F$.
C	For any pair (U, x) with $x \in U \subset M$ there is $\mathrm{Id} \neq h \in G(M)$ with $\mathrm{supp}(h) \subset U$ and $x \in \mathrm{Int}(\mathrm{supp}(h))$.
$T\left(n ight)$	Given two sets $\{x_1, \ldots, x_n\}$, $\{y_1, \ldots, y_n\}$ of distinct points, there is $h \in G(M)$ such that $h(x_i) = y_i \forall i$.

An immediate consequence of these properties, which we will use in the proof of our result, is the following

Proposition 2.3 ([2]). If a group of diffeomorphisms satisfies property A (path transitivity), then it satisfies properties C and T (n) for every n, provided dim M > 1.

Now, we may state our second result.

Theorem 2.4 ([2]). Let $\phi : G(M) \to G(N)$ be a group isomorphism between two groups of diffeomorphisms of smooth manifolds M and N. If G(M) and G(N) are non-abelian, both satisfy properties A and B, and

$$\phi^{-1}(G(N)_n), \phi(G(M)_m)$$

have the property L for all $m \in M$ and $n \in N$, then there exists a unique homeomorphism $w : M \to N$ with $\phi(f) = wfw^{-1}$. Proof. First, we will need the following lemma.

Lemma 2.5. Let G(M) and G(N) be two groups of diffeomorphisms satisfying properties T(1) and C. If $\phi : G(M) \to G(N)$ is an isomorphism such that there exists $x_0 \in M$ and $y_0 \in N$ such that

$$\phi\left(G\left(M\right)_{x_{0}}\right) = G\left(N\right)_{y_{0}}$$

then there exists a homeomorphism $w: M \to N$ such that $\phi(f) = wfw^{-1}$ for all $f \in G(M)$. Moreover, if G(M) and G(N) satisfy property T(2), then w is unique.

Proof of lemma lemma 2.5. If ϕ takes $G(M)_{x_0}$ to $G(N)_{y_0}$, it induces the following well defined map $w : M \to N$. For $x \in M$, choose $g \in G(M)$ such that $g(x_0) = x$ (we can do so by property T(1)), and we define

$$w\left(x\right) = \phi\left(g\right)\left(y_0\right).$$

Note that if another $g' \in G(M)$ satisfies $g(x_0) = g'(x_0) = x$ then $g'^{-1}g \in G(M)_{x_0}$ and $\phi(g'^{-1}g) = \phi(g')^{-1}\phi(g)$. But recall $\phi(g'^{-1}g) \in G(N)_{y_0}$ so

$$\phi\left(g'\right)\left(y_{0}\right) = \phi\left(g\right)\left(y_{0}\right)$$

Hence, w is well defined. Now let us see that it is a bijection.

If $w(x_1) = w(x_2)$ then there are $g_1, g_2 \in G(M)$ such that $g_1(x_0) = x_1$ and $g_2(x_0) = x_2$, and $\phi(g_1)(y_0) = \phi(g_2)(y_0)$. Then, we have $\phi(g_1)\phi(g_2)^{-1} = \phi(g_1g_2^{-1}) \in G(N)_{y_0}$ so $g_1g_2^{-1} \in G(N)_{x_0}$. Hence, $g_1(x_0) = g_2(x_0)$, and $x_1 = x_2$. Therefore w is injective. Now, if $y \in N$, we can choose $h \in G(N)$ such that $h(y_0) = y$. Set $x = \phi^{-1}(h)(x_0)$. Then $w(x) = \phi(\phi^{-1}(h))(y_0) = h(y_0) = y$. Hence, w is surjective. Since w is both injective and surjective, it is a bijection.

Next, we show that w induces ϕ . Let $y \in N$ and $h \in G(N)$ such that $h(y_0) = y$, and let $x = \phi^{-1}(h)(x_0)$. We have seen that w(x) = y. Let $f \in G(M)$ and choose $g \in G(M)$ such that $g(x_0) = f(x)$. Then, $f^{-1}g(x_0) = x = \phi^{-1}(h)(x_0)$, so

$$g^{-1}f\phi^{-1}(h) \in G(M)_{x_0}$$

This implies that $\phi(g)^{-1} \phi(f) h \in G(N)_{y_0}$, so $\phi(f) h(y_0) = \phi(g)(y_0)$ but $h(y_0) = y = w(x)$ and $\phi(g)(y_0) = w(f(x))$, so

$$\phi(f) w(x) = w(f(x))$$

and since w is a bijection, $\phi(f) = wfw^{-1}$ for all $x \in M$.

To show that w is a homeomorphism, we proceed as in the proof of theorem 2.1. We let $\mathscr{A} = \{ \operatorname{Fix}(f) | f \in G(M) \}$, and $\mathscr{B} = \{ M - A | A \in \mathscr{A} \}$. Property C implies that \mathscr{B} is a basis for the topology on M. Since $\phi(f) = wfw^{-1}$, it follows that $\operatorname{Fix}(\phi(f)) = w(\operatorname{Fix}(f))$. This implies that w and w^{-1} take open sets to open sets, so both functions are continuous. Hence w is a homeomorphism.

Lastly, we need to show w is unique if property T(2) is satisfied. If there exists another homeomorphism $w': M \to N$ such that $\phi(f) = w' f w'^{-1} = w f w^{-1}$. Then setting $\rho = w'^{-1} w$ we obtain

$$\rho f \rho^{-1} = f \quad \forall f \in G(M).$$

We show that ρ must be the identity map. Supposing it is not, there is $x \in M$ such that $\rho(x) \neq x$. Consider another point $y \in M$ distinct of x and $\rho(x)$. By property T(2) there is some $f \in G(M)$ such that f(x) = x and $f(\rho(x)) = y$ but

$$\rho f \rho^{-1}(\rho(x)) = \rho f(x) = \rho(x)$$
 and $f(\rho(x)) = y \neq \rho(x)$.

Therefore, this contradicts that $\rho f \rho^{-1} = f$, so $\rho = \text{Id}$ and therefore w = w'.

Now we will need a result due by [7], which only uses the property C and T (3).

Lemma 2.6. Let G(M), G(N) be two groups of diffeomorphisms of smooth manifolds M and N, satisfying properties C and T(3), and let $\phi: G(M) \to G(N)$ be an isomorphism. Let

$$F = \phi^{-1} \left(G \left(N \right)_y \right)$$

for some $y \in N$. If there is a nonempty proper closed subset $A \subset M$ such that $f(A) = A \quad \forall f \in F$. Then $A = \{x\}$ and $F = G(M)_x$.

Note that with lemma 2.5 and lemma 2.6 we only need to construct a nonempty proper subset of M invariant under F.

Proof of the existence of a proper closed subset under F. We follow Filipkiewicz for this.

Let $\phi: G(M) \to G(N)$ be an isomorphism. For $n \in N$ let \mathcal{M}_n be the set of all open balls U of M with

$$[G^{0}(U), G^{0}(U)] \subseteq F_{n} = \phi^{-1}(G(N)_{n})$$

Similarly, for $m \in M$ let \mathscr{N}_m be the set of all open balls V in N such that

$$\left[G^{0}\left(V\right),G^{0}\left(V\right)\right]\subseteq F_{m}^{\prime}=\phi\left(G\left(M\right)_{m}\right)$$

Note that \mathcal{M}_n and \mathcal{N}_m may be empty. Let

$$M_n = M - \bigcup_{v \in \mathcal{M}_n} v$$
 and $N_m = N - \bigcup_{v \in \mathcal{N}_m} v$.

Proposition 2.7. The subsets M_n and N_m are closed subsets of M and N, respectively. Moreover,

$$f(M_n) = M_n \ \forall f \in F_n \quad and \quad g(N_m) = N_m \ \forall g \in F'_m.$$

Assuming that G(M) and G(N) are nonabelian groups satisfying the T(1) property and that F_y , respectively F'_x , have the property L for all $x \in M$, respectively for all $y \in N$, then M_n , respectively N_m , are nonempty.

Proof of proposition 2.7. First, it is clear that M_n and N_m are closed subsets.

Secondly, we show F_n and F'_m fix M_n and N_m , respectively. Let $U \in \mathcal{M}_n$ and $f \in F_n$ and set V = f(U). Clearly, $G(V) = fG(U) f^{-1}$. Therefore,

$$\left[G^{0}\left(V\right),G^{0}\left(V\right)\right]=f\left[G^{0}\left(U\right),G^{0}\left(U\right)\right]\subseteq fF_{n}f^{-1}\subseteq F_{n}$$

so $V \in \mathcal{M}_n$. Hence, $f(M_n) = M_n$. The same argument shows $g(N_m) = N_m \ \forall g \in F'_m$.

Suppose that $M_n = \emptyset$. Then \mathscr{M}_n is an open cover of M by balls $\{U_i\}_{i \in I}$ such that

$$\left[G^{0}\left(U_{i}\right),G^{0}\left(U_{i}\right)\right]\subset F_{n}\quad\forall i\in I.$$

Let $y \in N$ be an arbitrary point. Since G(N) has the T(1) property, there is $f \in G(N)$ such that f(n) = y. Then

$$G(N)_{y} = fG(N)_{n} f^{-1}$$

and

$$F_{y} = \phi^{-1} \left(G(N)_{y} \right) = \phi^{-1} \left(fG(N)_{n} f^{-1} \right) = \phi(f)^{-1} \phi(G(N)_{n}) \phi(f) = \rho F_{n} \rho^{-1}$$

where $F_n = \phi^{-1}(G(N)_n)$ and $\rho = \phi^{-1}(f)$. Let $\mathscr{V} = \{V_i = \rho(U_i) | U_i \in \mathscr{M}_n\}$. Then \mathscr{V} is an open cover of M by balls V_i and

$$\left[G^{0}(V_{i}), G^{0}(V_{i})\right] = \rho\left[G^{0}(U_{i}), G^{0}(U_{i})\right]\rho^{-1} \subseteq \rho F_{n}\rho^{-1} = F_{y}$$

Hence $[G^0(V_i), G^0(V_i)] \subseteq F_y$ for all $V_i \in \mathscr{V}$. By the property L,

$$\left[G_{c}^{0}\left(M\right),G_{c}^{0}\left(M\right)\right]\subseteq F_{y}.$$

Therefore, $\phi\left(\left[G_c^0(M), G_c^0(M)\right]\right) \subseteq G(N)_y$ for all $y \in N$, and this implies that

$$\phi\left(\left[G_{c}^{0}\left(M\right),G_{c}^{0}\left(M\right)\right]\right)\subseteq\bigcap_{y\in N}G\left(N\right)_{y}=\left\{\mathrm{Id}_{M}\right\}.$$

But ϕ is an isomorphism, so this implies that $[G_c^0(M), G_c^0(M)] = \{ \mathrm{Id}_M \}$ which is impossible as $G_c^0(M)$ is nonabelian. Hence, $M_n \neq \emptyset$. The same argument shows that $N_m \neq \emptyset$.

We only need to know when M_n , respectively N_m , are proper subsets.

Lemma 2.8. Suppose G(M) and G(N) have the properties B and T(3). Then either M_n is a proper subset, or there exists $m \in M$ such that N_m is a proper subset.

Proof of lemma 2.8. We use the following result by Filipkiewick [7, Lemma 3.3].

Lemma 2.9. Let G(M), G(N) be two groups of diffeomorphisms of smooth manifolds M and N and $\phi : G(M) \to G(N)$ is a group isomorphism. Suppose G(M) has property B. Let

$$F = \phi^{-1} \left(G \left(N \right)_y \right)$$

for some $y \in N$. There exists $f \in F$, $f \neq Id$ such that $Int(Fix(f)) \neq \emptyset$.

This proof will follow Filipkiewicz closely. Property B holds, so applying lemma 2.8 there exists $g_0 \neq \text{Id}$ with $g_0 \in F_n = \phi^{-1}(G(N)_n)$ with

$$X = \operatorname{Int}\left(\operatorname{Fix}\left(g_{0}\right)\right) \neq \varnothing.$$

The set $Y = \text{Fix}(\phi(g_0)) \neq \emptyset$ as it contains $n \in Y$. Let

$$H = \phi^{-1} \{ h \in G(N) \mid h(Y) = Y \}$$

$$K = \phi^{-1} \{ h \in G(N) \mid Y \subset \text{Fix}(h) \}.$$

Then K is a normal subgroup of H. Since K contains g_0 , H and K are nontrivial groups. If $h \in \phi(K)$, h(n) = n as $n \in Y \subset Fix(h)$. This implies $\phi(K) \subset G(N)_n$, namely, $\phi(K) \subseteq F_n$. Now, there are two possibilities:

a) For all $k \in K$, $X \subseteq Fix(k)$.

b) There is $k \in K$ and $x \in X$ such that $k(x) \neq x$.

Case a). Let $h \in G(N-Y)$. Then $Y \in Fix(h)$, so $\phi^{-1}(h) \in K$. Then, $\phi^{-1}(h)$ fixes x for all $x \in X$. That is, $\phi^{-1}(h) \in G(M)_x$, or equivalently $h \in \phi(G(X)_x)$. This implies

$$G(N-Y) \subseteq \phi(G(M)_x) \quad \forall x \in X$$

Let V be any open ball $V \subset N - Y$. Then

$$\left[G^{0}\left(V\right),G^{0}\left(V\right)\right]\subseteq G^{0}\left(V\right)\subseteq G^{0}\left(N-Y\right)\subseteq\phi\left(G\left(M\right)_{x}\right)\quad\forall x\in X.$$

By definition of \mathcal{N}_x , for all $x \in X$, any open ball $V \subset N - Y$ belongs to \mathcal{N}_x . Hence, if a) holds, $\mathcal{N}_x \neq \emptyset$ for all $x \in X$, which in turn implies that N_x is proper for all $x \in X$.

Case b). First let us show (exactly like in [7]) that $G(X) \subset H$. Let $g \in G(X)$ with $g \neq Id$, which exists by property C. Now, let us see that $gg_0g^{-1} = g_0$. If $x \in Fix(g_0) - X = \partial(Fix(g_0))$, then g(x) = x and $g_0(x) = x$. Therefore, $gg_0g^{-1}(x) = x = g_0(x)$. If $x \notin Fix(g_0)$, then $g_0(x) \notin Fix(g_0)$. Since $supp(g) \subset X$ then g(x) = x, so $gg_0g^{-1}(x) = g(g_0(x)) = g_0(x)$. For $x \in X$, we have $gg_0g^{-1}(x) = x = g_0(x)$. Hence,

$$\phi(g) \phi(g_0) \phi(g)^{-1} = \phi(g_0)$$

and therefore

$$Y = \text{Fix}(\phi(g_0)) = \text{Fix}(\phi(g)\phi(g_0)\phi(g)^{-1}) = \phi(g)\text{Fix}(\phi(g_0)) = \phi(g)(Y)$$

so $g = \phi^{-1}(\phi(g)) \in H$ and $G(X) \subseteq H$.

We have, by assumption of case b), that there is $x_0 \in X$ and $k_0 \in K$ such that $k_0(x_0) \neq x_0$. Let $U \subseteq M$ be an open ball contained in X with $x_0 \in U$. We may assume that $k_0(x_0) \in U$, since if it were not originally, then we can choose $f \in G(U) \subseteq G(X) \subseteq H$ with $y_0 = f(x_0)$ with $y_0 \in U$, using property T(2). Then $f^{-1}k_0(x_0) = k_0(x_0)$ since $k_0(x_0) \notin U$ and $\operatorname{supp}(f) = \operatorname{supp}(f^{-1}) \subset U$. Hence

$$k_0(x_0) = fk_0^{-1}f^{-1}k_0(x_0) = f(x_0) = y_0.$$

Then $\tilde{k}_0(x_0) \neq x_0$, $\tilde{k}_0(x_0) = y_0 \in U$ and $\tilde{k} = (fk_0^{-1}f^{-1})k_0 \in K$ since K is a normal subgroup of H and $f \in H$.

Now we show that K acts transitively on U. Let $y \in U$. By property A, there is $\rho \in G(U)$ with $\rho(y) = x_0$ and $\rho(y_0) = y_0$, where $y_0 = \tilde{k}_0(x_0) \in U$. Then

$$\rho \tilde{k}_0(x_0) = \tilde{k}_0(x_0) = y_0$$
, and $\tilde{k}_0^{-1} \rho \tilde{k}_0(x_0) = x_0 = \rho(y)$.

Hence

$$\hat{g}(x_0) = \left(\rho^{-1}\tilde{k}_0^{-1}\rho\right)\tilde{k}_0(x_0) = y$$

and $\hat{g} \in K$ as $k_0 \in K$ and $\rho \in G(U) \subseteq G(X) \subseteq H$. Therefore, as $\hat{g}(x_0) = y$, K acts transitively on U.

Now, given three distinct elements $x_0, x_1, x_2 \in U$ there are $g_1, g_2 \in K$ such that $g_i(x_0) = x_i$ for i = 1, 2. Let U_0 be a small open ball containing x_0 and such that the sets

$$\{U_0, g_1U_0, g_2U_0, g_1^{-1}U_0, g_2^{-1}U_0\}$$

are mutually disjoint and their union is contained in U. An easy argument (by Thurston) shows that if $h_1, h_2 \in G(U_0)$, then $[h_1, h_2] = [[h_1, g_1], [h_2, g_2]]$ where $[h_i, g_i] = (h_i g_i h_i^{-1}) g_i^{-1} \in K$. This proves that

$$[G^{0}(U_{0}), G^{0}(U_{0})] \subseteq K \subseteq F_{n} = \phi^{-1}(G(N)_{n})$$

and therefore $U_0 \in \mathcal{M}_n$, so $\mathcal{M}_n \neq \emptyset$ and M_n is proper.

Hence, we have shown that either N_x is proper for all $x \in X$, or M_n is proper. This concludes the proof of lemma 2.8. \Box

To finish the proof of the existence of our proper closed nonempty subset, we use lemma 2.8. Given $\phi : G(M) \to G(N)$ with the hypothesis of theorem 2.4, starting with any point $y_0 \in N$, we have two possibilities, with which we conclude the proof.

- a) $X = M_{y_0}$ is proper nonempty closed and invariant by $F_{y_0} = \phi^{-1} \left(G(N)_{y_0} \right)$.
- b) There exists $z_0 \in M$ such that N_{z_0} is proper nonempty closed. In this case, we instead consider the isomorphism $\phi^{-1}: G(N) \to G(M)$, as N_{z_0} is invariant under $F'_{z_0} = \phi(G(M)_{z_0})$.

In case a) above, lemma 2.6 applied to ϕ shows that $M_{y_0} = \{x_0\}$ and $F_{y_0} = G(M)_{x_0}$. In case b), lemma 2.6 applied to ϕ^{-1} shows $N_{z_0} = \{u_0\}$ with $u_0 \in N$, and $F'_{z_0} = G(N)_{u_0}$. Hence, in any case, ϕ takes isotropy subgroups of $G(M)_{m_0}$ for some point $m_0 \in M$, to the isotropy subgroups $G(N)_{n_0}$ of some point $n_0 \in N$. Therefore, the hypothesis of lemma 2.5 are satisfied. Hence, lemma 2.5, lemma 2.6 and lemma 2.8 yield a complete proof of theorem 2.4.

3 Main theorem

Now, it suffices to prove that for isomorphic $\Phi : G_{\xi_1}(M_1) \to G_{\xi_2}(M_2), G_{\xi_1}$ and G_{ξ_2} are nonabelian, have the A and B property, and $\Phi \left(G_{\xi_1}(M_1)_{m_1} \right)$ and $\Phi^{-1} \left(G_{\xi_2}(M_2)_{m_2} \right)$ have the L property for every $m_1 \in M_1$ and $m_2 \in M_2$. In fact, we show every subgroup of $G_{\xi_i}(M_i)$ has the L property, hence the result follows. Before proving this, several

In fact, we show every subgroup of $G_{\xi_i}(M_i)$ has the *L* property, hence the result follows. Before proving this, several intermediate steps are required, which include the proof that $G_{\xi_i}(M_i)$ satisfies the Epstein's axioms, and a modification of Filipkiewicz's shrinking lemma.

3.1 Preliminaries

We will make use of the following results.

Theorem 3.1 ([4]). Let (M,ξ) be a co-orientable contact manifold and let h_t be a contact isotopy. Let $F \subseteq M$ be a closed set, and let $U, W \subseteq M$ be open sets such that

$$\bigcup_{t \in [0,1]} h_t(F) \subset U \subset \overline{U} \subset W.$$

Then there is a contact isotopy \tilde{h}_t such that $\tilde{h}_t|_F = h_t$ and $supp\left(\tilde{h}_t\right) \subset W$.

Theorem 3.2 (Lychagin's Theorem). There is a diffeomorphism $\Omega : \mathcal{W} \to \mathcal{V}$, where \mathcal{W} is a neighbourhood of the identity in $\text{Diff}_c(M,\xi)$, and \mathcal{V} is a neighbourhood of 0 in $\mathcal{L}_{\xi}(M)$.

Now we present the Epstein's axioms and theorem. Let G be a group of diffeomorphisms of a paracompact Hausdorff topological space M, and let \mathscr{U} be a basis pf the topology on M. The Epstein's axioms for the triple (G, \mathscr{U}, M) are

A1. If $U \in \mathscr{U}$ and $g \in G$, then $gU \in \mathscr{U}$.

A2. G acts transitively on \mathscr{U} .

A3. Let $g \in G$, $U \in \mathcal{U}$ and \mathcal{B} be an open cover of M. Then there are $g_1, \ldots, g_n \in G$ and $V_1, \ldots, V_n \in \mathcal{B}$ such that:

- (i) $g = g_n \circ g_{n-1} \circ \cdots \circ g_1$
- (ii) supp $(g_i) \subseteq V_i$
- (iii) $\operatorname{supp}(g_i) \cup (g_{i-1} \circ \cdots \circ g_1 \overline{U}) \neq M.$

Theorem 3.3 (Epstein's Theorem). If the triple (G, \mathcal{U}, M) satisfies Epstein's axioms, then [G, G] is a simple group.

3.2 Verification of Epstein's axioms for $G_{\xi}(M)$

Let (M,ξ) be a co-orientable contact manifold and consider $G_{\xi}(M)$. Fix a point $p \in M$ and let (V,ψ) be a Darboux chart of an open neighbourhood of p such that $\psi(V) = W \subseteq \mathbb{R}^{2n+1}$ and $\psi(p) = 0$. Let $\tau > 0$ such that the open ball $D_{4\tau}$ of radius 4τ centered at $0 \in \mathbb{R}^{2n+1}$, is contained in W. Let

$$\mathbf{B} = \psi^{-1} \left(D_{\tau} \right) \subset M.$$

With this construction, we wish to construct a basis \mathscr{U}_{ξ} of the topology on M that the triplet $(G_{\xi}(M), \mathscr{U}_{\xi}, M)$ satisfies Epstein's axioms.

Lemma 3.4. The subsets $\mathscr{U}_{\xi} = \{\varphi \mathbf{B} \mid \varphi \in G_{\xi}(M)\}$ form a basis for the topology on M.

Proof. Denote by (x, y, z) a point of \mathbb{R}^{2n+1} where $x, y \in \mathbb{R}^n$ and $z \in \mathbb{R}$. Let

$$\omega_0 = x_1 dy_1 + \dots + x_n + dy_n + dz_n$$

be the canonical contact form on \mathbb{R}^{2n+1} . For each $t \in \mathbb{R}^+$, let

$$R_t: \mathbb{R}^{2n+1} \to \mathbb{R}^{2n+1} \quad (x, y, z) \mapsto (tx, ty, t^2 z)$$

be a contact homothety, which is a contraction for t < 1 and a dilation for t > 1. Theorem 3.1 applied with $F = \overline{D}_{\tau}$ yields the following result

Lemma 3.5. For each small $\sigma, \tau \in \mathbb{R}$ with $3\tau \leq 1$, there is a contact isotopy \mathcal{R}_t^{σ} of \mathbb{R}^{2n+1} such that

$$\mathcal{R}_t^{\sigma}|_{\overline{D}_{\tau}} = R_{\sigma\tau} \quad and \quad supp\left(\mathcal{R}_t^{\sigma}\right) \subset D_{3\tau}.$$

Moreover, $Fix(\mathcal{R}_1^{\sigma}) = (\mathbb{R}^{2n+1} - D - 3\tau) \cup \{0\}.$

Proof of lemma 3.5. Consider a bump function λ_{σ} positive on $D_{2\tau}$ and given by

$$\lambda_{\sigma}\left(x\right) = \begin{cases} \sigma & x \in D_{\tau} \\ 0 & x \in \mathbb{R}^{2n+1} \setminus D_{3}. \end{cases}$$

Then, the isotopy we look for will be given by the following vector field: Let $\xi = \ker \alpha$. Then there is an isomorphism $\varsigma : \mathcal{L}_{\xi}(M) \to C^{\infty}(M)$ given by $\varsigma(X) = \iota_X \alpha$. Hence, one can assign a vector field $\varsigma^{-1}(f)$ to any $f \in C^{\infty}(M)$. In particular, one can assign a contact vector field to any vector field X defined as

$$\mathcal{C}(X) = \varsigma^{-1}(\iota_X \alpha).$$

Finally, our contact isotopy \mathcal{R}_t^{σ} is defined by the contact vector fields $X_t = \mathcal{C}(\lambda_{\sigma} \nabla R_t)$.

Now, we return to our original proof. Consider τ as in the definition of **B**. Using the chart (V, ψ) , we can obtain a contact isotopy ρ_t^{σ} of M equal to $\psi^{-1} \mathcal{R}_t^{\sigma} \psi$ on V and the identity outside V. Note that the contact diffeomorphism $\rho_1^{\sigma} = \rho_{\sigma}$ fixes p and shrinks **B** into an arbitrarily small neighbourhood of ρ_{σ} (**B**) = $\mathbf{B}_{\sigma} \in \mathscr{U}$ of p. Now we are ready to show \mathscr{U} is a basis.

Pick $x \in M$ and an open neighbourhood \mathcal{O} of x. By Boothby's transitivity theorem [5], there is $h \in G_{\xi}(M)$ such that h(p) = x and $h(\mathbf{B}_{\sigma}) = U \subset \mathcal{O}$ for small enough σ . Hence, $x \in U$ and $U = h\rho_{\sigma}(\mathbf{B}) \in \mathscr{U}$.

Remark 3.6. As a side result, it follows from lemma 3.5 that

$$\operatorname{Fix}\left(\rho_{\sigma}\right) = \left(M - \psi^{-1}\left(D_{3\tau}\right)\right) \cup \{p\}$$

which implies $G_{\xi}(M)$ has the property B.

Now that we have a candidate basis \mathscr{U}_{ξ} , we proceed to showing the following

Theorem 3.7. The triplet $(G_{\xi}(M), \mathcal{U}_{\xi}, M)$ satisfies Epstein's axioms.

Proof. Axioms A1 and A2 can be trivially verified.

To verify axiom A3 we need several intermediate results.

Lemma 3.8. Let $X \in \mathcal{L}_{\xi}(M)$ and let $\nu \in C^{\infty}(M)$ be a compactly supported function. Define the contact vector field

$$X^{\nu} := \mathcal{C}\left(\nu X\right) = \varsigma^{-1}\left(\iota_{\nu X}\alpha\right)$$

where ker $\alpha = \xi$. Then $\|X^{\nu}\|_1 \leq m_{\nu} \|X\|_1$, for some $m_{\nu} > 0$. Here $\|\cdot\|_1$ denotes the C^1 -norm.

Proof of lemma 3.8. Denoting $f_X = \iota_X \alpha$, we have

$$X^{\nu} = (\nu f_X) \eta + \Phi^{-1} ((\iota_{\eta} d (\nu f_X)) \alpha - d (\nu f_X))$$

= $\nu (f_X \eta + \Phi^{-1} ((\iota_{\eta} df_X) \alpha - df_X)) + f_X (\Phi^{-1} ((\iota_{\eta} d\nu) \alpha - d\nu))$
= $\nu X + f_X (\Phi^{-1} ((\iota_{\eta} d\nu) \alpha - d\nu))$

where Φ is the isomorphism between horizontal vector fields and semi-basic 1-forms. Hence

$$\|X^{\nu}\|_{1} \leq \|\nu X\|_{1} + \|f_{X}H_{\nu}\|_{2}$$

where H_{ν} is the horizontal part of the contact vector field $\varsigma^{-1}(\nu)$ corresponding to ν . Let A_{ν} be such that $\|\nu\|_1 < A_{\nu}$. Since ς is a linear map (hence bounded, as it is continuous), $\|f_X\|_1 \leq c_1 \|X\|_1$, where c_1 depends only on α . Furthermore, Φ, Φ^{-1} are linear operators, we have $\|H_{\nu}\|_{1} \leq c_{2} \|\nu\|_{1} < c_{2}A_{\nu}$ (where c_{2} depends only in Φ , which in turn depends on $d\alpha$). Hence

$$\|X^{\nu}\|_{1} \leq A_{\nu} \|X\|_{1} + (c_{1} \|X\|_{1}) (c_{2}A_{\nu}) = A_{\nu} (1 + c_{1}c_{2}) \|X\|_{1}$$

Lemma 3.9. Let $\phi \in G_{\xi}(M)$ with $supp(\phi) \subset K$ where K is compact. Let $\{U_i\}_{i=1}^n$ be a finite open cover of K. Then

$$\phi = \phi_1 \circ \cdots \circ \phi_n$$

where $supp(\phi_i) \subset U_i$ and $\phi_i \in G_{\xi}(M)$ for i = 1, ..., n.

Proof of lemma 3.9. We may assume ϕ is as close to the identity as we want. For this, consider an isotopy $\phi_t \in \text{Diff}_c(M,\xi)$ from the identity to ϕ , then $\phi = \phi_1$ can be written as $\phi = \phi^n \circ \cdots \circ \phi^n$ where $\phi^i = \phi_{i/n} \circ \phi_{i-1/n}^{-1}$ for a sufficiently large n. Consider the Lychagin chart $\Omega: \mathcal{W} \to \mathcal{V}$ in theorem 3.2, and choose a neighbourhood of the identity $\mathcal{O} \subset \mathcal{W}$. Let

$$r = \sup \left\{ s \mid B_s\left(0\right) \subset \Omega\left(\mathcal{O}\right) \right\}$$

where $B_s(0) = \{X \in \mathcal{L}_{\xi}(M) \mid ||X||_1 < s\}$. Now choose a partition of unity $\{\lambda_i\}$ subordinate to the open cover $\{U_i\}$, and define $\mu_i = \sum_{j=1}^i \lambda_j$. By lemma 3.8 we have that $\|\Omega(\phi)^{\mu_i}\|_1 \le m_i \|\Omega(\phi)\|_1$ for each *i*. Let $k = \max\{m_i\}$. Now, we can choose ϕ close enough to the identity so that $\|\Omega(\phi)\|_1 < \frac{r}{k}$ and hence $\|\Omega(\phi)^{\mu_i}\|_1 \leq r$ for all *i*. This implies that $t\Omega(\phi)^{\mu_i}$ is in the image of the chart Ω .

Note that for $x \notin U_i$, $\mu_i = \mu_{i-1}$, and $\mu_n = 1$. Defining $h_t^i = \Omega^{-1} (t\Omega(\phi)^{\mu_i})$, we have $h_i^t = h_{i-1}^t$ outside U_i and $h_n^t = \phi$. Hence, since

$$b_i^t = h_i^t \circ \left(h_{i-1}^t\right)^{-1}$$

has support in U_i and by construction, we have $\phi^t = \phi_n^t \circ \cdots \circ \phi_1^t$, our result follows.

Lemma 3.10. Let $g \in G_{\xi}(M)$ where $supp(g) \subset V \in \mathscr{U}_{\xi}$. Let U be a non-dense open subset of M. Then $g = g_2 \circ g_1$ where $g_i \in G_{\xi}(M), supp(g_i) \subset V and$

 $supp(q_1) \cup \overline{U} \neq M$ and $supp(q_2) \cup q_1\overline{U} \neq M$.

Proof of lemma 3.10. If supp $(g) \subset V$ then choose $g_1 = \text{Id}, g_2 = g$. Else, we can choose $x \in V - \overline{U}$ such that $g(x) \neq x$. Now, choose an isotopy $g_t \in \text{Diff}_c(M,\xi)$ from the identity to $g_1 = g$. Let N_1 be an open neighbourhood of x, such that there are open sets N_2 and N_3 satisfying

$$\bigcup_{t \in [0,1]} g_t\left(\overline{N}_1\right) \subset N \subset \overline{N}_2 \subset N_3 \subset V$$

By theorem 3.1 there is a contact isotopy h_t such that $h_t|_{\overline{N}_1} = g_t$ and supp $(h_t) \subset N_3$.

Choose a point $y \notin \overline{U} \cup \overline{N}_3$. Then, we define $g_1 = h_1$ and $g_2 = gh_1^{-1}$. It is clear that supp $(g_i) \in V$ for i = 1, 2, and since $y \notin \overline{U}$ and $y \notin \text{supp}(h)$, we have that $\text{supp}(\overline{g_1}) \cup \overline{U} \neq M$. Finally, $g_1(x) \notin g_1\overline{U}$ since $x \notin \overline{U}$, and for every $z \in N_1$, $g_2 \circ g_1(z) = g(z) = h(z) = g_1(z)$, so $x \notin \operatorname{supp}(g_2)$ and therefore, $\operatorname{supp}(g_2) \cup g_1\overline{U} \neq M$.

Now we complete the proof that $(G_{\xi}(M), \mathscr{U}_{\xi}, M)$ satisfies axiom A3. Take $g \in G_{\xi}(M), U \in \mathscr{U}_{\xi}$ and \mathscr{B} an open cover of M. Since g has compact support K, we can cover K by finitely many $V_i \in \mathscr{B}$, say V_1, \ldots, V_n . Using lemma 3.9 on g and the cover $\{V_i\}$ we obtain $g = g_n \circ \ldots \circ g_1$ with $g_i \in G_{\xi}(M)$ and $\operatorname{supp}(g_i) \subset V_i$. Finally, we apply lemma 3.10 to each triplet $(g_i, V_i, g_{i-1} \dots g_1 U)$ to obtain $g_i = g_i^2 g_i^1$ with $\operatorname{supp}\left(g_i^j\right) \subset V_i$ for j = 1, 2 and $\operatorname{supp}\left(g_i^1\right) \cup \overline{U} \neq M$ and $\operatorname{supp}\left(g_i^2\right) \cup g_i^1 \overline{U} \neq M$. Finally, the decomposition of g we wish is $g = g_n^2 \circ g_n^1 \circ \cdots \circ g_1^2 \circ g_1^1$.

3.3 The shrinking lemma

We will use a modification of a shrinking lemma of Filipkiewicz [7]. Recall $D_a^{2n+1} \subset \mathbb{R}^{2n+1}$ is the open ball of radius *a* centered at the origin. Since the dimension we are working on is understood, we simply write $D_a = D_a^{2n+1}$. Also, denote by $B(x, \varepsilon)$ the open ball of radius ε centered at *x*.

Lemma 3.11. Let C be an open cover of \overline{D}_1 . Then if $a \in (0,1]$, there are $f_i, g_i \in G_{\ker \omega_0}(\mathbb{R}^{2n+1})$ for i = 1, 2, ..., m such that

(i) For i = 1, ..., m, there exists $C_i \in \mathcal{C}$ such that $f_i, g_i \in G_{\ker \omega_0}(C_i)$

(*ii*)
$$[f_m, g_m] \circ \cdots \circ [f_1, g_1] (\overline{D}_1) \subset \overline{D}_a$$

where $\omega_0 = (\sum_{i=1}^n x_i dy_i) + dz$ is the standard contact form on \mathbb{R}^{2n+1} .

Proof. Let $A \subset (0,1]$ be the subset of $a \in (0,1]$ for which the lemma is true. Clearly A is non-empty as $1 \in A$, and this can be seen by choosing f = g = Id. Now, let $a_0 = \inf A$. We want to show $a_0 = 0$.

Suppose $a_0 > 0$. Let $\{V_i\}$ be a finite open cover of the boundary $\partial \overline{D}_{a_0}$ of \overline{D}_{a_0} and choose ε less than the Lebesgue number of the cover $\{V_i\}$. For each $x \in \partial \overline{D}_{a_0}$, choose pairs (g_x, U_x) consisting of an open neighbourhood U_x of x and $g \in G_{\ker \omega_0}(B(x, \varepsilon))$ such that

• $U_x \subset B(x,\varepsilon) \cap \left(\overline{D}_{a_0+\frac{\varepsilon}{2}} \setminus \overline{D}_{a_0-\frac{\varepsilon}{2}}\right)$

•
$$g_x(U_x) \subset \overline{D}_{a_0 - \frac{\varepsilon}{2}}$$
 and $g_x^{-1}(U_x) \subset \mathbb{R}^{2n+1} \setminus \overline{D}_{a_0 + \frac{\varepsilon}{2}}$.

This can be done by choosing points

$$p_{x} \in B\left(x,\varepsilon\right) \cap \partial D_{a_{0}-\frac{3\varepsilon}{4}}$$
$$q_{x} \in B\left(x,\varepsilon\right) \cap \partial D_{a_{0}+\frac{3\varepsilon}{4}}$$

since by Boothby's transitivity theorem, we can find $u, v \in G_{\ker \omega_0}(B(x,\varepsilon))$ such that $u(x) = p_x$, $u(q_x) = q_x$, $v(q_x) = x$, $v(p_x) = p_x$. Then setting $g_x = v \circ u$, we have $g_x(x) = p_x$ and $g_x^{-1}(x) = q_x$, and it only remains to take a sufficiently small neighbourhood U_x of x.

Clearly the sets U_x cover ∂D_{a_0} , so we can choose a finite cover $\{U_{x_i}\}_{i=1}^k$ with their corresponding $\{g_{x_i}\}$. For simplicity, let $U_{x_i} = U_i$ and $g_{x_i} = g_i$. Now we choose $\varepsilon' < \frac{\varepsilon}{2}$ such that

$$\overline{D_{a_0+\varepsilon'}\setminus D_{a_0-\varepsilon'}}\subset \bigcup_{i=1}^k U_i.$$

Our next step will be constructing an $f \in G_{\ker \omega_0}(D_{a_0+\varepsilon'} \setminus D_{a_0-\varepsilon'})$ such that for some c > 1, we have

$$f\left(\overline{D}_{a_0+\frac{\varepsilon'}{c}}\right)\subset\overline{D}_{a_0-\frac{\varepsilon'}{c}}.$$

Consider the homothety $R_{\lambda}(x, y, z) = (\lambda x, \lambda y, \lambda^2 z)$ where

$$\lambda = \left(\frac{a_0 - \frac{\varepsilon'}{c}}{a_0 + \frac{\varepsilon'}{c}}\right) < 1$$

with c > 1 chosen so that $\left(a_0 - \frac{\varepsilon'}{c}\right)\lambda^2 > a_0 - \varepsilon'$. We can choose such a c since the inequality is equivalent to

$$c^3 a^2 \varepsilon' + \mathcal{O}\left(c^2\right) > 0$$

where the right side is a polynomial in c with positive leading coefficient, hence for c sufficiently large, the inequality holds. Now, let $p \in \overline{D_{a_0 + \frac{\varepsilon'}{2}}}$, p = (x, y, z). Then

$$|R_{\lambda}(p)| = \left(\lambda^{2} \left(\sum_{i=1}^{n} x_{i}^{2} + y_{i}^{2}\right) + \lambda^{4} z^{2}\right)^{\frac{1}{2}}$$
$$\leq \left(\lambda^{2} \left(\left(\sum_{i=1}^{n} x_{i}^{2} + y_{i}^{2}\right) + z^{2}\right)\right)^{\frac{1}{2}} = \lambda |p| \leq \lambda \left(a_{0} + \frac{\varepsilon'}{c}\right) = a_{0} - \frac{\varepsilon'}{c}.$$

Hence $R_{\lambda}\left(\overline{D}_{a_0+\frac{\varepsilon'}{c}}\right) \subset \overline{D}_{a_0-\frac{\varepsilon'}{c}}$. Now, by theorem 3.1 we can find a contact diffeomorphism f which agrees with R_{λ} on $\overline{D_{a_0+\frac{\varepsilon'}{c}} \setminus D_{a_0-\frac{\varepsilon'}{c}}}$ and $\operatorname{supp}(f) \subset D_{a_0+\frac{\varepsilon'}{c}}$. To verify this, we need to show that if $|p| > a_0 - \frac{\varepsilon'}{c}$ then $|R_{\lambda}(p)| > a_0 - \varepsilon'$. But

$$|R_{\lambda}(p)| = \left(\lambda^{2} \left(\sum_{i=1}^{n} x_{i}^{2} + y_{i}^{2}\right) + \lambda^{4} z^{2}\right)^{\frac{1}{2}}$$

$$\geq \left(\lambda^{4} \left(\left(\sum_{i=1}^{n} x_{i}^{2} + y_{i}^{2}\right) + z^{2}\right)\right)^{\frac{1}{2}} = \lambda^{2} |p| > \lambda^{2} \left(a_{0} - \frac{\varepsilon'}{c}\right) > a_{0} - \varepsilon'.$$

Now, we apply lemma 3.9 to f subject to the open cover $\{U_i\}$ to obtain f_i such that supp $(f_i) \subset U_i$. Define $h_i = [f_i, g_i]$. Then

$$h_{i}(x) = \begin{cases} f_{i}(x) & x \in U_{i} \\ g_{i}f_{i}g_{i}^{-1} & x \in g_{i}(U_{i}) \\ x & \text{otherwise, since supp}(f_{i}) \subset U_{i} \end{cases}$$

The reminder of the proof is as done by Filipkiewicz. If $x \in \overline{D}_{a_0+\varepsilon'} \setminus \overline{D}_{a_0-\varepsilon'}$ then

$$h_k \circ \cdots \circ h_1(x) = f_k \circ \cdots \circ f_1(x)$$

and therefore $h_k \circ \cdots \circ h_1\left(\overline{D}_{a_0}\right) \subset \overline{D}_{a_0 - \frac{\varepsilon}{2}}$. Moreover, for each *i* there is an $x_i \in \partial D_{a_0}$ with $f_i, g_i \in G_{\ker \omega_0}\left(B\left(x_i, \varepsilon\right)\right)$. Since ε is less than the Lebesgue number of the covering \mathcal{C} , there is an open $C_i \in \mathcal{C}$ with $f_i, g_i \in G_{\ker \omega_0}\left(C_i\right)$ for each *i*, which shows $a_0 - \frac{\varepsilon'}{2} \in A$ and this is a contradiction to $a_0 = \inf A$. Hence $a_0 = 0$ and we are done.

3.4 Proof of the main theorem

We shall now prove that the groups $G_{\xi_i}(M_i)$, i = 1, 2 have the A and B properties, and every subgroup of them has the L property. Property A is a consequence of Boothby's transitivity theorem and k-transitivity of $G_{\xi}(M)$ and we have shown property B holds in remark 3.6. Hence, we are only left to show every subgroup of $G_{\xi}(M)$ has the L property.

Proposition 3.12. Every subgroup F of $G_{\xi}(M)$ has the L property.

Proof. We follow Filipkiewicz method. Let H be a subgroup of $[G_{\xi}(M), G_{\xi}(M)]$ generated by the groups $[G_{\xi}(U), G_{\xi}(U)]$ as U ranges over \mathscr{U}_{ξ} . H is a normal subgroup of $[G_{\xi}(M), G_{\xi}(M)]$, which is simple by theorem 3.3, so $H = [G_{\xi}(M), G_{\xi}(M)]$.

Let F be a subgroup of $G_{\xi}(M)$ satisfying the hypothesis of the L property subject to the open subcover of balls $\mathscr{U}' \subset \mathscr{U}_{\xi}$. That is, $[G_{\xi}(U), G_{\xi}(U)] \subseteq F$ for every $U \in \mathscr{U}'$. We need only show that if $W \in \mathscr{U}_{\xi}$ then $[G_{\xi}(W), G_{\xi}(W)] \subseteq F$. Consider then a Darboux chart ψ with domain U and $\overline{D}_1 \subset U$, and consider $W = \phi\psi(D_1) \in \mathscr{U}_{\xi}$ where $\phi \in G_{\xi}(M)$. By hypothesis, we can cover \overline{W} with finitely many $U_1, \ldots, U_s \in \mathscr{U}_{\xi}$ so that $[G_{\xi}(U_i), G_{\xi}(U_i)] \subset F$. Then, define $V_i = \psi^{-1}\phi^{-1}(U_i)$. The sets V_i cover \overline{D}_1 and either $V_i \subset U$ or we can choose smaller U_i so that $V_i \subset U$, and in the later case we do so. Assume $0 \in V_1$.

For some a > 0, $\overline{D_a} \subset V_1$, and we apply lemma 3.11 to obtain commutators $[f_j, g_j] \in G_{\ker \omega_0}(V_{i_j})$ $(1 \le i \le k)$ and $[f_r, g_r] \circ \ldots \circ [f_1, g_1] (\overline{D_1}) \subset \overline{D_a}$. Since each $f_j, g_j \in G_{\ker \omega_0}(U)$ we can define $\hat{f_j}, \hat{g_j} \in G_{\xi}(M)$ as

$$\hat{f}_{j}(x) = \begin{cases} (\phi\psi) f_{j}(\phi\psi)^{-1}(x) & x \in \phi\psi(U) \\ x & \text{otherwise} \end{cases}$$
$$\hat{g}_{j}(x) = \begin{cases} (\phi\psi) g_{j}(\phi\psi)^{-1}(x) & x \in \phi\psi(U) \\ x & \text{otherwise} \end{cases}$$

So $\left[\hat{f}_{j}, \hat{g}_{j}\right] \in \left[G_{\xi}\left(U_{i_{j}}\right), G_{\xi}\left(U_{i_{j}}\right)\right] \subset F$. Define $\tau = \left[\hat{f}_{r}, \hat{g}_{j}\right] \circ \cdots \circ \left[\hat{f}_{1}, \hat{g}_{1}\right]$. Then $\tau \in F$ and $\tau(W) \subset U_{1}$, and

$$\left[G_{\xi}\left(W\right),G_{\xi}\left(W\right)\right]\subset\tau^{-1}\left[G_{\xi}\left(U_{1}\right),G_{\xi}\left(U_{1}\right)\right]\tau\subset F.$$

4 Aknowledgements

This work was done under the internship program at École Polytechnique, Palaiseau, France under the supervision of Dr. Patrick Massot. I would like to thank Dr. Massot for his guidance through the understanding of this piece of deep mathematics, and I would like to thank École Polytechnique for providing this opportunity.

References

- [1] BANYAGA, A.: On isomorphic classical diffeomorphism groups I. Proc. Am. Math. Soc. 98 (1986), 113-118.
- [2] BANYAGA, A.: On isomorphic classical diffeomorphisms II. J. Differ. Geom. 28 (1988), 93-114.
- [3] BANYAGA, A.: On isomorphic classical diffeomorphism Groups, III. Ann. Glob. Analy. Geom. 13 (1995), 117-127.
- [4] BANYAGA, A.; PULIDO, J.: On the group of contact diffeomorphisms of \mathbb{R}^{2n+1} . Bol. Soc. Mat. Mex. 23 (1978), 43-47.
- [5] BOOTHBY, W.M.: The transitivity of the automorphisms of certain geometric structures. Trans. Am. Math. Soc. 137 (1969), 93-100.
- [6] EPSTEIN, D.B.A.: The simplicity of certain groups of homeomorphisms. Compos. Math. 22 (1970), 165-173.
- [7] FILIPKIEWICZ, R.P.: Isomorphisms between diffeomorphic groups. Ergodic Theory Dyn. Sys. 2 (1982), 159-197.
- [8] GRAY, J.: Some global properties of contact structures. Ann. Math. 69 (1959), 421-450.
- [9] KOBAYASHI, S.: Transformation Groups in Differential Geometry. Springer-Verlag (1972).
- [10] MONTGOMERY, D.; ZIPPIN, L.: Topological transformation groups. Wiley, Chichester (1955).
- [11] BROCKER, T.; JANICH, K.: Introduction to differential topology. Cambridge Univ. Press, New York (1982).
- [12] OMORI, H.: Infinite dimensional Lie transformation groups. Lecture notes in Math, vol. 427, Springer-Verlag, Berlin and New York (1974).
- [13] LYCHAGIN, V. V.: Local classification of non linear first order partial differential equations. *Russian Math. Surveys* 30 (1975), 105-175.
- [14] PURSELL, L.E.; SHANKS, M. E.: The Lie algebra of smooth manifolds. Proc. Amer. Math. Soc. (1954), 468-472.