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Abstract

Agustin Banyaga proved, in a series of three papers, that contact structures (in a restricted sense) are determined by
their isomorphism groups. In this paper, we arrange the arguments used in these papers in a self-contained manner.

1 Introduction

The goal of this paper is to condense Banyaga’s proof that contact structures, in their restricted sense, are determined by
their automorphism groups, into a single, self-contained paper. This proof can also be found in [3], drawing from the main
results from [1] and [2].

In section 2, we present the proof of the main results drawn from [1] and [2]. Then, in section 3 we present a discussion
about Epstein’s axioms, which are key to the proof of the main theorem in [3], followed by the original proof of the main
theorem. To begin our discussion, we present the essential notation and definitions mentioned in [3].

A contact structure £ on a smooth manifold M is a hyperplane field £ C TM such that there exists an open cover {U;}
of M and contact forms «; on U; such that {y, = ker o; ([8], [9]). The hyperplane field £ is co-orientable if the contact form
a is defined globally. A contact manifold is a pair (M, ) consisting of a smooth manifold M and a contact structure £ on it.
If £ is a co-orientable contact structure, we call (M, &) a co-orientable contact manifold.

The automorphism group of the contact structure ker oo = £ is the group

Diff (M, §) = { € Diff*™* (M) | ¢*¢ = £}

Let Diffx (M, &) be the subgroup of Diff (M, £) whose elements have supports in a compact subset K, endowed with the
compact-open topology, and let

Diff, (M, €) = lim Diffy (M, €)
where K runs over all compact sets, with the direct limit topology. We denote by G¢ (M) the identity component in
Diff. (M, ). Namely, G¢ (M) is the group of compactly supported C*° diffeomorphisms of M isotopic to the identity that

preserve the contact structure .
The main result we wish to recreate is the following

Theorem 1.1 ([3]). Let (M;,&;), ¢ = 1,2, be connected co-orientable contact manifolds of dimension 2n+1. If ® : Ge, (M7) —
Ge, (M>) is a group isomorphism, then there exists a unique C™ diffeomorphism w : My — My such that w*§y = &1 and

® (h) = whw™' VYh e Ge, (My).

2 Key results

Before we begin the discussion of the main theorem, we shall discuss two results essential for its proof.

The first one guarantees that, given a bijection w between two contact manifolds (M;,§;) with a co-orientable contact
structure, which induces an isomorphism between their groups G, (M;), this bijection w is furthermore a contact structure
exchanging C*° diffeomorphism between the (M;,&;). This result is contained in [1].

The second one guarantees that given two smooth manifolds M and N and an isomorphism between two of their groups
of diffeomorphisms ¢ : G (M) — G (N), under certain conditions, there exists a unique homeomorphism h between the two
manifolds which induces the isomorphism ¢. This result is contained in [2].

2.1 Isomorphism-inducing bijections are contact structure exchanging C'° diffeomorphisms

Theorem 2.1 ([1]). Let (M;,&;), i = 1,2, be two co-orientable contact manifolds. Let w: My — My be a bijective map such
that for any map f : My — My, we have

wfw™t € Ge, (Ms) if and only if f € Ge, (My).

Then w is a C*° diffeomorphism and w*&y = &;.



Proof. First we show that w : My — M, is a homeomorphism, as it is done in [7].

For a function f, let Fix (f) = {z € My | f () = 2} and let & = {Fix (f) | f € G¢, (M1)} be the class of fixed subsets of
elements of G¢, (M7). Now, let = {M; — A| A € &/} be the set of complements of elements of «7. Note that # consists
of open sets in M;, and that for every B € %, B is the interior of the support of some diffeomorphism. For each x € M7, and
every open subset U C M; containing z, we can construct and h € G¢, (M) such that @ € Int (supp (b)), and supp (k) C U.
Namely, there exists B € % such that « € B C U. Therefore, 4 is a basis for the topology on M;. Note that for h € G¢, (M)
and g € G, (M), we have

Fix (whw™") = w (Fix (h)) and Fix (w™'gw) = w™" (Fix(g)).

Therefore w and w™! take open sets to open sets, so both functions are continuous, and therefore w is a homeomorphism.

Let L¢, (M;) be the Lie algebra of vector fields with compact supports on M;, generating 1-parameter groups of dif-
feomorphims h; belonging to G, (M;). Let X € L¢ (M;) and let hy be its 1-parameter diffeomorphisms. For each ¢,
H; = whyw™! € G, (M>) by hypothesis, and the evaluation map

H:R x My — M,

given by H (t,z) = H; (z), is continuous. Moreover Hy = Id and Hy4s = Hy o H,. Therefore H is a continuous action of R on
Ms. By Theorem 3, §5.2 of Montgomery-Zippin [10, p. 212], since R is a Lie group, this action is C*° (so H is smooth in both
variables ¢t and x). Therefore, the 1-parameter group H; has an infinitesimal generator, namely, a vector field X,, € L¢, (M>)
such that J

@ H, () = X (H, (2)).

Given f € C* (M,), we have X,, - f € C*° (M3). For each X € L¢, (M;) and f € C* (Ms), we have

d
7 (Fow) (he () =m0 = (Xu - f) (w (2))

We now want to show that w and w—! are C*° maps. It is enough to show that fow € C* (M) for all f € C* (M3) and
that gow™! € O (My) for all g € C>° (M;) [11]. The situation is symmetrical, so it suffices to show that fow € C* (M)
for all f € C* (Mz). We now wish to compute the partial derivatives of f o w.

Let & = ker a; and let € M and U be a contractible open neighbourhood of x which is the domain of a local canonical
chart ¢ : U — R?"*1. In this chart, ay|y = ¢*a where

a=dz— (x1dy; + -+ + xpdyn) .

The existence of this chart is guaranteed by Darboux’s theorem. On U consider the vector fields given by

0 0 0 0
2—57 Xk—aixk, Yk—aiyk-i-xka.
If 1 is one of the vector fields above, then L,a = 0, where L, is the Lie derivative of a in the direction of the vector field
7. We wish to show that these vector fields defined in U can be extended into elements of L¢, (My) [12].

It is well-known that a contact vector field n on a contact manifold (M, &) with co-orientable contact structure, with
ker o = &, is completely determined by the function ¢, [13], where 1y« is the interior product of o and 7. Therefore, if A
is a C'*° function which is equal to 1 near z and has compact support in U, the function A (t¢a) (where again, 7 is one of
the vector fields above) determines contact vector fields Z, X}, Yy which have compact supports and coincide with Z, X3, Yz
near .

Denote by f o w the local expression of f ow in the chart (i, U). Namely, fow = fowop™!:¢(U) = R. Fora € U,
denote ¢ (a) = (ay,...,as,11) = @. Let hZ, hi*, hY* be the 1-parameter groups of diffeomorphisms generated by Z, X, Yz,
respectively. Then, we have that near z, the diffeomorphism k; = phZp~': ¢ (U) = ¢ (U) is given by

-z

ht (l’l,xg, e ,.’E2n+1) = (1’1 +t,.’E2, v 7$2n+1) .

This implies that

owop ! 2o~ (@) — ocwowp 1) (a
9 (Fow) (= sy L2022 ) (el (@) = (owop )@
iy L ow) (B (@) — (f ow) (a)

t—0 t

d 2
= = (f ow) (0 (@) li=o
d

= S (HF (w () o=

= (Zw- f) (w(a)).



Similarly, we obtain

2 (Fow) @ = (%), - £) (w(@)

axk

2 (Fow) @) = (75),, ) (0 (@) + 1 (Z - 1) (@)

and this shows that f o w is a C' mapping. To compute higher order derivatives, one must simply replace f by Z, - f,
(Xk),, - f>and (Yi), - f. One can see with this that fow is a C*° map, hence, w is a C> diffeomorphism.
It remains only to show that w exchanges our contact structures. We have already seen that for each X € L¢, (M) we
get Xy, € Lg, (M) such that X, = w, X. Therefore, w induces a Lie algebra isomorphism between the Lie algebras L¢, (M;).
Now, we use the following theorem due to Omori [12], which is a generalization of a result by Pursell-Shanks [14].

Theorem 2.2 ([12], §X). Let (M;,&;), i = 1,2, be connected contact manifolds, with co-orientable contact structures &;. If
Le, (M7) and Le, (Ms) are isomorphic, there exists a C* diffeomorphism ¢ : My — My such that ¢*&s = €.

By theorem 2.2, there exists a C* map p : My — Ms, inducing the isomorphism X — X,, = w, X with p*&; = £&;. Now,
we claim that the condition p.n = w.,n Vn € L¢, (M;) implies that p = w. Let ¢ = p~'w and h; the 1-parameter group of
diffeomorphisms generated by 7. Then

phip™" = hy.

If ¢ # Id then we can take € M; such that ¢ (x) # x. Take n € L¢, (M) such that 7 (z) # 0, with support not containing
@ (x). If h is the time-one flow of 7, then h () # x (since 1 (x) # 0) and h (¢ (x)) = ¢ (z), but note as well that

(ehe™") (0 () = ¢ (h(2)) # ¢ (2) = h (¢ (2))

and therefore php~! # h, which is a contradiction. Therefore ¢ = Id and p = w. The proof is complete. O

2.2 Existence of a unique isomorphism-inducing homeomorphism

Before stating our second key result, we need to introduce some notation employed in [2]. Through this subsection, M will
be a smooth manifold, where we mean a paracompact connected finite dimensional C*° manifold without boundary.

Let Diff” (M), with r € [1,00), be the group of all C"-diffeomorphisms of M. Similarly, let Diff; (M) C Diff" (M) be the
subgroup of elements with compact support. A subgroup G (M) C Diff” (M) is called a group of C"-diffeomorphisms of M.
We say h is G (M)-isotopic to the identity if there exists a map H : [0,1] — G (M) such that H (0) =1Id, H (1) = h, and the
evaluation map H : [0,1] x M — M given by H (t,z) = (H (t)) (z), is C".

Now, we list specific subgroups of, and conditions on a given group G (M) we will need further on.

’ Subgroup \ Description

G. (M) The group of elements h € G (M) with compact support, G (M) N Diff}, (M).
G (U) The group of elements h € G (M) with compact support in an open subset U C M.
G (M), The isotropy group of @ € M, that is, the subgroup of h € G (M) that fix x.
GY (M) The subgroup of h € G (M) that are G (M)-isotopic to the identity.
[G (M),G (M)] | The group generated by commutators fgf~tg~! for all f,g € G (M); or the commutator subgroup.
| Property | Description \
A (Path transitivity) Given z,y € M, x # y, and ¢ : [0,1] = M with ¢(0) =z, ¢(1) =y, thereis h € G (M)
such that h (z) = y and supp (h) is contained in an arbitrarily small neighbourhood of ;¢ 11 ¢ (?)-
B For any small open ball U in M centered at zg € U there is h € G (M) such that Fix (h) = (M — U)U{zo}.
An open U C M is an open ball centered at zo € U if there is an embedding e : D — M of the open
disk of radius p centered at the origin in R”, into M and U = e (D¥}) for some o < p and e (0) = xo.
L (Locality, this property holds on F' C G (M) a subgroup of G (M)) For every open cover % = (U;),; of
M with open balls U;, we have [G% (M), G (M)] C F if for every U;, [G°(U;),G° (U;)] C F.
C For any pair (U,z) with x € U C M there is Id # h € G (M) with supp (h) C U and z € Int (supp (h)).
T (n) Given two sets {x1,...,Zn}, {¥1,-..,Yn} of distinct points, there is h € G (M) such that h (z;) = y; Vi.

An immediate consequence of these properties, which we will use in the proof of our result, is the following

Proposition 2.3 ([2]). If a group of diffeomorphisms satisfies property A (path transitivity), then it satisfies properties C
and T (n) for every n, provided dim M > 1.

Now, we may state our second result.



Theorem 2.4 ([2]). Let ¢ : G(M) — G (N) be a group isomorphism between two groups of diffeomorphisms of smooth
manifolds M and N. If G (M) and G (N) are non-abelian, both satisfy properties A and B, and

¢~ (G(N),). ¢ (G (M),,)
have the property L for allm € M and n € N, then there exists a unique homeomorphism w : M — N with ¢ (f) = wfw™?.

Proof. First, we will need the following lemma.

Lemma 2.5. Let G (M) and G (N) be two groups of diffeomorphisms satisfying properties T (1) and C. If ¢ : G (M) — G (N)
is an isomorphism such that there exists xo € M and yo € N such that

¢ (G (M),,) = G(N)

Yo

then there exists a homeomorphism w : M — N such that ¢ (f) = wfw™! for all f € G (M). Moreover, if G (M) and G (N)
satisfy property T (2), then w is unique.

Proof of lemma lemma 2.5. 1If ¢ takes G (M), to G(N)yo, it induces the following well defined map w : M — N. For
x € M, choose g € G (M) such that g (z¢) = « (we can do so by property T (1)), and we define

w () = ¢ (g) (Yo) -

Note that if another g’ € G (M) satisfies g (z0) = ¢’ (v0) = = then ¢'"'g € G (M), and ¢ (9 'g)=0¢ (¢") "' ¢ (g). But recall
o (g tg) € G (N),, so

¢ (9") (o) = ¢ (9) (o) -
Hence, w is well defined. Now let us see that it is a bijection.

If w(x1) = w(x2) then there are g1,92 € G (M) such that g1 (zo) = z1 and g2 (x0) = z2, and ¢ (g1) (yo) = ¢ (g2) (Yo)-
Then, we have ¢ (g1) ¢ (92)71 =¢ (glggl) eG (N)yo s0 g1g;, " € G (N),,- Hence, g1 (z0) = g2 (%0), and z1 = x2. Therefore
w is injective. Now, if y € N, we can choose h € G (N) such that h(yp) = y. Set z = ¢! (h)(zg). Then w(x) =
10) ((b_l (h)) (yo) = h(yo) = y. Hence, w is surjective. Since w is both injective and surjective, it is a bijection.

Next, we show that w induces ¢. Let y € N and h € G (N) such that h (yo) = y, and let x = ¢~ (k) (x9). We have seen
that w(z) = y. Let f € G (M) and choose g € G (M) such that g (x¢) = f (z). Then, f~1g(z0) =2 = ¢~ (h) (z0), so

g~ fo~t (h) € G(M),,
This implies that ¢ (9) " ¢ (f)h € G(N),,, 50 & (f)h(y0) = ¢ (g) (yo) but h (yo) = y = w (z) and  (9) (yo) = w (f ()), s0
¢ (fw(z) =w(f(x))

and since w is a bijection, ¢ (f) = wfw™! for all x € M.

To show that w is a homeomorphism, we proceed as in the proof of theorem 2.1. We let & = {Fix (f)|f € G (M)}, and
B ={M — A|A € &}. Property C implies that % is a basis for the topology on M. Since ¢ (f) = wfw™!, it follows that
Fix (¢ (f)) = w (Fix (f)). This implies that w and w~! take open sets to open sets, so both functions are continuous. Hence
w is a homeomorphism.

Lastly, we need to show w is unique if property T (2) is satisfied. If there exists another homeomorphism w’ : M — N
such that ¢ (f) = w'fw'~! = wfw~!. Then setting p = w'~'w we obtain

pfp~t=f VfeG(M).

We show that p must be the identity map. Supposing it is not, there is x € M such that p () # x. Consider another point
y € M distinct of x and p (x). By property T (2) there is some f € G (M) such that f (z) =« and f (p(z)) =y but

pfr (p(2) = pf(z)=p(x) and f(p(z)) =y #p(a).
Therefore, this contradicts that pfp~! = f, so p = Id and therefore w = w’'. O

Now we will need a result due by [7], which only uses the property C' and T (3).

Lemma 2.6. Let G (M), G(N) be two groups of diffeomorphisms of smooth manifolds M and N, satisfying properties C
and T (3), and let ¢ : G(M) — G (N) be an isomorphism. Let

F=o7(G(V),)

for some y € N. If there is a nonempty proper closed subset A C M such that f (A) = A Vf € F. Then A = {x} and
F=G(M),.



Note that with lemma 2.5 and lemma 2.6 we only need to construct a nonempty proper subset of M invariant under F.

Proof of the existence of a proper closed subset under F. We follow Filipkiewicz for this.
Let ¢ : G (M) — G (N) be an isomorphism. For n € N let .4, be the set of all open balls U of M with

[G°(U). G (V)] € F=¢7" (G(N),)
Similarly, for m € M let 4;, be the set of all open balls V' in N such that

[G°(V),G* (V)] C Fy, = ¢(G(M),,)
Note that .#,, and .4;, may be empty. Let

M, =M — U v and N, =N — U v.
VEMn VENm

Proposition 2.7. The subsets M, and N,, are closed subsets of M and N, respectively. Moreover,
f(M,)=M,VfeF, and g(N,)=N,VgeF],.

Assuming that G (M) and G (N) are nonabelian groups satisfying the T (1) property and that F,, respectively F,, have the
property L for all x € M, respectively for all y € N, then M, respectively N,,, are nonempty.

Proof of proposition 2.7. First, it is clear that M,, and N,, are closed subsets.
Secondly, we show F,, and F/ fix M, and N,,, respectively. Let U € ., and f € F,, and set V = f(U). Clearly,
G (V)= fG(U) f~. Therefore,

[G°(V),G° (V)] = F[G°(U),G°(U)] C fF.f~' C Py

so V € #,,. Hence, f (M,) = M,. The same argument shows g (N,,) = N,,, Vg € F},..
Suppose that M, = @. Then .#, is an open cover of M by balls {U;},.; such that

[G°(U),G°(Uy)] C F, Vi€l
Let y € N be an arbitrary point. Since G (N) has the T (1) property, there is f € G (V) such that f (n) = y. Then
G(N), = fG(N), ft

and

Fy=¢7 (GN),) =67 (FGIN), £71) =6 () 6(G(N),) 6 (f) = pFrp™"
where F,, = ¢~ (G (N),,) and p = ¢~ 1 (f). Let ¥ = {Vi = p(U;) |U; € M, }. Then ¥ is an open cover of M by balls V; and
[G°(Vi),G° (V)] = p[G° (U2),G° (U)] p™" C pFrp™ = F.
Hence [G° (V;),G° (V;)] C F, for all V; € #. By the property L,
(G2 (M), G2 (M)] € F.

Therefore, ¢ ([G2(M),G%(M)]) € G (N), for ally € N, and this implies that

¢ ([G2 (M), G2 (M)]) € () G(N), = {Tdu}-

yeN

But ¢ is an isomorphism, so this implies that [G?(M),G%(M)] = {Ida} which is impossible as G? (M) is nonabelian.
Hence, M,, # @. The same argument shows that N,, # @. O

We only need to know when M, respectively N,,, are proper subsets.

Lemma 2.8. Suppose G (M) and G (N) have the properties B and T (3). Then either My, is a proper subset, or there exists
m € M such that Ny, is a proper subset.

Proof of lemma 2.8. We use the following result by Filipkiewick [7, Lemma 3.3].



Lemma 2.9. Let G (M),G (N) be two groups of diffeomorphisms of smooth manifolds M and N and ¢ : G(M) = G (N) is
a group isomorphism. Suppose G (M) has property B. Let

F=o¢7' (G(N),)

for some y € N. There exists f € F, f # Id such that Int(Fiz(f)) # .

This proof will follow Filipkiewicz closely. Property B holds, so applying lemma 2.8 there exists gg # Id with gg € F,, =
=1 (G (NV),) with
X = Int (FIX (g(])) 7é .

The set Y = Fix (¢ (g0)) # & as it contains n € Y. Let
H=¢""{heG(N)|h(Y)=Y}
K=¢"'{heG(N)|Y CFix(h)}.

Then K is a normal subgroup of H. Since K contains go, H and K are nontrivial groups. If h € ¢ (K), h(n) = n as
n € Y C Fix (h). This implies ¢ (K) C G (N),,, namely, ¢ (K) C F,,. Now, there are two possibilities:

a) For all k € K, X C Fix (k).
b) There is k € K and = € X such that k (x) # .

Case a). Let h € G(N —Y). Then Y € Fix(h), so ¢! (h) € K. Then, ¢! (h) fixes z for all x € X. That is,
¢~ (h) € G(M),, or equivalently h € ¢ (G (X),). This implies

G(N-Y)Co(G(M),) VrelX.
Let V be any open ball V- C N —Y. Then
[G°(V),6° (V)] GO (V) S GO (N —Y) C6(G(M),) VaeX.

By definition of .4, for all x € X, any open ball V'C N —Y belongs to .4;. Hence, if a) holds, 4, # @ for all z € X, which
in turn implies that N, is proper for all x € X.

Case b). First let us show (exactly like in [7]) that G (X) C H. Let g € G (X) with g # Id, which exists by property C.
Now, let us see that ggog~' = go. If € Fix(go) — X = 9 (Fix(go)), then g (z) = z and go () = 2. Therefore, ggog~! (7) =

x = go (z). If x ¢ Fix(go), then go (z) ¢ Fix (go). Since supp (g) C X then g (z) = x, so ggog~ ' (z) = g (9o (z)) = go (z). For
r € X, we have ggog~! (z) = v = go (v). Hence,

¢ (9) b (g0) ¢ (9)"" = b (g0)

and therefore

¥ = Fix (6 (90)) = Fix (6/(9)6 (90) 6 (9) ") = 6 (9) Fixx (6 (90)) = () (V)

sog=¢"1(s(9)) € Hand G(X)C H.

We have, by assumption of case b), that there is g € X and kg € K such that kg (xg) # zo. Let U C M be an open
ball contained in X with ¢ € U. We may assume that ko (z9) € U, since if it were not originally, then we can choose
feGU) CG(X)C H with yo = f (z0) with yo € U, using property T (2). Then f~1kq (zo) = ko (z0) since ko (zo) ¢ U
and supp (f) = supp (f_l) C U. Hence

ko (z0) = fky ' f ko (w0) = f (w0) = vo.

Then kg (zo) # xo, ko (z0) = yo € U and k= (fko_lf_l) ko € K since K is a normal subgroup of H and f € H.
Now we show that K acts transitively on U. Let y € U. By property A, thereis p € G (U) with p (y) = 2o and p (yo) = vo,
where yo = ko (x9) € U. Then

,012:0 (x0) = ko (x0) =0, and Izio_lpl;:o (o) =x0=p(y).

Hence R R
g (zo) = (P_1k619> ko (z0) =y

and § € K as ko € K and p € G (U) C G (X) C H. Therefore, as § (x0) = y, K acts transitively on U.
Now, given three distinct elements zg, z1, 22 € U there are g1,g2 € K such that g; (zg) = z; for i = 1,2. Let Uy be a
small open ball containing zy and such that the sets

{Us, 91U, 92Uo, 91 "Uo, 95 " Uo }



are mutually disjoint and their union is contained in U. An easy argument (by Thurston) shows that if hy, he € G (Up), then
[h1, ha] = [[P1, 91] , [h2, g2]] where [h;, g;] = (higihjl) g;l € K. This proves that

[G°(Uy),G° (Up)] CK C F,=¢""(G(N),)

and therefore Uy € A,,, so #,, # @ and M, is proper.
Hence, we have shown that either N, is proper for all z € X, or M,, is proper. This concludes the proof of lemma 2.8. [

To finish the proof of the existence of our proper closed nonempty subset, we use lemma 2.8. Given ¢ : G (M) — G (N)
with the hypothesis of theorem 2.4, starting with any point yg € N, we have two possibilities, with which we conclude the
proof.

a) X = M,, is proper nonempty closed and invariant by F,, = ¢ (G (N)yo)'

b) There exists zo € M such that N, is proper nonempty closed. In this case, we instead consider the isomorphism
¢~ G(N) = G (M), as N, is invariant under F = ¢ (G (M), ).

O

In case a) above, lemma 2.6 applied to ¢ shows that My, = {z¢} and F,, = G (M), . In case b), lemma 2.6 applied to
¢~ shows N,, = {ug} with ug € N, and F, = G(N),,- Hence, in any case, ¢ takes isotropy subgroups of G (M), for

mo

some point mg € M, to the isotropy subgroups G (N )n0 of some point ng € N. Therefore, the hypothesis of lemma 2.5 are
satisfied. Hence, lemma 2.5, lemma 2.6 and lemma 2.8 yield a complete proof of theorem 2.4.
O

3 Main theorem

Now, it suffices to prove that for isomorphic ® : G¢, (M1) — Gg, (M2), G¢, and G¢, are nonabelian, have the A and B
property, and ® (Ge, (M), ) and @~ (Ge, (M), ) have the L property for every my € My and my € M.

In fact, we show every subgroup of G¢, (M;) has the L property, hence the result follows. Before proving this, several
intermediate steps are required, which include the proof that G, (M;) satisfies the Epstein’s axioms, and a modification of
Filipkiewicz’s shrinking lemma.

3.1 Preliminaries

We will make use of the following results.

Theorem 3.1 ([4]). Let (M,£) be a co-orientable contact manifold and let hy be a contact isotopy. Let F C M be a closed
set, and let U W C M be open sets such that

U mFp)cuctcw
te[0,1]

Then there is a contact isotopy iLt such that ?lt|F = hy and supp (ﬁt) cW.

Theorem 3.2 (Lychagin’s Theorem). There is a diffeomorphism Q : W — V, where W is a neighbourhood of the identity
in Diff, (M,§), and V is a neighbourhood of 0 in L¢ (M).

Now we present the Epstein’s axioms and theorem. Let G be a group of diffeomorphisms of a paracompact Hausdorff
topological space M, and let % be a basis pf the topology on M. The Epstein’s axioms for the triple (G, % , M) are

Al. f U € % and g € G, then gU € % .
A2. G acts transitively on % .
A3. Let g € G, U € % and A be an open cover of M. Then there are ¢1,...,9, € G and Vi,...,V,, € & such that:
() g=gnogn-10--0g1
(i) supp (g:) € V;
(iii) supp (g:) U (gi—10---0g1U) # M.

Theorem 3.3 (Epstein’s Theorem). If the triple (G, % , M) satisfies Epstein’s axioms, then [G,G] is a simple group.



3.2 Verification of Epstein’s axioms for G¢ (M)

Let (M, §) be a co-orientable contact manifold and consider G¢ (M). Fix a point p € M and let (V, ) be a Darboux chart of
an open neighbourhood of p such that ¢ (V) = W C R?"*! and ¢ (p) = 0. Let 7 > 0 such that the open ball Dy, of radius
47 centered at 0 € R2"*1 is contained in W. Let

B=1v'(D;)Cc M.

With this construction, we wish to construct a basis % of the topology on M that the triplet (G¢ (M), %, M) satisfies
Epstein’s axioms.

Lemma 3.4. The subsets % = {¢B | ¢ € G¢ (M)} form a basis for the topology on M.

Proof. Denote by (x,y,z) a point of R?"*! where z,y € R" and z € R. Let
wo =z1dy1 + -+, +dy, +dz
be the canonical contact form on R?"*!. For each t € R, let
Ry : R L RV (1 g, 2) (tx,ty,tzz)

be a contact homothety, which is a contraction for ¢ < 1 and a dilation for ¢ > 1. Theorem 3.1 applied with F = D, yields
the following result

Lemma 3.5. For each small 0,7 € R with 37 < 1, there is a contact isotopy RY of R* 1 such that
Ri|l5. = Ror and  supp(R]) C Da..

Moreover, Fiz(R{) = (R*"*! — D — 37) U {0}.

Proof of lemma 3.5. Consider a bump function A, positive on Dy, and given by

o €D,
)\a (-T): {0 x€R2n+1\D3T

Then, the isotopy we look for will be given by the following vector field: Let & = kera. Then there is an isomorphism
G: Le (M) — C> (M) given by ¢ (X) = txa. Hence, one can assign a vector field ¢=* (f) to any f € C°> (M). In particular,
one can assign a contact vector field to any vector field X defined as

C(X)=¢"(txa).
Finally, our contact isotopy RY is defined by the contact vector fields X; = C (A, VRy). O

Now, we return to our original proof. Consider 7 as in the definition of B. Using the chart (V, ), we can obtain a contact
isotopy p? of M equal to ¥ "1RZ% on V and the identity outside V. Note that the contact diffeomorphism p§ = p, fixes p
and shrinks B into an arbitrarily small neighbourhood of p, (B) = B, € % of p. Now we are ready to show % is a basis.

Pick € M and an open neighbourhood O of z. By Boothby’s transitivity theorem [5], there is h € G¢ (M) such that
h(p) =2 and h(B,) = U C O for small enough ¢. Hence, z € U and U = hp, (B) € % . O

Remark 3.6. As a side result, it follows from lemma 3.5 that
Fix (ps) = (M =4~ (Ds7)) U {p}
which implies G¢ (M) has the property B.
Now that we have a candidate basis %, we proceed to showing the following
Theorem 3.7. The triplet (Ge (M), %, M) satisfies Epstein’s azioms.

Proof. Axioms A1l and A2 can be trivially verified.
To verify axiom A3 we need several intermediate results.

Lemma 3.8. Let X € L¢ (M) and let v € C (M) be a compactly supported function. Define the contact vector field
X" :=C(wX)=¢"(xa)

where ker o = £. Then || XV, <m, || X|,, for some m, > 0. Here ||-||, denotes the C*-norm.



Proof of lemma 3.8. Denoting fx = txa, we have

XY= wfx)n+ @7 ((1yd (vfx)) o — d(vfx))
= v (fxn+0 " ((dfx) a—dfx)) + fx (@7 ((tydv) a — dv))
=vX + fx (27 ((tydv) a — dv))
where ® is the isomorphism between horizontal vector fields and semi-basic 1-forms. Hence

X7y < Xl + 1 x Holly

where H,, is the horizontal part of the contact vector field ¢~! (v) corresponding to v. Let A, be such that ||v||, < A,. Since
¢ is a linear map (hence bounded, as it is continuous), ||fx||; < ¢1 || X]||,, where ¢; depends only on a. Furthermore, ®, !
are linear operators, we have | H,||; < 2 ||v||; < c2A, (where co depends only in ®, which in turn depends on da). Hence

XMy < Ay [1X 1y + (en [1X 1) (e2dn) = Ay (14 creo) [| X -

Lemma 3.9. Let ¢ € G¢ (M) with supp (¢) C K where K is compact. Let {U;}.—, be a finite open cover of K. Then

p=¢10---00,
where supp (¢;) C U; and ¢, € G¢ (M) fori=1,...,n.

Proof of lemma 3.9. We may assume ¢ is as close to the identity as we want. For this, consider an isotopy ¢; € Diff, (M, §)
from the identity to ¢, then ¢ = ¢; can be written as ¢ = ¢" o --- 0 " where ¢’ = Gis, © ot n for a sufficiently large n.
Consider the Lychagin chart Q : W — V in theorem 3.2, and choose a neighbourhood of the identity O C W. Let

r=sup{s | Bs(0) C Q(0)}

where B (0) = {X € L (M) | || X]|; < s}. Now choose a partition of unity {\;} subordinate to the open cover {U;}, and
define u; = 23:1 Aj. By lemma 3.8 we have that [|Q(¢)"]|; < m;||Q ()], for each i. Let k& = max{m;}. Now, we can
choose ¢ close enough to the identity so that || (¢)||; <  and hence || (¢)"**[|; < r for all . This implies that ¢ (¢)" is
in the image of the chart (.

Note that for x ¢ U;, u; = pi—1, and p, = 1. Defining hi = Q! (tQ (¢)"""), we have hl = hi_, outside U; and h!, = ¢.
Hence, since

1

i = hio(hi1)

has support in U; and by construction, we have ¢* = ¢! o--- o ¢}, our result follows. O
Lemma 3.10. Let g € G¢ (M) where supp(g) CV € %:. Let U be a non-dense open subset of M. Then g = g2 o g1 where
gi € Ge (M), supp(g;) CV and

supp (g1) UU # M and  supp(g2) Ug1U # M.

Proof of lemma 3.10. If supp (g) C V then choose g; = Id, g» = g. Else, we can choose x € V — U such that g (z) # x. Now,
choose an isotopy g¢: € Diff, (M, ) from the identity to g1 = g. Let N7 be an open neighbourhood of z, such that there are
open sets Ny and N3 satisfying
U 9t (N1) CNC Ny CN;C V.
te[0,1]

By theorem 3.1 there is a contact isotopy h; such that ht|ﬁ1 = g; and supp (hy) C N3.

Choose a point y ¢ U U N3. Then, we define g; = hy and go = ghy'. Tt is clear that supp (g;) € V for i = 1,2, and
since y ¢ U and y ¢ supp (h), we have that supp (g1) UU # M. Finally, g1 (z) ¢ 91U since x ¢ U, and for every z € Ny,

g2001(2) =g(2) =h(2) =¢1(2), so x ¢ supp (g2) and therefore, supp (g2) U g1U # M. O

Now we complete the proof that (G¢ (M), %, M) satisfies axiom A3. Take g € G¢ (M), U € % and % an open cover
of M. Since g has compact support K, we can cover K by finitely many V; € &, say V1,...,V,. Using lemma 3.9 on g and
the cover {V;} we obtain g = g, o...0¢g; with g; € G¢ (M) and supp (g;) C V;. Finally, we apply lemma 3.10 to each triplet

(9i, Vi, gi—1 ... q1U) to obtain g; = g2g} with supp (gf) C V; for j = 1,2 and supp (gll) UU # M and supp (gf) UgltU # M.

Finally, the decomposition of g we wish is g = g2 o gl o---0 g% 0 gi. O



3.3 The shrinking lemma

We will use a modification of a shrinking lemma of Filipkiewicz [7]. Recall D21 C R?"*! is the open ball of radius a
centered at the origin. Since the dimension we are working on is understood, we simply write D, = D2"*1. Also, denote by
B (z,¢) the open ball of radius ¢ centered at x.

Lemma 3.11. Let C be an open cover of D1. Then if a € (0,1], there are fi,g;i € Gyerw, (R2”+1) fori=1,2,...,m such
that

(i) Fori=1,...,m, there exists C; € C such that f;,g; € Gxerw, (Ci)
(i) [fm,gm] o -0 [f1,01] (D1) € Da
where wy = (3.1, xidy;) + dz is the standard contact form on R*"+1.

Proof. Let A C (0,1] be the subset of a € (0, 1] for which the lemma is true. Clearly A is non-empty as 1 € A, and this can
be seen by choosing f = g = Id. Now, let ag = inf A. We want to show ay = 0.

Suppose ag > 0. Let {V;} be a finite open cover of the boundary dD,, of D,, and choose ¢ less than the Lebesgue
number of the cover {V;}. For each = € dD,,, choose pairs (g,,U,) consisting of an open neighbourhood U, of = and
9 € Grerw, (B (z,€)) such that

e U, CB (:C,&‘) N (bao—&-% \EQU_%)
® Gz (U:v) c an—% and 9;1 (UI) C R \ﬁao-l-%'
This can be done by choosing points

Pz € B(x,e)N BDGOJE

4z € B(x,6)NOD,, 2

since by Boothby’s transitivity theorem, we can find u,v € Gierw, (B (2,€)) such that u (z) = ps, v (gz) = ¢u, v(¢z) = x,
v (ps) = pz. Then setting g, = v o u, we have g, (z) = p, and g;! (z) = ¢,, and it only remains to take a sufficiently small
neighbourhood U, of x.

Clearly the sets U, cover 0D,,, so we can choose a finite cover {Ugci}f:1 with their corresponding {g.,}. For simplicity,
let U,, = U; and g,, = g;. Now we choose &’ < % such that

k
Da0+s’ \Daofe’ C U U;.
i=1

Our next step will be constructing an f € Gyerw, (Dag+e’ \ Dag—e’) such that for some ¢ > 1, we have

f(Dy2) D, o

c

Consider the homothety Ry (z,y,2) = (Az, Ay, A%z) where

with ¢ > 1 chosen so that (ao — %,) A2 > ag — €’. We can choose such a c since the inequality is equivalent to
ca’e' + 0 () >0

where the right side is a polynomial in ¢ with positive leading coefficient, hence for ¢ sufficiently large, the inequality holds.

Now, let p € DaOJr%r, p=(z,y,2). Then
1
n 2
= (2 (St 40t 002
i=1

[N

((Ee5)-2)

10

e’ e’
)\p|§)\<a0+>ao.
C C



Hence R (5% el ) C an_ <. Now, by theorem 3.1 we can find a contact diffecomorphism f which agrees with Ry on
Da0+%’ \Daof% and supp (f) C D

To verify this, we need to show that if |p| > ag — %’ then |Ry (p)| > ag —&’. But

’.
ao+<-

Nl

= (s (St vat) 20

n 3 ,
Z(/\4<<ZI?+3/?>+22>> —)\2p|>)\2(a0—€c>>ao—s’.
i=1

Now, we apply lemma 3.9 to f subject to the open cover {U;} to obtain f; such that supp (f;) C U;. Define h; = [f;, gi].
Then

hi(x) = S gifigi* € g (Ui)
T otherwise, since supp (f;) C U;

The reminder of the proof is as done by Filipkiewicz. If £ € Dyyyer \ Dy, —er then

hk0~-~0h1($):fko-”ofl(l')

and therefore hyo---0ohy (an) - ﬁao,%. Moreover, for each i there is an x; € 9D, with f;, g; € Gxerw, (B (x;,¢)). Since €
is less than the Lebesgue number of the covering C, there is an open C; € C with f;, g; € Gxerw, (C;) for each 4, which shows
ag — %, € A and this is a contradiction to a¢p = inf A. Hence ag = 0 and we are done. O

3.4 Proof of the main theorem

We shall now prove that the groups G, (M;), ¢ = 1,2 have the A and B properties, and every subgroup of them has the L
property. Property A is a consequence of Boothby’s transitivity theorem and k-transitivity of G¢ (M) and we have shown
property B holds in remark 3.6. Hence, we are only left to show every subgroup of G¢ (M) has the L property.

Proposition 3.12. Every subgroup F of G¢ (M) has the L property.

Proof. We follow Filipkiewicz method. Let H be a subgroup of [G¢ (M), G¢ (M)] generated by the groups [G¢ (U) , G (U)] as
U ranges over %. H is a normal subgroup of [G¢ (M), G¢ (M)], which is simple by theorem 3.3, so H = [G¢ (M), Ge (M)).
Let F be a subgroup of G¢ (M) satisfying the hypothesis of the L property subject to the open subcover of balls %’ C %.
That is, [Ge (U),Ge (U)] C F for every U € %’. We need only show that if W € % then [Ge (W) ,Ge (W)] C F. Consider
then a Darboux chart ¢ with domain U and D1 C U, and consider W = ¢ (D7) € % where ¢ € G¢ (M). By hypothesis,
we can cover W with finitely many Uy, ..., Us € % so that [G¢ (U;), Ge (U;)] C F. Then, define V; = ¢~1¢~! (U;). The sets
V; cover D; and either V; C U or we can choose smaller U; so that V; C U, and in the later case we do so. Assume 0 € V;.
For some a > 0, D, C Vi, and we apply lemma 3.11 to obtain commutators [f;, ;] € Gkerws (Vij) (1 <i<k)and

[frsgrlo...o[f1,91] (ﬁl) C D,. Since each fi,9;j € Grerw, (U) we can define fj,gj € G¢ (M) as

: {w) fi (@) (2) xedv(U)

() =
13 (@) T otherwise

o @) g (o) (@) @ e gy (U)
g9; (x) = .
x otherwise
So [qu,ﬁj} c [Gg (Uz’j) ,Ge (Uij)] C F. Define 7 = {fhgj} 0---0 [fl,gl}. Then 7 € F and 7 (W) C Uy, and

[Ge (W), Ge (W)] € 771 [Ge (Uh) , Ge (Un)] 7 € F.
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