Monodromy of $K 3$ surfaces branching over quartic curves

Adán Medrano Martín del Campo

University of Chicago

IMUNAM - Algebraic Topology Seminar
March 17, 2022

Goals

- Monodromy of a Family of Varieties

Goals

- Monodromy of a Family of Varieties
- Examples

Goals

- Monodromy of a Family of Varieties
- Examples
- Explicit computation for a family of $K 3$ surfaces

An elliptic fibration over \mathbb{P}^{1}

An elliptic fibration over \mathbb{P}^{1}

For $\lambda \in \mathbb{C} \backslash\{0,1\}$:

$$
S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\}
$$

An elliptic fibration over \mathbb{P}^{1}

For $\lambda \in \mathbb{C} \backslash\{0,1\}$:

$$
S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\}
$$

$$
\overline{S_{\lambda}}=C_{\lambda} \cong T^{2}
$$

An elliptic fibration over \mathbb{P}^{1}

For $\lambda \in \mathbb{C} \backslash\{0,1\}$:

$$
S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\}
$$

$$
\overline{S_{\lambda}}=C_{\lambda} \cong T^{2}
$$

$\left\{(\lambda, p) \mid p \in C_{\lambda}\right\}$

C_{λ} as a branched cover of \mathbb{P}^{1}

$$
S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\} \quad C_{\lambda}=\overline{S_{\lambda}}
$$

C_{λ} as a branched cover of \mathbb{P}^{1}

$$
\begin{aligned}
& S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\} \quad C_{\lambda}=\overline{S_{\lambda}} \\
& \langle\sigma\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \curvearrowright C_{\lambda}(x, y) \\
& \underset{\mathbb{P}^{1}}{\downarrow_{x}^{f}} \underset{ }{f}
\end{aligned}
$$

C_{λ} as a branched cover of \mathbb{P}^{1}

$$
\begin{aligned}
& S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\} \quad C_{\lambda}=\overline{S_{\lambda}} \\
& \langle\sigma\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \curvearrowright C_{\lambda}(x, y) \\
& \underset{\mathbb{P}^{1}}{\downarrow_{x}^{f}} \quad \underset{x}{ } \quad \sigma(x, y)=(x,-y)
\end{aligned}
$$

C_{λ} as a branched cover of \mathbb{P}^{1}

$$
\begin{aligned}
& S_{\lambda}=\left\{(x, y) \in \mathbb{C}^{2} \mid y^{2}=x(x-1)(x-\lambda)\right\} \quad C_{\lambda}=\overline{S_{\lambda}} \\
& \langle\sigma\rangle \cong \mathbb{Z} / 2 \mathbb{Z} \curvearrowright C_{\lambda}(x, y) \\
& \underset{\mathbb{P}^{1}}{\downarrow_{x}^{f}} \underset{\sim}{\underbrace{}_{x}} \quad \sigma(x, y)=(x,-y)
\end{aligned}
$$

$$
\operatorname{Fix}(\sigma)=f^{-1}(\{0,1, \lambda, \infty\})
$$

Involution on C_{λ}

\mathbb{P}^{1} as a quotient of C_{λ}

Monodromy Homomorphism

Monodromy Homomorphism

| $C_{\lambda} \longrightarrow$ | |
| :---: | :---: | :---: |
| $\mathbb{P}^{1} \backslash\{0,1, \infty\}$ | $\rho: \pi_{1}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}\right) \rightarrow \operatorname{Aut}\left(H_{1}\left(C_{\lambda} ; \mathbb{Z}\right)\right)$ |
| \downarrow | Monodromy |

π_{1} generators

$$
\pi_{1}\left(\mathbb{P}^{1} \backslash\{0,1, \infty\}, \frac{1}{2}\right) \cong\langle a, b\rangle
$$

Action of generators

Image of ρ

With respect to our basis of $H_{1}\left(C_{\lambda} ; \mathbb{Z}\right)$:

$$
\rho(a)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { y } \quad \rho(b)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

Image of ρ

With respect to our basis of $H_{1}\left(C_{\lambda} ; \mathbb{Z}\right)$:

$$
\rho(a)=\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right) \quad \text { y } \quad \rho(b)=\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)
$$

where

$$
\operatorname{Im}(\rho)=\left\langle\left(\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right)\right\rangle \quad\left[\mathrm{SL}_{2}(\mathbb{Z}): \operatorname{Im}(\rho)\right]=12
$$

Spaces of smooth projective hypersurfaces

Hypersurfaces in \mathbb{P}^{n}

$$
f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}
$$

Hypersurfaces in \mathbb{P}^{n}

$$
f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \quad \rightsquigarrow \quad V(f)=\left\{x \in \mathbb{P}^{n} \mid f(x)=0\right\}
$$

Hypersurfaces in \mathbb{P}^{n}

$$
\begin{aligned}
& f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d} \rightsquigarrow V(f)=\left\{x \in \mathbb{P}^{n} \mid f(x)=0\right\} \\
& \mathbb{P}^{\binom{n+d}{d}-1}=\left\{V(f) \subset \mathbb{P}^{n} \mid f \in \mathbb{C}\left[x_{0}, \ldots, x_{n}\right]_{d}\right\} \\
& {\left[a_{i}\right] } \mapsto V\left(\sum_{i} a_{i} x^{i}\right)
\end{aligned}
$$

The complements $\mathcal{U}_{n, d}$

The discriminant variety

$$
\{f \text { singular }\}=\Delta_{n, d} \subset \mathbb{P}^{\binom{n+d}{d}-1}
$$

The complements $\mathcal{U}_{n, d}$

The discriminant variety

$$
\begin{gathered}
\{f \text { singular }\}=\Delta_{n, d} \subset \mathbb{P}^{\binom{n+d}{d}-1} \\
\mathcal{U}_{n, d}=\mathbb{P}^{\binom{n+d}{d}-1} \backslash \Delta_{n, d}
\end{gathered}
$$

The complements $\mathcal{U}_{n, d}$

The discriminant variety

$$
\begin{gathered}
\{f \text { singular }\}=\Delta_{n, d} \subset \mathbb{P}^{\binom{n+d}{d}-1} \\
\mathcal{U}_{n, d}=\mathbb{P}^{\binom{n+d}{d}-1} \backslash \Delta_{n, d}
\end{gathered}
$$

What can be said regarding $\pi_{1}\left(\mathcal{U}_{n, d}\right)$?

Fundamental group of $\mathcal{U}_{n, d}$

(Lonne) Presents each $\pi_{1}\left(\mathcal{U}_{n, d}\right)$ with $(d-1)^{n}$ generators.

Fundamental group of $\mathcal{U}_{n, d}$

(Lonne) Presents each $\pi_{1}\left(\mathcal{U}_{n, d}\right)$ with $(d-1)^{n}$ generators.

- $\pi_{1}\left(\mathcal{U}_{n, 1}\right) \cong \pi_{1}\left(\mathbb{P}^{n}\right) \cong 0$

Fundamental group of $\mathcal{U}_{n, d}$

(Lonne) Presents each $\pi_{1}\left(\mathcal{U}_{n, d}\right)$ with $(d-1)^{n}$ generators.

- $\pi_{1}\left(\mathcal{U}_{n, 1}\right) \cong \pi_{1}\left(\mathbb{P}^{n}\right) \cong 0$
- $\pi_{1}\left(\mathcal{U}_{n, 2}\right) \cong \mathbb{Z} /(n+1) \mathbb{Z}$

Fundamental group of $\mathcal{U}_{n, d}$

(Lonne) Presents each $\pi_{1}\left(\mathcal{U}_{n, d}\right)$ with $(d-1)^{n}$ generators.

- $\pi_{1}\left(\mathcal{U}_{n, 1}\right) \cong \pi_{1}\left(\mathbb{P}^{n}\right) \cong 0$
- $\pi_{1}\left(\mathcal{U}_{n, 2}\right) \cong \mathbb{Z} /(n+1) \mathbb{Z}$
- $\pi_{1}\left(\mathcal{U}_{1, d}\right) \cong \pi_{1}\left(\operatorname{Conf}_{d}\left(\mathbb{P}^{1}\right)\right) \cong B_{d}\left(S^{2}\right)$

Fundamental group of $\mathcal{U}_{n, d}$

(Lonne) Presents each $\pi_{1}\left(\mathcal{U}_{n, d}\right)$ with $(d-1)^{n}$ generators.

- $\pi_{1}\left(\mathcal{U}_{n, 1}\right) \cong \pi_{1}\left(\mathbb{P}^{n}\right) \cong 0$
- $\pi_{1}\left(\mathcal{U}_{n, 2}\right) \cong \mathbb{Z} /(n+1) \mathbb{Z}$
- $\pi_{1}\left(\mathcal{U}_{1, d}\right) \cong \pi_{1}\left(\operatorname{Conf}_{d}\left(\mathbb{P}^{1}\right)\right) \cong B_{d}\left(S^{2}\right)$
(Dolgachev-Libgober)

$$
\pi_{1}\left(\mathcal{U}_{2,3}\right) \cong \mathcal{H}_{3}(\mathbb{Z} / 3 \mathbb{Z}) \rtimes \mathrm{SL}_{2}(\mathbb{Z})
$$

where $\mathcal{H}_{3}(\mathbb{Z} / 3 \mathbb{Z})$ is the Heissenberg group modulo 3 .

The universal family $E_{n, d}$

The universal family $E_{n, d}$

\leadsto

$$
\rho: \pi_{1}\left(\mathcal{U}_{n, d}\right) \rightarrow \operatorname{Aut}\left(H_{n-1}(V(f) ; \mathbb{Z})\right)
$$

Monodromy of $E_{n, d}$

What is the image of this homomorphism?

$$
\rho: \pi_{1}\left(\mathcal{U}_{n, d}\right) \rightarrow \operatorname{Aut}\left(H_{n-1}(V(f) ; \mathbb{Z})\right)
$$

Monodromy of $E_{n, d}$

What is the image of this homomorphism?

$$
\rho: \pi_{1}\left(\mathcal{U}_{n, d}\right) \rightarrow \operatorname{Aut}\left(H_{n-1}(V(f) ; \mathbb{Z})\right)
$$

- (Ebeling) If n is odd:

$$
\operatorname{Im}(\rho)=\mathrm{O}_{h}^{+}\left(H_{n-1}(V(f) ; \mathbb{Z})\right)
$$

Monodromy of $E_{n, d}$

What is the image of this homomorphism?

$$
\rho: \pi_{1}\left(\mathcal{U}_{n, d}\right) \rightarrow \operatorname{Aut}\left(H_{n-1}(V(f) ; \mathbb{Z})\right)
$$

- (Ebeling) If n is odd:

$$
\operatorname{Im}(\rho)=\mathrm{O}_{h}^{+}\left(H_{n-1}(V(f) ; \mathbb{Z})\right)
$$

- (Janssen) If n is even:

$$
\operatorname{Im}(\rho)= \begin{cases}\operatorname{Sp}\left(H_{n-1}(V(f) ; \mathbb{Z})\right) & \text { if } d \text { is even } \\ \operatorname{SpO}\left(H_{n-1}(V(f) ; \mathbb{Z}), q_{V(f)}\right) & \text { if } d \text { is odd }\end{cases}
$$

Degree 2 del Pezzo surfaces

A bridge between cubic surfaces and quartic curves

Monodromy of $E_{3,3}$

(Klein-Jordan)

$$
\operatorname{Im}\left(\rho: \pi_{1}\left(\mathcal{U}_{3,3}\right) \rightarrow \operatorname{Aut}\left(H_{2}(V(f) ; \mathbb{Z})\right)\right) \cong W\left(E_{6}\right)
$$

Monodromy of $E_{3,3}$

(Klein-Jordan)

$$
\operatorname{Im}\left(\rho: \pi_{1}\left(\mathcal{U}_{3,3}\right) \rightarrow \operatorname{Aut}\left(H_{2}(V(f) ; \mathbb{Z})\right)\right) \cong W\left(E_{6}\right)
$$

Automorphisms of the 27 lines in a smooth cubic surface.

Monodromy of $E_{3,3}$

Schläfli graph Γ_{6}

Monodromy of $E_{3,3}$

Schläfli graph Γ_{6}

$$
\operatorname{Aut}\left(\Gamma_{6}\right) \cong W\left(E_{6}\right) \quad\left|W\left(E_{6}\right)\right|=51840
$$

Monodromy of $E_{3,3}$

Schläfli graph Γ_{6}

$$
\operatorname{Aut}\left(\Gamma_{6}\right) \cong W\left(E_{6}\right) \quad\left|W\left(E_{6}\right)\right|=51840
$$

Intersection pattern of the 27 lines in a smooth cubic surface.

Monodromy of $E_{2,4}$

$$
\operatorname{Im}\left(\rho: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H_{1}(V(f) ; \mathbb{Z})\right)\right) \cong \operatorname{Sp}_{6}(\mathbb{Z})
$$

Monodromy of $E_{2,4}$

$$
\operatorname{Im}\left(\rho: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H_{1}(V(f) ; \mathbb{Z})\right)\right) \cong \operatorname{Sp}_{6}(\mathbb{Z})
$$

Reduction modulo 2:

$$
\operatorname{Sp}_{6}(\mathbb{Z}) \rightarrow \mathrm{Sp}_{6}\left(\mathbb{F}_{2}\right)
$$

Monodromy of $E_{2,4}$

$$
\operatorname{Im}\left(\rho: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H_{1}(V(f) ; \mathbb{Z})\right)\right) \cong \operatorname{Sp}_{6}(\mathbb{Z})
$$

Reduction modulo 2:

$$
\operatorname{Sp}_{6}(\mathbb{Z}) \rightarrow \mathrm{Sp}_{6}\left(\mathbb{F}_{2}\right)
$$

Monodromy of $E_{2,4}$

$$
\operatorname{Im}\left(\rho: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H_{1}(V(f) ; \mathbb{Z})\right)\right) \cong \operatorname{Sp}_{6}(\mathbb{Z})
$$

Reduction modulo 2:

$$
\operatorname{Sp}_{6}(\mathbb{Z}) \rightarrow \mathrm{Sp}_{6}\left(\mathbb{F}_{2}\right)
$$

Automorphisms of the 28 bitangents to a smooth quartic curve.

Monodromy of $E_{2,4}$

Gosset graph Γ_{7}

Monodromy of $E_{2,4}$

Gosset graph Γ_{7}

$\operatorname{Aut}\left(\Gamma_{7}\right) \cong W\left(E_{7}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \operatorname{Sp}_{6}\left(\mathbb{F}_{2}\right) \quad\left|W\left(E_{7}\right)\right|=56 \cdot\left|W\left(E_{6}\right)\right|$

Monodromy of $E_{2,4}$

Gosset graph Γ_{7}

$$
\operatorname{Aut}\left(\Gamma_{7}\right) \cong W\left(E_{7}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \operatorname{Sp}_{6}\left(\mathbb{F}_{2}\right) \quad\left|W\left(E_{7}\right)\right|=56 \cdot\left|W\left(E_{6}\right)\right|
$$

Which intersection pattern does it give?

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

- Contains 56 lines

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

- Contains 56 lines
- Intersection pattern given by the Gosset graph Γ_{7}

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

- Contains 56 lines
- Intersection pattern given by the Gosset graph Γ_{7}
- Branches doubly over a smoth quartic curve $V(f) \subset \mathbb{P}^{2}$

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

- Contains 56 lines
- Intersection pattern given by the Gosset graph Γ_{7}
- Branches doubly over a smoth quartic curve $V(f) \subset \mathbb{P}^{2}$
- 2:1 correspondence between

$$
\{56 \text { lines in } \mathcal{P}\} \longleftrightarrow\{28 \text { bitangents to } V(f)\}
$$

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

- Contains 56 lines
- Intersection pattern given by the Gosset graph Γ_{7}
- Branches doubly over a smoth quartic curve $V(f) \subset \mathbb{P}^{2}$
- 2:1 correspondence between

$$
\{56 \text { lines in } \mathcal{P}\} \longleftrightarrow\{28 \text { bitangents to } V(f)\}
$$

realized by the Geiser involution τ

Degree 2 del Pezzo surfaces

$$
\mathcal{P}=\mathrm{Bl}_{7}\left(\mathbb{P}^{2}\right)
$$

Facts about \mathcal{P} :

- Contains 56 lines
- Intersection pattern given by the Gosset graph Γ_{7}
- Branches doubly over a smoth quartic curve $V(f) \subset \mathbb{P}^{2}$
- 2:1 correspondence between

$$
\{56 \text { lines in } \mathcal{P}\} \longleftrightarrow\{28 \text { bitangents to } V(f)\}
$$

realized by the Geiser involution τ

- Deck group of $\mathcal{P} \rightarrow \mathbb{P}^{2}$

$$
\langle\tau\rangle \cong Z\left(W\left(E_{7}\right)\right) \cong \mathbb{Z} / 2 \mathbb{Z}
$$

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

$$
\mathcal{P} \cong \mathrm{Bl}_{P}(S) \xrightarrow{\pi} S
$$

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

$$
\mathcal{P} \cong \mathrm{Bl}_{P}(S) \xrightarrow{\pi} S
$$

Let $L=\pi^{-1}(P)$ and

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

$$
\mathcal{P} \cong \mathrm{Bl}_{P}(S) \xrightarrow{\pi} S
$$

Let $L=\pi^{-1}(P)$ and

- \mathcal{L} : bitangent to $V(f)$ under L

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

$$
\mathcal{P} \cong \mathrm{Bl}_{P}(S) \xrightarrow{\pi} S
$$

Let $L=\pi^{-1}(P)$ and

- \mathcal{L} : bitangent to $V(f)$ under L
- $\mathcal{S}:\{27$ lines in $S\}$

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

$$
\mathcal{P} \cong \mathrm{Bl}_{P}(S) \xrightarrow{\pi} S
$$

Let $L=\pi^{-1}(P)$ and

- \mathcal{L} : bitangent to $V(f)$ under L
- $\mathcal{S}:\{27$ lines in $S\}$
- $\mathcal{B}:\{28$ bitangents to $V(f)\}$

Degree 2 del Pezzo surfaces

Relation to cubic surfaces

$$
\mathcal{P} \cong \mathrm{Bl}_{P}(S) \xrightarrow{\pi} S
$$

Let $L=\pi^{-1}(P)$ and

- \mathcal{L} : bitangent to $V(f)$ under L
- $\mathcal{S}:\{27$ lines in $S\}$
- $\mathcal{B}:\{28$ bitangents to $V(f)\}$
(Harris)

$$
\operatorname{Stab}(\mathcal{L}) \cong \operatorname{Aut}(\mathcal{B} \backslash \mathcal{L}) \cong \operatorname{Aut}(\mathcal{S}) \cong W\left(E_{6}\right)
$$

Families of branched covers

Branching over $V(f)$

Branching over $V(f)$

Previous example: Double branched cover over 4 points

Branched covers of quartic curves in \mathbb{P}^{2}

Degree $d=4$ covers

(Hirzebruch) For $n=2$
X_{f} exists $\Longleftrightarrow k \mid \operatorname{deg}(f)$.

Degree $d=4$ covers

(Hirzebruch) For $n=2$

$$
X_{f} \text { exists } \Longleftrightarrow k \mid \operatorname{deg}(f)
$$

$$
\begin{gathered}
X_{f} \\
\downarrow^{k} \\
\mathbb{P}^{2}
\end{gathered}
$$

Degree $d=4$ covers

(Hirzebruch) For $n=2$

$$
X_{f} \text { exists } \Longleftrightarrow k \mid \operatorname{deg}(f)
$$

$$
\underset{\underset{\mathbb{P}^{2}}{X_{f}}}{\substack{ \\ \\\hline} k \mid 4 .}
$$

Degree $d=4$ covers

(Hirzebruch) For $n=2$

$$
X_{f} \text { exists } \Longleftrightarrow k \mid \operatorname{deg}(f)
$$

$$
\begin{gathered}
X_{f} \\
\underset{\mathbb{P}^{2}}{ }
\end{gathered}
$$

$V(f) \subset \mathbb{P}^{2}$

Degree $d=4$ covers

(Hirzebruch) For $n=2$

$$
\begin{aligned}
X_{f} \text { exists } & \Longleftrightarrow k \mid \operatorname{deg}(f) . \\
X_{f} & \\
\left.\right|^{2} & \Longrightarrow k \mid 4 \\
V(f) \subset \mathbb{P}^{2} & \rightsquigarrow \quad\left\{\begin{array}{rll}
\mathcal{P}_{f} & k=2 & \text { (Degree 2 del Pezzo) } \\
X_{f} & k=4 & \left(\text { Quartic K3 } V\left(w^{4}-f\right) \subset \mathbb{P}^{3}\right)
\end{array}\right.
\end{aligned}
$$

Degree $d=4$ covers

$($ Key $) \mathcal{P}_{f}$ lets us study X_{f}

Degree $d=4$ covers

(Key) \mathcal{P}_{f} lets us study X_{f}

Monodromy of $\mathcal{E}_{2,4}$

$$
V\left(w^{4}-f\right) \hookrightarrow \mathcal{E}_{2,4} \quad\left\{(f, p) \mid p \in V\left(w^{4}-f\right)\right\}
$$

Monodromy of $\mathcal{E}_{2,4}$

$$
V\left(w^{4}-f\right) \hookrightarrow \mathcal{E}_{2,4} \quad\left\{(f, p) \mid p \in V\left(w^{4}-f\right)\right\}
$$

$$
\rho_{4}: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(V\left(w^{4}-f\right) ; \mathbb{Z}\right)\right)
$$

Monodromy of $\mathcal{E}_{2,4}$

$$
V\left(w^{4}-f\right) \hookrightarrow \mathcal{E}_{2,4} \quad\left\{(f, p) \mid p \in V\left(w^{4}-f\right)\right\}
$$

\leadsto

$$
\rho_{4}: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(V\left(w^{4}-f\right) ; \mathbb{Z}\right)\right) \quad \operatorname{Im}\left(\rho_{4}\right) ?
$$

Monodromy of $\mathcal{E}_{2,4}$

$$
V\left(w^{4}-f\right) \hookrightarrow \mathcal{E}_{2,4} \quad\left\{(f, p) \mid p \in V\left(w^{4}-f\right)\right\}
$$

\leadsto

$$
\begin{gathered}
\rho_{4}: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(V\left(w^{4}-f\right) ; \mathbb{Z}\right)\right) \quad \operatorname{Im}\left(\rho_{4}\right) ? \\
\rho_{4} \text { preserves } \begin{cases}\langle\cdot, \cdot\rangle_{H^{2}} & \text { intersection form } \\
K_{X_{f}} & \text { canonical class (this vanishes!) }\end{cases}
\end{gathered}
$$

Monodromy of $\mathcal{E}_{2,4,2}$

$$
\begin{array}{cc}
\mathcal{P}_{f} \hookrightarrow \mathcal{E}_{2,4,2} & \left\{(f, p) \mid p \in \mathcal{P}_{f}\right\} \\
\downarrow & \downarrow \\
\mathcal{U}_{2,4} & f
\end{array}
$$

Monodromy of $\mathcal{E}_{2,4,2}$

$\rho_{2}: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(\mathcal{P}_{f} ; \mathbb{Z}\right)\right)$

Monodromy of $\mathcal{E}_{2,4,2}$

$$
\begin{array}{cc}
\mathcal{P}_{f} \hookrightarrow \mathcal{E}_{2,4,2} & \left\{(f, p) \mid p \in \mathcal{P}_{f}\right\} \\
\downarrow & \downarrow \\
\mathcal{U}_{2,4} & f
\end{array}
$$

$$
\rho_{2}: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(\mathcal{P}_{f} ; \mathbb{Z}\right)\right) \quad \operatorname{Im}\left(\rho_{2}\right) \subset W\left(E_{7}\right)
$$

Monodromy of $\mathcal{E}_{2,4,2}$

$$
\begin{array}{cc}
\mathcal{P}_{f} \hookrightarrow \mathcal{E}_{2,4,2} & \left\{(f, p) \mid p \in \mathcal{P}_{f}\right\} \\
\downarrow & \downarrow \\
\mathcal{U}_{2,4} & f
\end{array}
$$

\leadsto

$$
\rho_{2}: \pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \operatorname{Aut}\left(H^{2}\left(\mathcal{P}_{f} ; \mathbb{Z}\right)\right) \quad \operatorname{Im}\left(\rho_{2}\right) \subset W\left(E_{7}\right)
$$

ρ_{2} preserves $\begin{cases}\langle\cdot, \cdot\rangle_{H^{2}} & \text { intersection form } \\ K_{\mathcal{P}_{f}} & \text { canonical class }\left(-3 H+e_{1}+\cdots+e_{7}\right)\end{cases}$

Deck group action of $\mathbb{Z} / 4 \mathbb{Z}$

$$
\begin{array}{cc}
\mathbb{Z} / 4 \mathbb{Z}=\langle T\rangle \curvearrowright H^{2}\left(X_{f} ; \mathbb{Z}\right) & \mathbb{Z} / 2 \mathbb{Z}=\left\langle T^{2}\right\rangle \curvearrowright H^{2}\left(\mathcal{P}_{f} ;\right. \\
T:[w \mapsto i w] & T^{2}:[w \mapsto-w] \\
& \\
\operatorname{Im}\left(\rho_{4}\right) \subset C_{H^{2}\left(X_{f} ; \mathbb{Z}\right)}(T) & \operatorname{Im}\left(\rho_{2}\right) \subset W\left(E_{7}\right)
\end{array}
$$

Theorem (for degree 2 del Pezzo surfaces)

(Medrano Martín del Campo)

$$
\operatorname{Im}\left(\rho_{2}\right) \cong W\left(E_{7}\right)
$$

Theorem (for degree 2 del Pezzo surfaces)

(Medrano Martín del Campo)

$$
\operatorname{Im}\left(\rho_{2}\right) \cong W\left(E_{7}\right)
$$

(Crucial corolary)

Theorem (for degree 2 del Pezzo surfaces)

(Medrano Martín del Campo)

$$
\operatorname{Im}\left(\rho_{2}\right) \cong W\left(E_{7}\right)
$$

(Crucial corolary)

There is $\gamma \in \pi_{1}\left(\mathcal{U}_{2,4}\right)$ realizing the Geiser involution τ via ρ_{2} :

$$
\rho_{2}(\gamma)=\tau
$$

K3 surfaces and Lattices

K3 surfaces

(Def) Compact surface X with $\pi_{1}(X)=1, K_{X}=0$

K3 surfaces

(Def) Compact surface X with $\pi_{1}(X)=1, K_{X}=0$

K3 surfaces

(Def) Compact surface X with $\pi_{1}(X)=1, K_{X}=0$

- Hodge diamond:

		1		
	0		0	
1		20		1
	0		0	
		1		

K3 surfaces

(Def) Compact surface X with $\pi_{1}(X)=1, K_{X}=0$

- Hodge diamond:

- Neron-Severi/Picard group:

$$
\operatorname{NS}(X)=\operatorname{Pic}(X)=H^{1,1} \cap H^{2}(X ; \mathbb{Z})
$$

K3 surfaces

(Def) Compact surface X with $\pi_{1}(X)=1, K_{X}=0$

- Hodge diamond:

- Neron-Severi/Picard group:

$$
\operatorname{NS}(X)=\operatorname{Pic}(X)=H^{1,1} \cap H^{2}(X ; \mathbb{Z})
$$

- Picard number:

$$
1 \leq \operatorname{rk}(\mathrm{NS}(X)) \leq 20
$$

K3 surfaces

K3 surfaces

- Even unimodular K3 lattice:

$$
H^{2}(X ; \mathbb{Z}) \cong E_{8}(-1)^{2} \oplus U^{3}
$$

K3 surfaces

- Even unimodular K3 lattice:

$$
H^{2}(X ; \mathbb{Z}) \cong E_{8}(-1)^{2} \oplus U^{3}
$$

- Signature $\sigma(X)=(3,19)$

K3 surfaces

- Even unimodular K3 lattice:

$$
H^{2}(X ; \mathbb{Z}) \cong E_{8}(-1)^{2} \oplus U^{3}
$$

- Signature $\sigma(X)=(3,19)$
- Kähler class κ

$$
\sigma\left(H^{2,0} \oplus H^{0,2} \oplus\langle\kappa\rangle\right)=(3,0)
$$

Lattices over $\mathbb{Z}, \mathbb{Z}[i]$

(Def) $L=\left(\mathbb{Z}^{r}, q\right) /\left(\mathbb{Z}[i]^{r}, q\right)$ with q symmetric/hermitian

Lattices over $\mathbb{Z}, \mathbb{Z}[i]$

(Def) $L=\left(\mathbb{Z}^{r}, q\right) /\left(\mathbb{Z}[i]^{r}, q\right)$ with q symmetric/hermitian

- Discriminant group (abelian of finite order)

$$
A_{L}=L^{*} / L
$$

Lattices over $\mathbb{Z}, \mathbb{Z}[i]$

(Def) $L=\left(\mathbb{Z}^{r}, q\right) /\left(\mathbb{Z}[i]^{r}, q\right)$ with q symmetric/hermitian

- Discriminant group (abelian of finite order)

$$
A_{L}=L^{*} / L
$$

- Quadratic form modulo 2

$$
q_{L}: A_{L} \rightarrow \mathbb{Q} / 2 \mathbb{Z} \quad q_{L}(x)=\langle x, x\rangle_{L \otimes \mathbb{Q}}
$$

Lattices over $\mathbb{Z}, \mathbb{Z}[i]$

(Def) $L=\left(\mathbb{Z}^{r}, q\right) /\left(\mathbb{Z}[i]^{r}, q\right)$ with q symmetric/hermitian

- Discriminant group (abelian of finite order)

$$
A_{L}=L^{*} / L
$$

- Quadratic form modulo 2

$$
q_{L}: A_{L} \rightarrow \mathbb{Q} / 2 \mathbb{Z} \quad q_{L}(x)=\langle x, x\rangle_{L \otimes \mathbb{Q}}
$$

- Orthogonal group

$$
O\left(q_{L}\right)=\operatorname{Aut}\left(A_{L}, q_{L}\right)
$$

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Facts about $L_{ \pm}$:

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Facts about $L_{ \pm}$:

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Facts about $L_{ \pm}$:

- $L_{+} \oplus L_{-}$finite index $\left(2^{8}\right)$ in $H^{2}(X ; \mathbb{Z})$

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Facts about $L_{ \pm}$:

- $L_{+} \oplus L_{-}$finite index $\left(2^{8}\right)$ in $H^{2}(X ; \mathbb{Z})$
- $L_{ \pm}$primitive orthogonal complements in $H^{2}(X ; \mathbb{Z})$

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Facts about $L_{ \pm}$:

- $L_{+} \oplus L_{-}$finite index $\left(2^{8}\right)$ in $H^{2}(X ; \mathbb{Z})$
- $L_{ \pm}$primitive orthogonal complements in $H^{2}(X ; \mathbb{Z})$
- Discriminant groups

$$
A_{L_{+}} \cong A_{L_{-}} \cong(\mathbb{Z} / 2 \mathbb{Z})^{8}
$$

Decomposition of $H^{2}(X ; \mathbb{Z})$

(Key) Sublattices $L_{+}, L_{-} \subset H^{2}(X ; \mathbb{Z})$

$$
\begin{aligned}
& L_{+}=\left\{\left(T^{2}-I\right) x=0\right\} \cong H^{2}(\mathcal{P} ; \mathbb{Z})(2) \\
& L_{-}=\left\{\left(T^{2}+I\right) x=0\right\} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
\end{aligned}
$$

Facts about $L_{ \pm}$:

- $L_{+} \oplus L_{-}$finite index $\left(2^{8}\right)$ in $H^{2}(X ; \mathbb{Z})$
- $L_{ \pm}$primitive orthogonal complements in $H^{2}(X ; \mathbb{Z})$
- Discriminant groups

$$
A_{L_{+}} \cong A_{L_{-}} \cong(\mathbb{Z} / 2 \mathbb{Z})^{8}
$$

- Orthogonal groups

$$
O\left(q_{L_{+}}\right) \cong O\left(q_{L_{-}}\right) \cong W\left(E_{7}\right)
$$

Decomposition of $H^{2}(X ; \mathbb{C})$

X is equipped with T such that $T^{4}=I$

Decomposition of $H^{2}(X ; \mathbb{C})$

X is equipped with T such that $T^{4}=I$.
T finite order $\Longrightarrow T$ respects the Hodge structure

Decomposition of $H^{2}(X ; \mathbb{C})$

X is equipped with T such that $T^{4}=I$.
T finite order $\Longrightarrow T$ respects the Hodge structure

- Hodge decomposition:

$$
H^{2}(X ; \mathbb{C}) \cong \bigoplus_{p+q=2} H^{p, q}(X ; \mathbb{C})
$$

Decomposition of $H^{2}(X ; \mathbb{C})$

X is equipped with T such that $T^{4}=I$.
T finite order $\Longrightarrow T$ respects the Hodge structure

- Hodge decomposition:

$$
H^{2}(X ; \mathbb{C}) \cong \bigoplus_{p+q=2} H^{p, q}(X ; \mathbb{C})
$$

- Eigenspaces $V_{\zeta}=\operatorname{ker}(T-\zeta I)$:

$$
H^{2}(X ; \mathbb{C}) \cong \bigoplus_{\zeta^{4}=1} V_{\zeta}
$$

Mixing decompositions

Intersection of Hodge and Eigenspace decompositions:

	V_{1}	V_{-1}	V_{i}	V_{-i}
$H^{2,0}$	0	0	\mathbb{C}	0
$H^{1,1}$	\mathbb{C}	\mathbb{C}^{7}	\mathbb{C}^{6}	\mathbb{C}^{6}
$H^{0,2}$	0	0	0	\mathbb{C}

Mixing decompositions

Intersection of Hodge and Eigenspace decompositions:

	V_{1}	V_{-1}	V_{i}	V_{-i}
$H^{2,0}$	0	0	\mathbb{C}	0
$H^{1,1}$	\mathbb{C}	\mathbb{C}^{7}	\mathbb{C}^{6}	\mathbb{C}^{6}
$H^{0,2}$	0	0	0	\mathbb{C}

As $\mathbb{Z}[i]$-module, $L_{-} \cong \mathbb{Z}[i]^{7}$

Mixing decompositions

Intersection of Hodge and Eigenspace decompositions:

	V_{1}	V_{-1}	V_{i}	V_{-i}
$H^{2,0}$	0	0	\mathbb{C}	0
$H^{1,1}$	\mathbb{C}	\mathbb{C}^{7}	\mathbb{C}^{6}	\mathbb{C}^{6}
$H^{0,2}$	0	0	0	\mathbb{C}

As $\mathbb{Z}[i]$-module, $L_{-} \cong \mathbb{Z}[i]^{7}$

$$
j_{\mathbb{C}}: L_{-} \otimes_{\mathbb{Z}[i]} \mathbb{C} \rightarrow V_{i}
$$

$j_{\mathbb{C}}$ isometric isomorphism

Mixing decompositions

Intersection of Hodge and Eigenspace decompositions:

	V_{1}	V_{-1}	V_{i}	V_{-i}
$H^{2,0}$	0	0	\mathbb{C}	0
$H^{1,1}$	\mathbb{C}	\mathbb{C}^{7}	\mathbb{C}^{6}	\mathbb{C}^{6}
$H^{0,2}$	0	0	0	\mathbb{C}

As $\mathbb{Z}[i]$-module, $L_{-} \cong \mathbb{Z}[i]^{7}$

$$
j_{\mathbb{C}}: L_{-} \otimes_{\mathbb{Z}[i]} \mathbb{C} \rightarrow V_{i}
$$

$j_{\mathbb{C}}$ isometric isomorphism

$$
V_{i} \cong \mathbb{C}^{1,6} \cong\left(\mathbb{C}^{7},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}-\cdots-\left|z_{6}\right|^{2}\right)
$$

L_{-}as $\mathbb{Z}[i]$-lattice

(Kondo) As a \mathbb{Z}-lattice

$$
L_{-} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
$$

T acts on $A_{1}^{2}, U \oplus U(2)$ and each copy of D_{4}

L_{-}as $\mathbb{Z}[i]$-lattice

(Kondo) As a \mathbb{Z}-lattice

$$
L_{-} \cong A_{1}^{2} \oplus D_{4}^{2} \oplus U \oplus U(2)
$$

T acts on $A_{1}^{2}, U \oplus U(2)$ and each copy of D_{4}
(Medrano Martín del Campo)

$$
\begin{aligned}
h_{L_{-}}= & -2\left(\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}+\left|z_{4}\right|^{2}\right) \\
& +2 \Re\left(z_{1} \overline{z_{2}}+z_{3} \overline{z_{4}}+z_{5} \overline{z_{6}}\right) \\
& +2 \Im\left(z_{1} \overline{z_{2}}+z_{3} \overline{z_{4}}+z_{5} \overline{z_{6}}\right)
\end{aligned}
$$

As a $\mathbb{Z}[i]$-lattice

$$
L_{-} \cong\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)
$$

Computing $\operatorname{Im}\left(\rho_{4}\right)$

Reduction to L_{-}

(Key) ρ_{4} acts on each V_{ζ}, hence on L_{+}, L_{-}

$$
\rho_{4}^{+}=\left.\rho_{4}\right|_{L_{+}} \quad \rho_{4}^{-}=\left.\rho_{4}\right|_{L_{-}}
$$

Reduction to L_{-}

(Key) ρ_{4} acts on each V_{ζ}, hence on L_{+}, L_{-}

$$
\rho_{4}^{+}=\left.\rho_{4}\right|_{L_{+}} \quad \rho_{4}^{-}=\left.\rho_{4}\right|_{L_{-}}
$$

- Recover ρ_{4} from $\rho_{4}^{+}, \rho_{4}^{-}$

Reduction to L_{-}

(Key) ρ_{4} acts on each V_{ζ}, hence on L_{+}, L_{-}

$$
\rho_{4}^{+}=\left.\rho_{4}\right|_{L_{+}} \quad \rho_{4}^{-}=\left.\rho_{4}\right|_{L_{-}}
$$

- Recover ρ_{4} from $\rho_{4}^{+}, \rho_{4}^{-}$
- For $L_{ \pm}$there exists surjections

$$
O\left(L_{ \pm}\right) \rightarrow O\left(q_{L_{ \pm}}\right) \cong W\left(E_{7}\right)
$$

Reduction to L_{-}

(Key) ρ_{4} acts on each V_{ζ}, hence on L_{+}, L_{-}

$$
\rho_{4}^{+}=\left.\rho_{4}\right|_{L_{+}} \quad \rho_{4}^{-}=\left.\rho_{4}\right|_{L_{-}}
$$

- Recover ρ_{4} from $\rho_{4}^{+}, \rho_{4}^{-}$
- For $L_{ \pm}$there exists surjections

$$
O\left(L_{ \pm}\right) \rightarrow O\left(q_{L_{ \pm}}\right) \cong W\left(E_{7}\right)
$$

- Image of ρ_{4}^{+}in $O\left(L_{+}\right)$is $W\left(E_{7}\right)$

Reduction to L_{-}

(Lemma) $\operatorname{Im}\left(\rho_{4}\right) \cong \operatorname{Im}\left(\rho_{4}^{-}\right)$since

$$
\rho_{4}^{-}(g)=0 \Longrightarrow \rho_{4}^{+}(g)=0
$$

Reduction to L_{-}

(Lemma) $\operatorname{Im}\left(\rho_{4}\right) \cong \operatorname{Im}\left(\rho_{4}^{-}\right)$since

$$
\rho_{4}^{-}(g)=0 \Longrightarrow \rho_{4}^{+}(g)=0
$$

Given by this commutative diagram

Moduli of smooth quartic curves

The moduli \mathcal{M}_{3} of smooth quartic curves

$$
\operatorname{Im}\left(\rho_{4}^{-}\right) \subset U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)=\Gamma
$$

The moduli \mathcal{M}_{3} of smooth quartic curves

$$
\operatorname{Im}\left(\rho_{4}^{-}\right) \subset U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)=\Gamma
$$

Define

The moduli \mathcal{M}_{3} of smooth quartic curves

$$
\operatorname{Im}\left(\rho_{4}^{-}\right) \subset U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)=\Gamma
$$

Define

- $\mathbb{P}(\Gamma)=\Gamma / \mathbb{Z}[i]^{*}$

The moduli \mathcal{M}_{3} of smooth quartic curves

$$
\operatorname{Im}\left(\rho_{4}^{-}\right) \subset U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)=\Gamma
$$

Define

- $\mathbb{P}(\Gamma)=\Gamma / \mathbb{Z}[i]^{*}$
- $\mathcal{D}_{6}=\left\{z \in \mathbb{P}\left(V_{i}\right) \mid\langle z, \bar{z}\rangle>0\right\}$ complex ball

The moduli \mathcal{M}_{3} of smooth quartic curves

$$
\operatorname{Im}\left(\rho_{4}^{-}\right) \subset U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)=\Gamma
$$

Define

- $\mathbb{P}(\Gamma)=\Gamma / \mathbb{Z}[i]^{*}$
- $\mathcal{D}_{6}=\left\{z \in \mathbb{P}\left(V_{i}\right) \mid\langle z, \bar{z}\rangle>0\right\}$ complex ball
- H_{δ} negative hyperplane orthogonal to $\delta \in V_{i}$

$$
\mathcal{H}=\bigcup_{\langle\delta, \delta\rangle=-2} H_{\delta}
$$

The moduli \mathcal{M}_{3} of smooth quartic curves

$$
\operatorname{Im}\left(\rho_{4}^{-}\right) \subset U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)=\Gamma
$$

Define

- $\mathbb{P}(\Gamma)=\Gamma / \mathbb{Z}[i]^{*}$
- $\mathcal{D}_{6}=\left\{z \in \mathbb{P}\left(V_{i}\right) \mid\langle z, \bar{z}\rangle>0\right\}$ complex ball
- H_{δ} negative hyperplane orthogonal to $\delta \in V_{i}$

$$
\mathcal{H}=\bigcup_{\langle\delta, \delta\rangle=-2} H_{\delta}
$$

(Kondo) \mathcal{M}_{3} moduli of smooth quartic curves

$$
\mathcal{M}_{3} \cong\left(\mathcal{D}_{6}-\mathcal{H}\right) / \mathbb{P}(\Gamma)
$$

Framings \mathcal{M}_{3}

(Allcock, Carlson, Toledo) Consider framed moduli spaces

Framings \mathcal{M}_{3}

(Allcock, Carlson, Toledo) Consider framed moduli spaces

$$
\widetilde{\mathcal{M}_{3}}=\left\{(Q, \lambda) \mid Q \in \mathcal{M}_{3}, \lambda:\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right) \xrightarrow{\cong} L_{-}\right\}
$$

Framings \mathcal{M}_{3}

(Allcock, Carlson, Toledo) Consider framed moduli spaces

$$
\widetilde{\mathcal{M}_{3}}=\left\{(Q, \lambda) \mid Q \in \mathcal{M}_{3}, \lambda:\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right) \xrightarrow{\cong} L_{-}\right\}
$$

(Q, λ) defines a $K 3$ surface, up to a unit in $\mathbb{Z}[i]$.

$$
\mathbb{P}(\Gamma) \curvearrowright \widetilde{\mathcal{M}_{3}} \quad \lambda \mapsto \lambda \circ g^{-1}
$$

Framings \mathcal{M}_{3}

(Allcock, Carlson, Toledo) Consider framed moduli spaces

$$
\widetilde{\mathcal{M}_{3}}=\left\{(Q, \lambda) \mid Q \in \mathcal{M}_{3}, \lambda:\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right) \xrightarrow{\cong} L_{-}\right\}
$$

(Q, λ) defines a $K 3$ surface, up to a unit in $\mathbb{Z}[i]$.

$$
\mathbb{P}(\Gamma) \curvearrowright \widetilde{\mathcal{M}_{3}} \quad \lambda \mapsto \lambda \circ g^{-1}
$$

(Torelli) Period map \wp for $K 3$ surfaces is an isomorphism

$$
\begin{aligned}
& \widetilde{\mathcal{M}_{3}} \xrightarrow[\cong]{\wp} \mathcal{D}_{6}-\mathcal{H} \\
& \mathbb{P}(\Gamma) \downarrow \quad \downarrow^{\mathbb{P}(\Gamma)} \\
& \mathcal{M}_{3} \xrightarrow[\tilde{\wp}]{\cong}\left(\mathcal{D}_{6}-\mathcal{H}\right) / \mathbb{P}(\Gamma)
\end{aligned}
$$

Reducing loops in $\mathcal{U}_{2,4}$ to \mathcal{M}_{3}

Moduli of genus 3 curves

$$
\mathscr{M}_{3}=\mathcal{M}_{3} \cup \mathscr{H}_{3}
$$

Reducing loops in $\mathcal{U}_{2,4}$ to \mathcal{M}_{3}

Moduli of genus 3 curves

$$
\mathscr{M}_{3}=\mathcal{M}_{3} \cup \mathscr{H}_{3}
$$

- \mathscr{H}_{3} hyperelliptic locus (codimension 1$)$

Reducing loops in $\mathcal{U}_{2,4}$ to \mathcal{M}_{3}

Moduli of genus 3 curves

$$
\mathscr{M}_{3}=\mathcal{M}_{3} \cup \mathscr{H}_{3}
$$

- \mathscr{H}_{3} hyperelliptic locus (codimension 1)
- \mathcal{M}_{3} quartic locus (codimension 0)

$$
\mathcal{M}_{3}=\mathcal{U}_{2,4} / \mathrm{PGL}_{3}(\mathbb{C})
$$

Reducing loops in $\mathcal{U}_{2,4}$ to \mathcal{M}_{3}

Moduli of genus 3 curves

$$
\mathscr{M}_{3}=\mathcal{M}_{3} \cup \mathscr{H}_{3}
$$

- \mathscr{H}_{3} hyperelliptic locus (codimension 1)
- \mathcal{M}_{3} quartic locus (codimension 0)

$$
\mathcal{M}_{3}=\mathcal{U}_{2,4} / \mathrm{PGL}_{3}(\mathbb{C})
$$

- Rest of the divisors $\mathcal{O} \subset \mathscr{M}_{3}$ have higher codimension, thus

$$
\pi_{1}\left(\mathcal{U}_{2,4}\right) \rightarrow \pi_{1}\left(\mathcal{M}_{3}\right)
$$

is surjective.

Putting everything together

$\operatorname{Im}\left(\rho_{4}\right)$ is given by the image of

$$
\pi_{1}\left(\mathcal{M}_{3}\right) \rightarrow \Gamma
$$

Putting everything together

$\operatorname{Im}\left(\rho_{4}\right)$ is given by the image of

$$
\pi_{1}\left(\mathcal{M}_{3}\right) \rightarrow \Gamma
$$

- $\mathcal{D}_{6}-\mathcal{H}$ is conected

$$
\mathbb{P}(\Gamma) \subset \operatorname{Im}\left(\rho_{4}\right)
$$

Putting everything together

$\operatorname{Im}\left(\rho_{4}\right)$ is given by the image of

$$
\pi_{1}\left(\mathcal{M}_{3}\right) \rightarrow \Gamma
$$

- $\mathcal{D}_{6}-\mathcal{H}$ is conected

$$
\mathbb{P}(\Gamma) \subset \operatorname{Im}\left(\rho_{4}\right)
$$

- $\gamma \in \pi_{1}\left(\mathcal{U}_{2,4}\right)$ realizing the Geiser involution realizes

$$
\langle T\rangle \cong \mathbb{Z}[i]^{*} \subset \operatorname{Im}\left(\rho_{4}\right)
$$

Principal theorem (for $K 3$ surfaces)

(Medrano Martín del Campo)

$$
\operatorname{Im}\left(\rho_{4}\right) \cong U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)
$$

Principal theorem (for $K 3$ surfaces)

(Medrano Martín del Campo)

$$
\operatorname{Im}\left(\rho_{4}\right) \cong U\left(\mathbb{Z}[i]^{7}, h_{L_{-}}\right)
$$

For further details, see:
Monodromy of the family of K3 and del Pezzo surfaces branching over smooth quartic curves

