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Abstract

Agustin Banyaga proved, in a series of three papers, that contact structures (in a restricted sense) are determined by
their isomorphism groups. In this paper, we arrange the arguments used in these papers in a self-contained manner.

1 Introduction

The goal of this paper is to condense Banyaga’s proof that contact structures, in their restricted sense, are determined by
their automorphism groups, into a single, self-contained paper. This proof can also be found in [3], drawing from the main
results from [1] and [2].

In section 2, we present the proof of the main results drawn from [1] and [2]. Then, in section 3 we present a discussion
about Epstein’s axioms, which are key to the proof of the main theorem in [3], followed by the original proof of the main
theorem. To begin our discussion, we present the essential notation and definitions mentioned in [3].

A contact structure ξ on a smooth manifold M is a hyperplane field ξ ⊂ TM such that there exists an open cover {Ui}
of M and contact forms αi on Ui such that ξUi = kerαi ([8], [9]). The hyperplane field ξ is co-orientable if the contact form
α is defined globally. A contact manifold is a pair (M, ξ) consisting of a smooth manifold M and a contact structure ξ on it.
If ξ is a co-orientable contact structure, we call (M, ξ) a co-orientable contact manifold.

The automorphism group of the contact structure kerα = ξ is the group

Diff (M, ξ) = {ϕ ∈ Diff∞ (M) | ϕ∗ξ = ξ}

Let DiffK (M, ξ) be the subgroup of Diff (M, ξ) whose elements have supports in a compact subset K, endowed with the
compact-open topology, and let

Diffc (M, ξ) = lim DiffK (M, ξ)

where K runs over all compact sets, with the direct limit topology. We denote by Gξ (M) the identity component in
Diffc (M, ξ). Namely, Gξ (M) is the group of compactly supported C∞ diffeomorphisms of M isotopic to the identity that
preserve the contact structure ξ.

The main result we wish to recreate is the following

Theorem 1.1 ([3]). Let (Mi, ξi), i = 1, 2, be connected co-orientable contact manifolds of dimension 2n+1. If Φ : Gξ1 (M1)→
Gξ2 (M2) is a group isomorphism, then there exists a unique C∞ diffeomorphism w : M1 →M2 such that w∗ξ2 = ξ1 and

Φ (h) = whw−1 ∀h ∈ Gξ1 (M1) .

2 Key results

Before we begin the discussion of the main theorem, we shall discuss two results essential for its proof.
The first one guarantees that, given a bijection w between two contact manifolds (Mi, ξi) with a co-orientable contact

structure, which induces an isomorphism between their groups Gξi (Mi), this bijection w is furthermore a contact structure
exchanging C∞ diffeomorphism between the (Mi, ξi). This result is contained in [1].

The second one guarantees that given two smooth manifolds M and N and an isomorphism between two of their groups
of diffeomorphisms φ : G (M) → G (N), under certain conditions, there exists a unique homeomorphism h between the two
manifolds which induces the isomorphism φ. This result is contained in [2].

2.1 Isomorphism-inducing bijections are contact structure exchanging C∞ diffeomorphisms

Theorem 2.1 ([1]). Let (Mi, ξi), i = 1, 2, be two co-orientable contact manifolds. Let w : M1 →M2 be a bijective map such
that for any map f : M1 →M1, we have

wfw−1 ∈ Gξ2 (M2) if and only if f ∈ Gξ1 (M1) .

Then w is a C∞ diffeomorphism and w∗ξ2 = ξ1.
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Proof. First we show that w : M1 →M2 is a homeomorphism, as it is done in [7].
For a function f , let Fix (f) = {x ∈M1 | f (x) = x} and let A = {Fix (f) | f ∈ Gξ1 (M1)} be the class of fixed subsets of

elements of Gξ1 (M1). Now, let B = {M1 −A | A ∈ A } be the set of complements of elements of A . Note that B consists
of open sets in M1, and that for every B ∈ B, B is the interior of the support of some diffeomorphism. For each x ∈M1, and
every open subset U ⊂M1 containing x, we can construct and h ∈ Gξ1 (M1) such that x ∈ Int (supp (h)), and supp (h) ⊂ U .
Namely, there exists B ∈ B such that x ∈ B ⊂ U . Therefore, B is a basis for the topology on M1. Note that for h ∈ Gξ1 (M1)
and g ∈ Gξ2 (M2), we have

Fix
(
whw−1

)
= w (Fix (h)) and Fix

(
w−1gw

)
= w−1 (Fix (g)) .

Therefore w and w−1 take open sets to open sets, so both functions are continuous, and therefore w is a homeomorphism.
Let Lξi (Mi) be the Lie algebra of vector fields with compact supports on Mi, generating 1-parameter groups of dif-

feomorphims ht belonging to Gξi (Mi). Let X ∈ Lξ1 (M1) and let ht be its 1-parameter diffeomorphisms. For each t,
Ht = whtw

−1 ∈ Gξ2 (M2) by hypothesis, and the evaluation map

H : R×M2 →M2

given by H (t, x) = Ht (x), is continuous. Moreover H0 = Id and Ht+s = Ht ◦Hs. Therefore H is a continuous action of R on
M2. By Theorem 3, §5.2 of Montgomery-Zippin [10, p. 212], since R is a Lie group, this action is C∞ (so H is smooth in both
variables t and x). Therefore, the 1-parameter group Ht has an infinitesimal generator, namely, a vector field Xw ∈ Lξ2 (M2)
such that

d

dt
Ht (x) = Xw (Ht (x)) .

Given f ∈ C∞ (M2), we have Xw · f ∈ C∞ (M2). For each X ∈ Lξ1 (M1) and f ∈ C∞ (M2), we have

d

dt
(f ◦ w) (ht (x)) |t=0 = (Xw · f) (w (x)) .

We now want to show that w and w−1 are C∞ maps. It is enough to show that f ◦w ∈ C∞ (M1) for all f ∈ C∞ (M2) and
that g ◦w−1 ∈ C∞ (M2) for all g ∈ C∞ (M1) [11]. The situation is symmetrical, so it suffices to show that f ◦w ∈ C∞ (M1)
for all f ∈ C∞ (M2). We now wish to compute the partial derivatives of f ◦ w.

Let ξi = kerαi and let x ∈M1 and U be a contractible open neighbourhood of x which is the domain of a local canonical
chart ϕ : U → R2n+1. In this chart, α1|U = ϕ∗α where

α = dz − (x1dy1 + · · ·+ xndyn) .

The existence of this chart is guaranteed by Darboux’s theorem. On U consider the vector fields given by

Z =
∂

∂z
, Xk =

∂

∂xk
, Yk =

∂

∂yk
+ xk

∂

∂z
.

If η is one of the vector fields above, then Lηα = 0, where Lηα is the Lie derivative of α in the direction of the vector field
η. We wish to show that these vector fields defined in U can be extended into elements of Lξ1 (M1) [12].

It is well-known that a contact vector field η on a contact manifold (M, ξ) with co-orientable contact structure, with
kerα = ξ, is completely determined by the function ιηα [13], where ιηα is the interior product of α and η. Therefore, if λ
is a C∞ function which is equal to 1 near x and has compact support in U , the function λ (ιξα) (where again, η is one of
the vector fields above) determines contact vector fields Z,Xk, Yk which have compact supports and coincide with Z,Xk, Yk
near x.

Denote by f ◦ w the local expression of f ◦ w in the chart (ϕ,U). Namely, f ◦ w = f ◦ w ◦ ϕ−1 : ϕ (U)→ R. For a ∈ U ,
denote ϕ (a) = (a1, . . . , a2n+1) = a. Let hzt , h

xk
t , h

yk
t be the 1-parameter groups of diffeomorphisms generated by Z,Xk, Yk,

respectively. Then, we have that near x, the diffeomorphism h
z

t = ϕhztϕ
−1 : ϕ (U)→ ϕ (U) is given by

h
z

t (x1, x2, . . . , x2n+1) = (x1 + t, x2, . . . , x2n+1) .

This implies that

∂

∂z

(
f ◦ w

)
(a) = lim

t→0

(
f ◦ w ◦ ϕ−1

) (
ϕhztϕ

−1 (a)
)
−
(
f ◦ w ◦ ϕ−1

)
(a)

t

= lim
t→0

(f ◦ w) (hzt (a))− (f ◦ w) (a)

t

=
d

dt
(f ◦ w) (hzt (a)) |t=0

=
d

dt
f (Hz

t (w (a))) |t=0

=
(
Zw · f

)
(w (a)) .
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Similarly, we obtain

∂

∂xk

(
f ◦ w

)
(a) =

((
Xk

)
w
· f
)

(w (a))

∂

∂yk

(
f ◦ w

)
(a) =

((
Yk
)
w
· f
)

(w (a)) + xk
(
Zw · f

)
(w (a))

and this shows that f ◦ w is a C1 mapping. To compute higher order derivatives, one must simply replace f by Zw · f ,(
Xk

)
w
· f , and

(
Yk
)
w
· f . One can see with this that f ◦ w is a C∞ map, hence, w is a C∞ diffeomorphism.

It remains only to show that w exchanges our contact structures. We have already seen that for each X ∈ Lξ1 (M1) we
get Xw ∈ Lξ2 (M2) such that Xw = w∗X. Therefore, w induces a Lie algebra isomorphism between the Lie algebras Lξi (Mi).

Now, we use the following theorem due to Omori [12], which is a generalization of a result by Pursell-Shanks [14].

Theorem 2.2 ([12], §X). Let (Mi, ξi), i = 1, 2, be connected contact manifolds, with co-orientable contact structures ξi. If
Lξ1 (M1) and Lξ2 (M2) are isomorphic, there exists a C∞ diffeomorphism ϕ : M1 →M2 such that ϕ∗ξ2 = ξ1.

By theorem 2.2, there exists a C∞ map ρ : M1 →M2, inducing the isomorphism X → Xw = w∗X with ρ∗ξ2 = ξ1. Now,
we claim that the condition ρ∗η = w∗η ∀η ∈ Lξ1 (M1) implies that ρ = w. Let ϕ = ρ−1w and ht the 1-parameter group of
diffeomorphisms generated by η. Then

ϕhtϕ
−1 = ht.

If ϕ 6= Id then we can take x ∈M1 such that ϕ (x) 6= x. Take η ∈ Lξ1 (M1) such that η (x) 6= 0, with support not containing
ϕ (x). If h is the time-one flow of η, then h (x) 6= x (since η (x) 6= 0) and h (ϕ (x)) = ϕ (x), but note as well that(

ϕhϕ−1
)

(ϕ (x)) = ϕ (h (x)) 6= ϕ (x) = h (ϕ (x))

and therefore ϕhϕ−1 6= h, which is a contradiction. Therefore ϕ = Id and ρ = w. The proof is complete.

2.2 Existence of a unique isomorphism-inducing homeomorphism

Before stating our second key result, we need to introduce some notation employed in [2]. Through this subsection, M will
be a smooth manifold, where we mean a paracompact connected finite dimensional C∞ manifold without boundary.

Let Diffr (M), with r ∈ [1,∞), be the group of all Cr-diffeomorphisms of M . Similarly, let Diffrc (M) ⊆ Diffr (M) be the
subgroup of elements with compact support. A subgroup G (M) ⊆ Diffr (M) is called a group of Cr-diffeomorphisms of M .
We say h is G (M)-isotopic to the identity if there exists a map H : [0, 1]→ G (M) such that H (0) = Id, H (1) = h, and the
evaluation map H : [0, 1]×M →M given by H (t, x) = (H (t)) (x), is Cr.

Now, we list specific subgroups of, and conditions on a given group G (M) we will need further on.

Subgroup Description

Gc (M) The group of elements h ∈ G (M) with compact support, G (M) ∩Diffrc (M).
G (U) The group of elements h ∈ G (M) with compact support in an open subset U ⊆M .
G (M)x The isotropy group of x ∈M , that is, the subgroup of h ∈ G (M) that fix x.
G0 (M) The subgroup of h ∈ G (M) that are G (M)-isotopic to the identity.

[G (M) , G (M)] The group generated by commutators fgf−1g−1 for all f, g ∈ G (M); or the commutator subgroup.

Property Description

A (Path transitivity) Given x, y ∈M , x 6= y, and c : [0, 1]→M with c (0) = x, c (1) = y, there is h ∈ G (M)
such that h (x) = y and supp (h) is contained in an arbitrarily small neighbourhood of

⋃
t∈[0,1] c (t).

B For any small open ball U in M centered at x0 ∈ U there is h ∈ G (M) such that Fix (h) = (M − U)∪{x0}.
An open U ⊆ M is an open ball centered at x0 ∈ U if there is an embedding e : Dn

ρ → M of the open
disk of radius ρ centered at the origin in Rn, into M and U = e (Dn

σ) for some σ ≤ ρ and e (0) = x0.
L (Locality, this property holds on F ⊆ G (M) a subgroup of G (M)) For every open cover U = (Ui)i∈I of

M with open balls Ui, we have
[
G0
c (M) , G0

c (M)
]
⊆ F if for every Ui,

[
G0 (Ui) , G

0 (Ui)
]
⊆ F .

C For any pair (U, x) with x ∈ U ⊂M there is Id 6= h ∈ G (M) with supp (h) ⊂ U and x ∈ Int (supp (h)).
T (n) Given two sets {x1, . . . , xn}, {y1, . . . , yn} of distinct points, there is h ∈ G (M) such that h (xi) = yi ∀i.

An immediate consequence of these properties, which we will use in the proof of our result, is the following

Proposition 2.3 ([2]). If a group of diffeomorphisms satisfies property A (path transitivity), then it satisfies properties C
and T (n) for every n, provided dimM > 1.

Now, we may state our second result.
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Theorem 2.4 ([2]). Let φ : G (M) → G (N) be a group isomorphism between two groups of diffeomorphisms of smooth
manifolds M and N . If G (M) and G (N) are non-abelian, both satisfy properties A and B, and

φ−1 (G (N)n) , φ (G (M)m)

have the property L for all m ∈M and n ∈ N , then there exists a unique homeomorphism w : M → N with φ (f) = wfw−1.

Proof. First, we will need the following lemma.

Lemma 2.5. Let G (M) and G (N) be two groups of diffeomorphisms satisfying properties T (1) and C. If φ : G (M)→ G (N)
is an isomorphism such that there exists x0 ∈M and y0 ∈ N such that

φ
(
G (M)x0

)
= G (N)y0

then there exists a homeomorphism w : M → N such that φ (f) = wfw−1 for all f ∈ G (M). Moreover, if G (M) and G (N)
satisfy property T (2), then w is unique.

Proof of lemma lemma 2.5. If φ takes G (M)x0
to G (N)y0 , it induces the following well defined map w : M → N . For

x ∈M , choose g ∈ G (M) such that g (x0) = x (we can do so by property T (1)), and we define

w (x) = φ (g) (y0) .

Note that if another g′ ∈ G (M) satisfies g (x0) = g′ (x0) = x then g′−1g ∈ G (M)x0
and φ

(
g′−1g

)
= φ (g′)

−1
φ (g). But recall

φ
(
g′−1g

)
∈ G (N)y0 so

φ (g′) (y0) = φ (g) (y0) .

Hence, w is well defined. Now let us see that it is a bijection.
If w (x1) = w (x2) then there are g1, g2 ∈ G (M) such that g1 (x0) = x1 and g2 (x0) = x2, and φ (g1) (y0) = φ (g2) (y0).

Then, we have φ (g1)φ (g2)
−1

= φ
(
g1g
−1
2

)
∈ G (N)y0 so g1g

−1
2 ∈ G (N)x0

. Hence, g1 (x0) = g2 (x0), and x1 = x2. Therefore

w is injective. Now, if y ∈ N , we can choose h ∈ G (N) such that h (y0) = y. Set x = φ−1 (h) (x0). Then w (x) =
φ
(
φ−1 (h)

)
(y0) = h (y0) = y. Hence, w is surjective. Since w is both injective and surjective, it is a bijection.

Next, we show that w induces φ. Let y ∈ N and h ∈ G (N) such that h (y0) = y, and let x = φ−1 (h) (x0). We have seen
that w (x) = y. Let f ∈ G (M) and choose g ∈ G (M) such that g (x0) = f (x). Then, f−1g (x0) = x = φ−1 (h) (x0), so

g−1fφ−1 (h) ∈ G (M)x0
.

This implies that φ (g)
−1
φ (f)h ∈ G (N)y0 , so φ (f)h (y0) = φ (g) (y0) but h (y0) = y = w (x) and φ (g) (y0) = w (f (x)), so

φ (f)w (x) = w (f (x))

and since w is a bijection, φ (f) = wfw−1 for all x ∈M .
To show that w is a homeomorphism, we proceed as in the proof of theorem 2.1. We let A = {Fix (f) |f ∈ G (M)}, and

B = {M −A|A ∈ A }. Property C implies that B is a basis for the topology on M . Since φ (f) = wfw−1, it follows that
Fix (φ (f)) = w (Fix (f)). This implies that w and w−1 take open sets to open sets, so both functions are continuous. Hence
w is a homeomorphism.

Lastly, we need to show w is unique if property T (2) is satisfied. If there exists another homeomorphism w′ : M → N
such that φ (f) = w′fw′−1 = wfw−1. Then setting ρ = w′−1w we obtain

ρfρ−1 = f ∀f ∈ G (M) .

We show that ρ must be the identity map. Supposing it is not, there is x ∈ M such that ρ (x) 6= x. Consider another point
y ∈M distinct of x and ρ (x). By property T (2) there is some f ∈ G (M) such that f (x) = x and f (ρ (x)) = y but

ρfρ−1 (ρ (x)) = ρf (x) = ρ (x) and f (ρ (x)) = y 6= ρ (x) .

Therefore, this contradicts that ρfρ−1 = f , so ρ = Id and therefore w = w′.

Now we will need a result due by [7], which only uses the property C and T (3).

Lemma 2.6. Let G (M), G (N) be two groups of diffeomorphisms of smooth manifolds M and N , satisfying properties C
and T (3), and let φ : G (M)→ G (N) be an isomorphism. Let

F = φ−1
(
G (N)y

)
for some y ∈ N . If there is a nonempty proper closed subset A ⊂ M such that f (A) = A ∀f ∈ F . Then A = {x} and
F = G (M)x.
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Note that with lemma 2.5 and lemma 2.6 we only need to construct a nonempty proper subset of M invariant under F .

Proof of the existence of a proper closed subset under F . We follow Filipkiewicz for this.
Let φ : G (M)→ G (N) be an isomorphism. For n ∈ N let Mn be the set of all open balls U of M with[

G0 (U) , G0 (U)
]
⊆ Fn = φ−1 (G (N)n)

Similarly, for m ∈M let Nm be the set of all open balls V in N such that[
G0 (V ) , G0 (V )

]
⊆ F ′m = φ (G (M)m)

Note that Mn and Nm may be empty. Let

Mn = M −
⋃

v∈Mn

v and Nm = N −
⋃

v∈Nm

v.

Proposition 2.7. The subsets Mn and Nm are closed subsets of M and N , respectively. Moreover,

f (Mn) = Mn ∀f ∈ Fn and g (Nm) = Nm ∀g ∈ F ′m.

Assuming that G (M) and G (N) are nonabelian groups satisfying the T (1) property and that Fy, respectively F ′x, have the
property L for all x ∈M , respectively for all y ∈ N , then Mn, respectively Nm, are nonempty.

Proof of proposition 2.7. First, it is clear that Mn and Nm are closed subsets.
Secondly, we show Fn and F ′m fix Mn and Nm, respectively. Let U ∈ Mn and f ∈ Fn and set V = f (U). Clearly,

G (V ) = fG (U) f−1. Therefore, [
G0 (V ) , G0 (V )

]
= f

[
G0 (U) , G0 (U)

]
⊆ fFnf−1 ⊆ Fn

so V ∈Mn. Hence, f (Mn) = Mn. The same argument shows g (Nm) = Nm ∀g ∈ F ′m.
Suppose that Mn = ∅. Then Mn is an open cover of M by balls {Ui}i∈I such that[

G0 (Ui) , G
0 (Ui)

]
⊂ Fn ∀i ∈ I.

Let y ∈ N be an arbitrary point. Since G (N) has the T (1) property, there is f ∈ G (N) such that f (n) = y. Then

G (N)y = fG (N)n f
−1

and
Fy = φ−1

(
G (N)y

)
= φ−1

(
fG (N)n f

−1) = φ (f)
−1
φ (G (N)n)φ (f) = ρFnρ

−1

where Fn = φ−1 (G (N)n) and ρ = φ−1 (f). Let V = {Vi = ρ (Ui) |Ui ∈Mn}. Then V is an open cover of M by balls Vi and[
G0 (Vi) , G

0 (Vi)
]

= ρ
[
G0 (Ui) , G

0 (Ui)
]
ρ−1 ⊆ ρFnρ−1 = Fy.

Hence
[
G0 (Vi) , G

0 (Vi)
]
⊆ Fy for all Vi ∈ V . By the property L,[

G0
c (M) , G0

c (M)
]
⊆ Fy.

Therefore, φ
([
G0
c (M) , G0

c (M)
])
⊆ G (N)y for all y ∈ N , and this implies that

φ
([
G0
c (M) , G0

c (M)
])
⊆
⋂
y∈N

G (N)y = {IdM} .

But φ is an isomorphism, so this implies that
[
G0
c (M) , G0

c (M)
]

= {IdM} which is impossible as G0
c (M) is nonabelian.

Hence, Mn 6= ∅. The same argument shows that Nm 6= ∅.

We only need to know when Mn, respectively Nm, are proper subsets.

Lemma 2.8. Suppose G (M) and G (N) have the properties B and T (3). Then either Mn is a proper subset, or there exists
m ∈M such that Nm is a proper subset.

Proof of lemma 2.8. We use the following result by Filipkiewick [7, Lemma 3.3].
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Lemma 2.9. Let G (M) , G (N) be two groups of diffeomorphisms of smooth manifolds M and N and φ : G (M)→ G (N) is
a group isomorphism. Suppose G (M) has property B. Let

F = φ−1
(
G (N)y

)
for some y ∈ N . There exists f ∈ F, f 6= Id such that Int (Fix (f)) 6= ∅.

This proof will follow Filipkiewicz closely. Property B holds, so applying lemma 2.8 there exists g0 6= Id with g0 ∈ Fn =
φ−1 (G (N)n) with

X = Int (Fix (g0)) 6= ∅.

The set Y = Fix (φ (g0)) 6= ∅ as it contains n ∈ Y . Let

H = φ−1 {h ∈ G (N) | h (Y ) = Y }
K = φ−1 {h ∈ G (N) | Y ⊂ Fix (h)} .

Then K is a normal subgroup of H. Since K contains g0, H and K are nontrivial groups. If h ∈ φ (K), h (n) = n as
n ∈ Y ⊂ Fix (h). This implies φ (K) ⊂ G (N)n, namely, φ (K) ⊆ Fn. Now, there are two possibilities:

a) For all k ∈ K, X ⊆ Fix (k).

b) There is k ∈ K and x ∈ X such that k (x) 6= x.

Case a). Let h ∈ G (N − Y ). Then Y ∈ Fix (h), so φ−1 (h) ∈ K. Then, φ−1 (h) fixes x for all x ∈ X. That is,
φ−1 (h) ∈ G (M)x, or equivalently h ∈ φ (G (X)x). This implies

G (N − Y ) ⊆ φ (G (M)x) ∀x ∈ X.

Let V be any open ball V ⊂ N − Y . Then[
G0 (V ) , G0 (V )

]
⊆ G0 (V ) ⊆ G0 (N − Y ) ⊆ φ (G (M)x) ∀x ∈ X.

By definition of Nx, for all x ∈ X, any open ball V ⊂ N −Y belongs to Nx. Hence, if a) holds, Nx 6= ∅ for all x ∈ X, which
in turn implies that Nx is proper for all x ∈ X.

Case b). First let us show (exactly like in [7]) that G (X) ⊂ H. Let g ∈ G (X) with g 6= Id, which exists by property C.
Now, let us see that gg0g

−1 = g0. If x ∈ Fix (g0)−X = ∂ (Fix (g0)), then g (x) = x and g0 (x) = x. Therefore, gg0g
−1 (x) =

x = g0 (x). If x /∈ Fix (g0), then g0 (x) /∈ Fix (g0). Since supp (g) ⊂ X then g (x) = x, so gg0g
−1 (x) = g (g0 (x)) = g0 (x). For

x ∈ X, we have gg0g
−1 (x) = x = g0 (x). Hence,

φ (g)φ (g0)φ (g)
−1

= φ (g0)

and therefore
Y = Fix (φ (g0)) = Fix

(
φ (g)φ (g0)φ (g)

−1
)

= φ (g) Fix (φ (g0)) = φ (g) (Y )

so g = φ−1 (φ (g)) ∈ H and G (X) ⊆ H.
We have, by assumption of case b), that there is x0 ∈ X and k0 ∈ K such that k0 (x0) 6= x0. Let U ⊆ M be an open

ball contained in X with x0 ∈ U . We may assume that k0 (x0) ∈ U , since if it were not originally, then we can choose
f ∈ G (U) ⊆ G (X) ⊆ H with y0 = f (x0) with y0 ∈ U , using property T (2). Then f−1k0 (x0) = k0 (x0) since k0 (x0) /∈ U
and supp (f) = supp

(
f−1

)
⊂ U . Hence

k̃0 (x0) = fk−10 f−1k0 (x0) = f (x0) = y0.

Then k̃0 (x0) 6= x0, k̃0 (x0) = y0 ∈ U and k̃ =
(
fk−10 f−1

)
k0 ∈ K since K is a normal subgroup of H and f ∈ H.

Now we show that K acts transitively on U . Let y ∈ U . By property A, there is ρ ∈ G (U) with ρ (y) = x0 and ρ (y0) = y0,
where y0 = k̃0 (x0) ∈ U . Then

ρk̃0 (x0) = k̃0 (x0) = y0, and k̃−10 ρk̃0 (x0) = x0 = ρ (y) .

Hence
ĝ (x0) =

(
ρ−1k̃−10 ρ

)
k̃0 (x0) = y

and ĝ ∈ K as k̃0 ∈ K and ρ ∈ G (U) ⊆ G (X) ⊆ H. Therefore, as ĝ (x0) = y, K acts transitively on U .
Now, given three distinct elements x0, x1, x2 ∈ U there are g1, g2 ∈ K such that gi (x0) = xi for i = 1, 2. Let U0 be a

small open ball containing x0 and such that the sets{
U0, g1U0, g2U0, g

−1
1 U0, g

−1
2 U0

}
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are mutually disjoint and their union is contained in U . An easy argument (by Thurston) shows that if h1, h2 ∈ G (U0), then
[h1, h2] = [[h1, g1] , [h2, g2]] where [hi, gi] =

(
higih

−1
i

)
g−1i ∈ K. This proves that[

G0 (U0) , G0 (U0)
]
⊆ K ⊆ Fn = φ−1 (G (N)n)

and therefore U0 ∈Mn, so Mn 6= ∅ and Mn is proper.
Hence, we have shown that either Nx is proper for all x ∈ X, or Mn is proper. This concludes the proof of lemma 2.8.

To finish the proof of the existence of our proper closed nonempty subset, we use lemma 2.8. Given φ : G (M)→ G (N)
with the hypothesis of theorem 2.4, starting with any point y0 ∈ N , we have two possibilities, with which we conclude the
proof.

a) X = My0 is proper nonempty closed and invariant by Fy0 = φ−1
(
G (N)y0

)
.

b) There exists z0 ∈ M such that Nz0 is proper nonempty closed. In this case, we instead consider the isomorphism
φ−1 : G (N)→ G (M), as Nz0 is invariant under F ′z0 = φ

(
G (M)z0

)
.

In case a) above, lemma 2.6 applied to φ shows that My0 = {x0} and Fy0 = G (M)x0
. In case b), lemma 2.6 applied to

φ−1 shows Nz0 = {u0} with u0 ∈ N , and F ′z0 = G (N)u0
. Hence, in any case, φ takes isotropy subgroups of G (M)m0

for
some point m0 ∈ M , to the isotropy subgroups G (N)n0

of some point n0 ∈ N . Therefore, the hypothesis of lemma 2.5 are
satisfied. Hence, lemma 2.5, lemma 2.6 and lemma 2.8 yield a complete proof of theorem 2.4.

3 Main theorem

Now, it suffices to prove that for isomorphic Φ : Gξ1 (M1) → Gξ2 (M2), Gξ1 and Gξ2 are nonabelian, have the A and B
property, and Φ

(
Gξ1 (M1)m1

)
and Φ−1

(
Gξ2 (M2)m2

)
have the L property for every m1 ∈M1 and m2 ∈M2.

In fact, we show every subgroup of Gξi (Mi) has the L property, hence the result follows. Before proving this, several
intermediate steps are required, which include the proof that Gξi (Mi) satisfies the Epstein’s axioms, and a modification of
Filipkiewicz’s shrinking lemma.

3.1 Preliminaries

We will make use of the following results.

Theorem 3.1 ([4]). Let (M, ξ) be a co-orientable contact manifold and let ht be a contact isotopy. Let F ⊆ M be a closed
set, and let U,W ⊆M be open sets such that ⋃

t∈[0,1]

ht (F ) ⊂ U ⊂ U ⊂W.

Then there is a contact isotopy h̃t such that h̃t|F = ht and supp
(
h̃t

)
⊂W .

Theorem 3.2 (Lychagin’s Theorem). There is a diffeomorphism Ω :W → V, where W is a neighbourhood of the identity
in Diffc (M, ξ), and V is a neighbourhood of 0 in Lξ (M).

Now we present the Epstein’s axioms and theorem. Let G be a group of diffeomorphisms of a paracompact Hausdorff
topological space M , and let U be a basis pf the topology on M . The Epstein’s axioms for the triple (G,U ,M) are

A1. If U ∈ U and g ∈ G, then gU ∈ U .

A2. G acts transitively on U .

A3. Let g ∈ G, U ∈ U and B be an open cover of M . Then there are g1, . . . , gn ∈ G and V1, . . . , Vn ∈ B such that:

(i) g = gn ◦ gn−1 ◦ · · · ◦ g1
(ii) supp (gi) ⊆ Vi

(iii) supp (gi) ∪
(
gi−1 ◦ · · · ◦ g1U

)
6= M .

Theorem 3.3 (Epstein’s Theorem). If the triple (G,U ,M) satisfies Epstein’s axioms, then [G,G] is a simple group.
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3.2 Verification of Epstein’s axioms for Gξ (M)

Let (M, ξ) be a co-orientable contact manifold and consider Gξ (M). Fix a point p ∈M and let (V, ψ) be a Darboux chart of
an open neighbourhood of p such that ψ (V ) = W ⊆ R2n+1 and ψ (p) = 0. Let τ > 0 such that the open ball D4τ of radius
4τ centered at 0 ∈ R2n+1, is contained in W . Let

B = ψ−1 (Dτ ) ⊂M.

With this construction, we wish to construct a basis Uξ of the topology on M that the triplet (Gξ (M) ,Uξ,M) satisfies
Epstein’s axioms.

Lemma 3.4. The subsets Uξ = {ϕB | ϕ ∈ Gξ (M)} form a basis for the topology on M .

Proof. Denote by (x, y, z) a point of R2n+1 where x, y ∈ Rn and z ∈ R. Let

ω0 = x1dy1 + · · ·+ xn + dyn + dz

be the canonical contact form on R2n+1. For each t ∈ R+, let

Rt : R2n+1 → R2n+1 (x, y, z) 7→
(
tx, ty, t2z

)
be a contact homothety, which is a contraction for t < 1 and a dilation for t > 1. Theorem 3.1 applied with F = Dτ yields
the following result

Lemma 3.5. For each small σ, τ ∈ R with 3τ ≤ 1, there is a contact isotopy Rσt of R2n+1 such that

Rσt |Dτ = Rστ and supp (Rσt ) ⊂ D3τ .

Moreover, Fix (Rσ1 ) =
(
R2n+1 −D − 3τ

)
∪ {0}.

Proof of lemma 3.5. Consider a bump function λσ positive on D2τ and given by

λσ (x) =

{
σ x ∈ Dτ

0 x ∈ R2n+1 \D3τ

Then, the isotopy we look for will be given by the following vector field: Let ξ = kerα. Then there is an isomorphism
ς : Lξ (M)→ C∞ (M) given by ς (X) = ιXα. Hence, one can assign a vector field ς−1 (f) to any f ∈ C∞ (M). In particular,
one can assign a contact vector field to any vector field X defined as

C (X) = ς−1 (ιXα) .

Finally, our contact isotopy Rσt is defined by the contact vector fields Xt = C (λσ∇Rt).

Now, we return to our original proof. Consider τ as in the definition of B. Using the chart (V, ψ), we can obtain a contact
isotopy ρσt of M equal to ψ−1Rσt ψ on V and the identity outside V . Note that the contact diffeomorphism ρσ1 = ρσ fixes p
and shrinks B into an arbitrarily small neighbourhood of ρσ (B) = Bσ ∈ U of p. Now we are ready to show U is a basis.

Pick x ∈ M and an open neighbourhood O of x. By Boothby’s transitivity theorem [5], there is h ∈ Gξ (M) such that
h (p) = x and h (Bσ) = U ⊂ O for small enough σ. Hence, x ∈ U and U = hρσ (B) ∈ U .

Remark 3.6. As a side result, it follows from lemma 3.5 that

Fix (ρσ) =
(
M − ψ−1 (D3τ )

)
∪ {p}

which implies Gξ (M) has the property B.

Now that we have a candidate basis Uξ, we proceed to showing the following

Theorem 3.7. The triplet (Gξ (M) ,Uξ,M) satisfies Epstein’s axioms.

Proof. Axioms A1 and A2 can be trivially verified.
To verify axiom A3 we need several intermediate results.

Lemma 3.8. Let X ∈ Lξ (M) and let ν ∈ C∞ (M) be a compactly supported function. Define the contact vector field

Xν := C (νX) = ς−1 (ινXα)

where kerα = ξ. Then ‖Xν‖1 ≤ mν ‖X‖1, for some mν > 0. Here ‖·‖1 denotes the C1-norm.
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Proof of lemma 3.8. Denoting fX = ιXα, we have

Xν = (νfX) η + Φ−1 ((ιηd (νfX))α− d (νfX))

= ν
(
fXη + Φ−1 ((ιηdfX)α− dfX)

)
+ fX

(
Φ−1 ((ιηdν)α− dν)

)
= νX + fX

(
Φ−1 ((ιηdν)α− dν)

)
where Φ is the isomorphism between horizontal vector fields and semi-basic 1-forms. Hence

‖Xν‖1 ≤ ‖νX‖1 + ‖fXHν‖1

where Hν is the horizontal part of the contact vector field ς−1 (ν) corresponding to ν. Let Aν be such that ‖ν‖1 < Aν . Since
ς is a linear map (hence bounded, as it is continuous), ‖fX‖1 ≤ c1 ‖X‖1, where c1 depends only on α. Furthermore, Φ,Φ−1

are linear operators, we have ‖Hν‖1 ≤ c2 ‖ν‖1 < c2Aν (where c2 depends only in Φ, which in turn depends on dα). Hence

‖Xν‖1 ≤ Aν ‖X‖1 + (c1 ‖X‖1) (c2Aν) = Aν (1 + c1c2) ‖X‖1 .

Lemma 3.9. Let φ ∈ Gξ (M) with supp (φ) ⊂ K where K is compact. Let {Ui}ni=1 be a finite open cover of K. Then

φ = φ1 ◦ · · · ◦ φn

where supp (φi) ⊂ Ui and φi ∈ Gξ (M) for i = 1, . . . , n.

Proof of lemma 3.9. We may assume φ is as close to the identity as we want. For this, consider an isotopy φt ∈ Diffc (M, ξ)
from the identity to φ, then φ = φ1 can be written as φ = φn ◦ · · · ◦ φn where φi = φi/n ◦ φ−1i − 1/n for a sufficiently large n.

Consider the Lychagin chart Ω :W → V in theorem 3.2, and choose a neighbourhood of the identity O ⊂ W. Let

r = sup {s | Bs (0) ⊂ Ω (O)}

where Bs (0) = {X ∈ Lξ (M) | ‖X‖1 < s}. Now choose a partition of unity {λi} subordinate to the open cover {Ui}, and

define µi =
∑i
j=1 λj . By lemma 3.8 we have that ‖Ω (φ)

µi‖1 ≤ mi ‖Ω (φ)‖1 for each i. Let k = max {mi}. Now, we can

choose φ close enough to the identity so that ‖Ω (φ)‖1 <
r
k and hence ‖Ω (φ)

µi‖1 ≤ r for all i. This implies that tΩ (φ)
µi is

in the image of the chart Ω.
Note that for x /∈ Ui, µi = µi−1, and µn = 1. Defining hit = Ω−1 (tΩ (φ)

µi), we have hti = hti−1 outside Ui and htn = φ.
Hence, since

φti = hti ◦
(
hti−1

)−1
has support in Ui and by construction, we have φt = φtn ◦ · · · ◦ φt1, our result follows.

Lemma 3.10. Let g ∈ Gξ (M) where supp (g) ⊂ V ∈ Uξ. Let U be a non-dense open subset of M . Then g = g2 ◦ g1 where
gi ∈ Gξ (M), supp (gi) ⊂ V and

supp (g1) ∪ U 6= M and supp (g2) ∪ g1U 6= M.

Proof of lemma 3.10. If supp (g) ⊂ V then choose g1 = Id, g2 = g. Else, we can choose x ∈ V −U such that g (x) 6= x. Now,
choose an isotopy gt ∈ Diffc (M, ξ) from the identity to g1 = g. Let N1 be an open neighbourhood of x, such that there are
open sets N2 and N3 satisfying ⋃

t∈[0,1]

gt
(
N1

)
⊂ N ⊂ N2 ⊂ N3 ⊂ V.

By theorem 3.1 there is a contact isotopy ht such that ht|N1
= gt and supp (ht) ⊂ N3.

Choose a point y /∈ U ∪ N3. Then, we define g1 = h1 and g2 = gh−11 . It is clear that supp (gi) ∈ V for i = 1, 2, and
since y /∈ U and y /∈ supp (h), we have that supp (g1) ∪ U 6= M . Finally, g1 (x) /∈ g1U since x /∈ U , and for every z ∈ N1,
g2 ◦ g1 (z) = g (z) = h (z) = g1 (z), so x /∈ supp (g2) and therefore, supp (g2) ∪ g1U 6= M .

Now we complete the proof that (Gξ (M) ,Uξ,M) satisfies axiom A3. Take g ∈ Gξ (M), U ∈ Uξ and B an open cover
of M . Since g has compact support K, we can cover K by finitely many Vi ∈ B, say V1, . . . , Vn. Using lemma 3.9 on g and
the cover {Vi} we obtain g = gn ◦ . . . ◦ g1 with gi ∈ Gξ (M) and supp (gi) ⊂ Vi. Finally, we apply lemma 3.10 to each triplet

(gi, Vi, gi−1 . . . g1U) to obtain gi = g2i g
1
i with supp

(
gji

)
⊂ Vi for j = 1, 2 and supp

(
g1i
)
∪ U 6= M and supp

(
g2i
)
∪ g1iU 6= M .

Finally, the decomposition of g we wish is g = g2n ◦ g1n ◦ · · · ◦ g21 ◦ g11 .
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3.3 The shrinking lemma

We will use a modification of a shrinking lemma of Filipkiewicz [7]. Recall D2n+1
a ⊂ R2n+1 is the open ball of radius a

centered at the origin. Since the dimension we are working on is understood, we simply write Da = D2n+1
a . Also, denote by

B (x, ε) the open ball of radius ε centered at x.

Lemma 3.11. Let C be an open cover of D1. Then if a ∈ (0, 1], there are fi, gi ∈ Gkerω0

(
R2n+1

)
for i = 1, 2, . . . ,m such

that

(i) For i = 1, . . . ,m, there exists Ci ∈ C such that fi, gi ∈ Gkerω0
(Ci)

(ii) [fm, gm] ◦ · · · ◦ [f1, g1]
(
D1

)
⊂ Da

where ω0 = (
∑n
i=1 xidyi) + dz is the standard contact form on R2n+1.

Proof. Let A ⊂ (0, 1] be the subset of a ∈ (0, 1] for which the lemma is true. Clearly A is non-empty as 1 ∈ A, and this can
be seen by choosing f = g = Id. Now, let a0 = inf A. We want to show a0 = 0.

Suppose a0 > 0. Let {Vi} be a finite open cover of the boundary ∂Da0 of Da0 and choose ε less than the Lebesgue
number of the cover {Vi}. For each x ∈ ∂Da0 , choose pairs (gx, Ux) consisting of an open neighbourhood Ux of x and
g ∈ Gkerω0 (B (x, ε)) such that

• Ux ⊂ B (x, ε) ∩
(
Da0+

ε
2
\Da0− ε2

)
• gx (Ux) ⊂ Da0− ε2 and g−1x (Ux) ⊂ R2n+1 \Da0+

ε
2
.

This can be done by choosing points

px ∈ B (x, ε) ∩ ∂Da0− 3ε
4

qx ∈ B (x, ε) ∩ ∂Da0+
3ε
4

since by Boothby’s transitivity theorem, we can find u, v ∈ Gkerω0 (B (x, ε)) such that u (x) = px, u (qx) = qx, v (qx) = x,
v (px) = px. Then setting gx = v ◦ u, we have gx (x) = px and g−1x (x) = qx, and it only remains to take a sufficiently small
neighbourhood Ux of x.

Clearly the sets Ux cover ∂Da0 , so we can choose a finite cover {Uxi}
k
i=1 with their corresponding {gxi}. For simplicity,

let Uxi = Ui and gxi = gi. Now we choose ε′ < ε
2 such that

Da0+ε′ \Da0−ε′ ⊂
k⋃
i=1

Ui.

Our next step will be constructing an f ∈ Gkerω0
(Da0+ε′ \Da0−ε′) such that for some c > 1, we have

f
(
Da0+

ε′
c

)
⊂ Da0− ε

′
c
.

Consider the homothety Rλ (x, y, z) =
(
λx, λy, λ2z

)
where

λ =

(
a0 − ε′

c

a0 + ε′

c

)
< 1

with c > 1 chosen so that
(
a0 − ε′

c

)
λ2 > a0 − ε′. We can choose such a c since the inequality is equivalent to

c3a2ε′ +O
(
c2
)
> 0

where the right side is a polynomial in c with positive leading coefficient, hence for c sufficiently large, the inequality holds.
Now, let p ∈ Da0+

ε′
c

, p = (x, y, z). Then

|Rλ (p)| =

(
λ2

(
n∑
i=1

x2i + y2i

)
+ λ4z2

) 1
2

≤

(
λ2

((
n∑
i=1

x2i + y2i

)
+ z2

)) 1
2

= λ |p| ≤ λ
(
a0 +

ε′

c

)
= a0 −

ε′

c
.
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Hence Rλ

(
Da0+

ε′
c

)
⊂ Da0− ε

′
c

. Now, by theorem 3.1 we can find a contact diffeomorphism f which agrees with Rλ on

Da0+
ε′
c
\Da0− ε

′
c

and supp (f) ⊂ Da0+
ε′
c

. To verify this, we need to show that if |p| > a0 − ε′

c then |Rλ (p)| > a0 − ε′. But

|Rλ (p)| =

(
λ2

(
n∑
i=1

x2i + y2i

)
+ λ4z2

) 1
2

≥

(
λ4

((
n∑
i=1

x2i + y2i

)
+ z2

)) 1
2

= λ2 |p| > λ2
(
a0 −

ε′

c

)
> a0 − ε′.

Now, we apply lemma 3.9 to f subject to the open cover {Ui} to obtain fi such that supp (fi) ⊂ Ui. Define hi = [fi, gi].
Then

hi (x) =


fi (x) x ∈ Ui
gifig

−1
i x ∈ gi (Ui)

x otherwise, since supp (fi) ⊂ Ui

The reminder of the proof is as done by Filipkiewicz. If x ∈ Da0+ε′ \Da0−ε′ then

hk ◦ · · · ◦ h1 (x) = fk ◦ · · · ◦ f1 (x)

and therefore hk ◦ · · · ◦h1
(
Da0

)
⊂ Da0− ε2 . Moreover, for each i there is an xi ∈ ∂Da0 with fi, gi ∈ Gkerω0 (B (xi, ε)). Since ε

is less than the Lebesgue number of the covering C, there is an open Ci ∈ C with fi, gi ∈ Gkerω0 (Ci) for each i, which shows

a0 − ε′

2 ∈ A and this is a contradiction to a0 = inf A. Hence a0 = 0 and we are done.

3.4 Proof of the main theorem

We shall now prove that the groups Gξi (Mi), i = 1, 2 have the A and B properties, and every subgroup of them has the L
property. Property A is a consequence of Boothby’s transitivity theorem and k-transitivity of Gξ (M) and we have shown
property B holds in remark 3.6. Hence, we are only left to show every subgroup of Gξ (M) has the L property.

Proposition 3.12. Every subgroup F of Gξ (M) has the L property.

Proof. We follow Filipkiewicz method. Let H be a subgroup of [Gξ (M) , Gξ (M)] generated by the groups [Gξ (U) , Gξ (U)] as
U ranges over Uξ. H is a normal subgroup of [Gξ (M) , Gξ (M)], which is simple by theorem 3.3, so H = [Gξ (M) , Gξ (M)].

Let F be a subgroup of Gξ (M) satisfying the hypothesis of the L property subject to the open subcover of balls U ′ ⊂ Uξ.
That is, [Gξ (U) , Gξ (U)] ⊆ F for every U ∈ U ′. We need only show that if W ∈ Uξ then [Gξ (W ) , Gξ (W )] ⊆ F . Consider
then a Darboux chart ψ with domain U and D1 ⊂ U , and consider W = φψ (D1) ∈ Uξ where φ ∈ Gξ (M). By hypothesis,
we can cover W with finitely many U1, . . . , Us ∈ Uξ so that [Gξ (Ui) , Gξ (Ui)] ⊂ F . Then, define Vi = ψ−1φ−1 (Ui). The sets
Vi cover D1 and either Vi ⊂ U or we can choose smaller Ui so that Vi ⊂ U , and in the later case we do so. Assume 0 ∈ V1.

For some a > 0, Da ⊂ V1, and we apply lemma 3.11 to obtain commutators [fj , gj ] ∈ Gkerω0

(
Vij
)

(1 ≤ i ≤ k) and

[fr, gr] ◦ . . . ◦ [f1, g1]
(
D1

)
⊂ Da. Since each fj , gj ∈ Gkerω0

(U) we can define f̂j , ĝj ∈ Gξ (M) as

f̂j (x) =

{
(φψ) fj (φψ)

−1
(x) x ∈ φψ (U)

x otherwise

ĝj (x) =

{
(φψ) gj (φψ)

−1
(x) x ∈ φψ (U)

x otherwise

So
[
f̂j , ĝj

]
∈
[
Gξ
(
Uij
)
, Gξ

(
Uij
)]
⊂ F . Define τ =

[
f̂r, ĝj

]
◦ · · · ◦

[
f̂1, ĝ1

]
. Then τ ∈ F and τ (W ) ⊂ U1, and

[Gξ (W ) , Gξ (W )] ⊂ τ−1 [Gξ (U1) , Gξ (U1)] τ ⊂ F.
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