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Abstract

In this paper, we study a particular family of surfaces which arises from the Chebyshev polynomials,
the Banchoff-Chmutov surfaces. To do so, we employ techniques from Morse theory and the trigonometric
functional equations which define the Chebyshev polynomials.
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1 Introduction

This paper is an exposition of the characterization of the even Banchoff-Chmutov Surfaces Zn as topological
2-manifolds. To do so, we employ techniques from Morse theory which will enable us to understand the
topology of Zn by producing a Morse function on it. Our goal will be to prove the following theorem:

Theorem 1.1. For even n, Zn is a smooth closed orientable surface of genus n2(n−3)
4 + 1.

Put simply, Morse theory is the study of the topology of manifolds via calculus of a function on them.
The reason we want to use Morse theory is that from a Morse function, one may recover a great amount
of information of the topology of the manifold in question. In general, once we have a Morse function on a
manifold, we analyze its critical points and its gradient vector field.

These two mathematical devices permit us reconstruct our manifold in the following way: We build
our manifold from top to bottom, following the gradient vector field’s integral curves, and every time we
encounter a critical value of our function, the corresponding critical points of that critical value tell us that
a certain type of handle (depending on the Morse index of the critical point in question) is to be attached to
our manifold. Thus critical points tell us what is to be attached, and the gradient vector field tells us how
is it going to be attached.

It is often the case that there is more than one critical point corresponding to each critical value of a
Morse function. The family of surfaces we study in this paper provide an example where, with the Morse
function we will endow Zn, our critical points are clustered within few critical values. For instance, every
maxima and every minima will be critical points corresponding the the critical value (which can be thought
of as the maximal and minimal height of Zn, respectively). Since we will have many critical points for a
single critical value, understanding the gradient flow of our Morse function is going to be fundamental to
know how the handles are attaching at each step of the construction of Zn.

Since we are working with surfaces, we will naturally prove that the genus of Zn is as stated in 1.1, and
this equivalent to knowing the Euler characteristic of our surface. One more benefit from Morse theory is
that the understanding of the critical points permits us understand the ranks of the homology groups of Zn
via the Morse inequalities. In this paper, we simply need the beautiful fact that the Euler characteristic is
given by the alternating sum of the number of points of each Morse index.

2 Morse Theory

First, we illustrate the principles of Morse theory necessary for this paper. For this section, let M be a
smooth compact Riemannian m-manifold with Riemannian metric 〈·, ·〉, and f : M → R a smooth function.

Definition 2.1. [2] A critical point p of f is a point p ∈M such that Dpf = 0.

Definition 2.2. [2] The gradient flow vector field of f is the unique vector field ∇f : M → TM defined by

〈∇fp, Vp〉 = Dpf (Vp)

for every smooth vector field V ∈ X∞ (M).

Definition 2.3. [2] The Hessian of f at a critical point p is the symmetric bilinear form on the tangent
space Hpf : TpM × TpM → R defined by Hpf (v, w) = V (W (f)) (p) where V and W are extensions of v
and w, respectively, to vector fields in a neighbourhood of p.

Definition 2.4. [2] A critical point p of f is called non-degenerate if Hpf is non-degenerate.

Definition 2.5. [2] Let p be a non-degenerate critical point of f . The Morse index of p is the maximal
dimension of a subspace of TpM on which Hpf is negative-definite.

Definition 2.6. [2] f is a Morse function if and only if all its critical points are non-degenerate.

Definition 2.7. An l-handle attached to M is a tubular neighbourhood of an l-disk Dl such that ∂Dl ⊂M .

2



2.1 Three theorems in Morse Theory

Theorem 2.1. [2] Let f be a Morse function on M and let φ (t) be the flow lines of ∇f .

(i) f is strictly increasing along the non-degenerate flow lines φ (t), and constant on degenerate flow lines
corresponding to the critical points.

(ii) If M is compact and x ∈M , then limt→−∞ φx (t) and limt→∞ φx (t) are critical points of f .

Theorem 2.2. [2] Let f be a Morse function on M and let a < b be such that f−1 [a, b] is compact.

(i) If f−1 [a, b] contains no critical point of f , then Ma = {f (p) ≤ a} is homotopy equivalent to M b.

(ii) If f−1 [a, b] contains exactly k critical points p1, p2, . . . , pk of f of indices l1, l2, . . . , lk respectively,
corresponding to the same critical value, then M b is homotopy equivalent to Ma with an attached
li-handle for each i = 1, 2, . . . , k.

Theorem 2.3. [2] Let f be a Morse function on a compact m-manifold M with nk critical points of Morse
index k for k = 0, 1, . . . ,m. Then

χ (M) =

m∑
k=0

(−1)
k
nk.

3 Chebyshev Polynomials

In this section we introduce the family of Chebyshev polynomials. These polynomials are given by trigono-
metric identities and are characterized, along with their derivatives, as the solutions of a second order
differential equation, as we shall see.

Definition 3.1. The n-th Chebyshev polynomial of the first kind is the uniquely determined degree n
polynomial in one variable Tn such that

Tn (cos (x)) = cos (nx) ∀x ∈ R.

Definition 3.2. The n-th Chebyshev polynomial of the second kind is the uniquely determined degree n
polynomial Un such that

Un (cos (x)) =
sin ((n+ 1)x)

sin (x)
∀x ∈ R.

Proposition 3.1. The Chebyshev polynomials satisfy the following relations for all n ≥ 0:

(i) d
dxTn (x) = nUn−1 (x).

(ii) Tn (x)
2 −

(
x2 − 1

)
Un−1 (x)

2
= 1.

Proof. Proving these results locally will suffice to prove the results globally, since Tn, Un are polynomials.

(i) Using the chain rule,

−n sin (nx) =
d

dx
(Tn (cos (x))) = − d

dx
(Tn (cos (x))) sin (x)

and thus
d

dx
(Tn (cos (x))) =

n sin (nx)

sin (x)
= nUn−1 (cos (x)) .

Hence the equality holds on [−1, 1], so it holds in R.
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(ii) We have that

Tn (cos (x))
2 −

(
cos (x)

2 − 1
)
Un−1 (cos (x))

2
= 1.

Hence the equality holds on [−1, 1], so it holds in R.

Note that Tn and Un−1 each have n simple zeros, which are, respectively,

{x ∈ R | Tn (x) = 0} =

{
cos

(
(2m+ 1)π

2n

)
| m = 0, 1, . . . , n− 1

}
⊂ [−1, 1]

{x ∈ R | Un (x) = 0} =

{
cos

(
mπ

n+ 1

)
| m = 1, . . . , n

}
⊂ (−1, 1)

Moreover, since the zeros of d
dxTn = nUn−1 are simple, so the critical points of Tn are non-degenerate.

3.1 Second order ODE of Tn

Theorem 3.1. The Chebyshev polynomial Tn satisfies the second order differential equation

(
1− x2

) d2

dx2
Tn (x)− x d

dx
Tn (x) + n2Tn (x) = 0.

Proof. Note that(
d

dx

)2

Tn (cos (x)) =

(
d

dx

)2

cos (nx) = −n2 cos (nx)
2

= −n2Tn (cos (x))

and hence, if we let Fn (t) = Tn (cos (t)), we have Fn satisfies the differential equation

d2

dt2
Fn (t) + n2Fn (t) = 0.

Letting t = arccos (x), it follows that

Tn (x) = Fn (t) = − 1

n2

(
d2Fn
dt2

)
(t)

d

dx
Tn (x) =

d

dx
Fn (t) =

(
dFn
dt

)
(t)

−1√
1− x2

d2

dx2
Tn (x) =

d2

dx2
Fn (t) =

(
d2Fn
dt2

)
(t)

1

1− x2
−
(
dFn
dt

)
(t)

1

1− x2
· x√

1− x2

so, putting these three equations together we can obtain the differential equation

(
1− x2

) d2

dx2
Tn (x)− x d

dx
Tn (x) + n2Tn (x) = 0.
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4 Banchoff-Chmutov Surfaces Zn

Now, we are ready to introduce the main object of this paper, the Banchoff-Chmutov surfaces.

Definition 4.1. The Banchoff-Chmutov surface of degree n is defined as

Zn =
{

(x, y, z) ∈ R3 | Tn (x) + Tn (y) + Tn (z) = 0
}

Some examples for small (and even) n look as follows:

Figure 1: Illustration of The Banchoff-Chmutov surfaces Z2, Z4 and Z6.

Theorem 4.1. Zn is a smooth submanifold of R3 for every n.

Proof. Let fn (x, y, z) = Tn (x) + Tn (y) + Tn (z). Then we have that

D(x,y,z)fn =
(
dTn

dt (x) dTn

dt (y) dTn

dt (z)
)
.

Suppose (x, y, z) ∈ Zn and rank D(x,y,z)fn = 0, then

dTn
dt

(x) =
dTn
dt

(y) =
dTn
dt

(z) = 0

and therefore, since d
dtTn (t) = nUn−1 (t), we have

Un−1 (x) = Un−1 (y) = Un−1 (z) = 0.

Finally, since T 2
n (t)−

(
t2 − 1

)
Un−1 (t) = 1, this implies that

Tn (x) , Tn (y) , Tn (z) = ±1

which is a contradiction, since this tells us Tn (x) + Tn (y) + Tn (z) is odd, but Tn (x) + Tn (y) + Tn (z) = 0.
Hence, for all (x, y, z) ∈ Zn, we have that rank D(x,y,z)fn = 1 and by the submersion theorem, it follows
that Zn = f−1n (0) is a smooth 2-dimensional submanifold of R3.

4.1 Compactness

Theorem 4.2. For even n, Zn is compact.

Proof. It suffices to show that Zn is bounded (since Zn is closed by continuity of fn), so Zn is compact by
the Heine-Borel theorem. Since n is even, we have that

lim
|x|→∞

Tn (x) =∞

hence, for sufficiently large N , Tn is positive on R \ [−N,N ], and therefore, fn is positive on R3− [−N,N ]
3
.

Hence, Zn ⊂ [−N,N ]
3
, so Zn is bounded.

For odd n, Zn is unbounded since Tn is an odd degree polynomial, so Zn is not compact. For instance

T1 (t) = t =⇒ Z1 = {x+ y + z = 0}

so Z1 is a plane in R3. Nevertheless, we are interested in the compact case, so we will assume that n is even
for the rest of the paper.
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4.2 Orientability

Theorem 4.3. Zn is orientable.

Proof. Since Zn is a closed surface embedded in R3, it follows that Zn is orientable.

4.3 A Morse function on Zn

Consider the projection p : Zn → R onto the z coordinate. We will show that this is a Morse function, for
which we must simply show that its critical points are isolated and non-degenerate. Hence, we proceed to
characterize the critical points of p.

Proposition 4.1. The function p has n2(n−1)
2 critical points, of which 1

4n
2 are maxima, 1

4n
2 are minima,

and the rest are saddle points.

Proof. The critical points of h are those points (x, y, z) ∈ Zn such that

D(x,y,z)p : T(x,y,z)Zn → TzR

vanishes. But

T(x,y,z)Zn = kerD(x,y,z)fn

=

{
(a, b, c) ∈ R3 | adTn

dt
(x) + b

dTn
dt

(y) + c
dTn
dt

(z) = 0

}
.

Then, D(x,y,z)p ((a, b, c)) = c. Hence, if z is a critical value of p, then c = 0 for all (a, b, c) ∈ T(x,y,z)Zn,
implying that

dTn
dt

(x) =
dTn
dt

(y) = 0

and therefore
Un−1 (x) = Un−1 (y) = 0.

This implies that

x, y ∈
{

cos
(mπ
n

)
| m = 1, . . . , n− 1

}
⊂ (−1, 1)

and note that

Tn (x) = Tn

(
cos
(m1π

n

))
= cos (m1π)

= (−1)
m1 .

Similarly, Tn (y) = (−1)
m2 . Hence, we have that Tn (z) = − (−1)

m1 − (−1)
m2 , so

Tn (z) ∈ {−2, 0, 2} .

If Tn (z) = 0 then we have already proved that

z ∈
{

cos

(
(2m+ 1)π

2n

)
| m = 0, 1, . . . , n− 1

}
⊂ [−1, 1] .

Now suppose that Tn (z) = ±2. Since Tn (cos (x)) = cos (nx) ∈ [−1, 1], then ±2 cannot be achieved on
[−1, 1]. Moreover, Tn is decreasing on (−∞,−1] and increasing on [1,∞). This implies that the value −2
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cannot be achieved, while the value 2 is achieved exactly twice (once on (−∞, 1] and once on [1,∞). Hence,
we have obtained every critical point, and these can be characterized as follows:

C0 =

{(
cos
(m1π

n

)
, cos

(m2π

n

)
, cos

(
(2m3 + 1)π

2n

))
| m1 +m2 odd, 0 < m1,m2 < n

}
C+

2 =
{(

cos
(m1π

n

)
, cos

(m2π

n

)
, z
)
| m1,m2 odd, 0 < m1,m2 < n, Tn (z) = 2, z > 1

}
C−2 =

{(
cos
(m1π

n

)
, cos

(m2π

n

)
, z
)
| m1,m2 odd, 0 < m1,m2 < n, Tn (z) = 2, z < −1

}
Since n is even, so the number of critical points is

|C0|+
∣∣C+

2

∣∣+
∣∣C−2 ∣∣ =

n2 (n− 2)

2
+
n2

4
+
n2

4

=
n2 (n− 1)

2
.

Now, we proceed to classify these critical points.

C+
2 Let (x, y, z) ∈ C+

2 . We have shown that Tn (x) = Tn (y) = −1, so x, y are local minima for Tn. Hence,

on a neighbourhood U ⊂ Zn of (x, y, z), we have that for any (x0, y0, z0) ∈ U then Tn (x0) ≥ Tn (x)
and Tn (y0) ≥ Tn (y). Hence, it follows that

Tn (z0) ≤ Tn (z) .

Since z ∈ [1,∞) and Tn is increasing in that interval, this imples z0 ≤ z. Therefore, (x, y, z) is a local
maxima of p.

C−2 Similar to the previous case, for (x, y, z) ∈ C−2 , we have Tn (x) = Tn (y) = −1, so x, y are local minima

for Tn. Hence, on a neighbourhood U ⊂ Zn of (x, y, z), we have that for any (x0, y0, z0) ∈ U then
Tn (x0) ≥ Tn (x) and Tn (y0) ≥ Tn (y). Hence, it follows that

Tn (z0) ≤ Tn (z) .

Since z ∈ (−∞,−1] and Tn is decreasing in that interval, this imples z0 ≥ z. Therefore, (x, y, z) is a
local minima of p.

C0 For (x, y, z) ∈ C0, we have that Tn (x) , Tn (y) ∈ {−1, 1} and Tn (x) + Tn (y) = 0 = Tn (z). Note that
x, y are local minima and maxima of Tn. Assume for now that x is a local minima and y is a local
maxima of Tn. Then, choose a neighbourhood U ⊂ Zn of (x, y, z).

Fixing x, we see that for (x, y0, z0) ∈ U we have Tn (y0) ≤ Tn (y) and thus Tn (z0) ≥ 0 = Tn (z). Since
Tn has simple zeros, this implies that either z0 ≥ z or z0 ≤ z for all such (x, y0, z0) ∈ U . A similar
calculation fixing y shows that for every (x0, y, z0) ∈ U we a have that either z0 ≤ z or z0 ≥ z for every
(x0, y, z0) ∈ U . Therefore, p : U → R satisfies that

p |x=x0
and p |y=y0

have local minima and maxima (in some order) at (x, y, z). Since Tn (z) = 0, we have that dTn

dt (z) 6= 0,
and by the implicit function theorem z is a function of x, y, which is precisely p. Hence, (x, y, z) is a
saddle point of p.

In particular, every critical point of p is non-degenerate, so the following corollary is immediate.

Corollary 4.1. p is a Morse function on Zn.
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4.4 Gradient flow of p

Now, we will obtain the gradient vector field of p.

Proposition 4.2. The gradient flow vector field of p is

∇p (x, y, z) =

(
−Un−1 (x)Un−1 (z) −Un−1 (y)Un−1 (z) U2

n−1 (x) + U2
n−1 (y)

)
U2
n−1 (x) + U2

n−1 (y) + U2
n−1 (z)

.

Proof. Let

V (x, y, z) =

(
−Un−1 (x)Un−1 (z) −Un−1 (y)Un−1 (z) U2

n−1 (x) + U2
n−1 (y)

)
U2
n−1 (x) + U2

n−1 (y) + U2
n−1 (z)

.

Since dTn

dt = nUn−1, it is clear that〈
V (x, y, z) ,

(
dTn (x)

dt
,
dTn (y)

dt
,
dTn (z)

dt

)〉
= 0

and therefore, if (x, y, z) ∈ Zn, then V (x, y, z) ∈ T(x,y,z)Zn, so V |Zn
defines a vector field on Zn. Moreover,

for any (a, b, c) ∈ T(x,y,z)Zn we have that

〈V (x, y, z) , (a, b, c)〉 = c− Un−1 (z)

U2
n−1 (x) + U2

n−1 (y) + U2
n−1 (z)

(aUn−1 (x) + bUn−1 (y) + cUn−1 (z))

= c−
1
nUn−1 (z)

U2
n−1 (x) + U2

n−1 (y) + U2
n−1 (z)

(anUn−1 (x) + bnUn−1 (y) + cnUn−1 (z))

= c−
1
nUn−1 (z)

U2
n−1 (x) + U2

n−1 (y) + U2
n−1 (z)

(
a
dTn
dt

(x) + b
dTn
dt

(y) + c
dTn
dt

(z)

)
= c

= D(x,y,z)p (a, b, c) .

Hence, for all (x, y, z) ∈ Zn we have that

V (x, y, z) = ∇p (x, y, z)

so V = ∇p is the gradient flow vector field of p on Zn.

4.5 Connectedness

Now we prove that Zn is connected using the handle decomposition of Zn and the gradient flow of ∇p.

Theorem 4.4. Zn is connected.

Proof. Consider the subsets of Zn of the form

Zαn = {(x, y, z) ∈ Zn | z ≤ α} .

Since p is a Morse function, Zαn is a smooth manifold whenever α is not a critical value of p. If α is a critical
value, then by 2.2 for small ε > 0, we will have that Zα+εn is homotopic to a manifold obtained from Zα−εn

by attaching a d-handle to Zα−εn for every critical point of Morse index d with critical value α.

Hence, consider α0 < −1 such that Tn (α0) = 2. Then α0 is a critical value of p, and our critical points
of index 0 correspond exactly to this critical value. Hence, for small ε > 0, Zα0+ε

n is a disjoint union of 1
4n

2

0-handles, or equivalently 1
4n

2 disjoint manifolds diffeomorphic to the disk D2. The 1-handle corresponding
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to the critical point q ∈ C0 will attach to the handles corresponding to the (not necessarily distinct) critical
points q1, q2 such that there is an integral curve γ : R → Zn whose closure γ is diffeomorphic a segment
and its endpoints ∂γ are q and qi, for i = 1, 2. It will suffice to analyze the attachment of the 1-handles
corresponding to the critical points{(

cos
(m1π

n

)
, cos

(m2π

n

)
, cos

(
(2n− 1)π

2n

))
| 0 < m1,m2 < n,m1 +m2 odd

}
.

Suppose m ∈ Z. Then Un−1
(
cos
(
mπ
n

))
= 0 and therefore

∇p
(

cos
(mπ
n

)
, y, z

)
=

Un−1 (y)

U2
n−1 (y) + U2

n−1 (z)
(0,−Un−1 (z) , Un−1 (y))

∇p
(
x, cos

(mπ
n

)
, z
)

=
Un−1 (x)

U2
n−1 (y) + U2

n−1 (z)
(−Un−1 (z) , 0, Un−1 (y)) .

Moreover, for x ∈ [−1, 1] and x 6= cos
(
Mπ
n

)
for all M ∈ Z, there is a unique m ∈ {0, 1, . . . , n− 1} such that

cos
(mπ
n

)
> x > cos

(
(m+ 1)π

n

)
.

Since cos (t) is bijective and monotonically decreasing on [−1, 1], then it follows that there is a unique t such

that cos (t) = x and t ∈
(
mπ
n , (m+1)π

n

)
. Hence,

Un−1 (x) = Un−1 (cos (t)) =
sin (nt)

sin (t)

{
> 0 m even

< 0 m odd

We also have that Tn is monotonically decreasing on
(
−∞, cos

(
(2n−1)π

2n

))
, so Un−1 (z) < 0.

This together with 2.1 we have integral curves of ∇p near critical points in p−1
(

cos
(

(2n−1)π
2n

))
:

γ+m1,2l2
, γ−m1,2l2

: R→ Zn ∩
{
x = cos

(m1π

n

)}
, m1, 2l2 ∈ (0, n) and m1 odd

γ+2l1,m2
, γ−2l1,m2

: R→ Zn ∩
{
y = cos

(m2π

n

)}
, 2l1,m2 ∈ (0, n) and m2 odd

such that

Integral Curve limt→−∞ γ (t) limt→∞ γ (t)

γ+2l1,m2

(
cos
(

(2l1−1)π
n

)
, cos

(
m2π
n

)
, α0

) (
cos
(

(2l1)π
n

)
, cos

(
m2π
n

)
, cos

(
(2n−1)π

2n

))
γ−2l1,m2

(
cos
(

(2l1+1)π
n

)
, cos

(
m2π
n

)
, α0

) (
cos
(

(2l1)π
n

)
, cos

(
m2π
n

)
, cos

(
(2n−1)π

2n

))
γ+m1,2l2

(
cos
(
m1π
n

)
, cos

(
(2l2−1)π

n

)
, α0

) (
cos
(
m1π
n

)
, cos

(
(2l2)π
n

)
, cos

(
(2n−1)π

2n

))
γ−m1,2l2

(
cos
(
m1π
n

)
, cos

(
(2l2+1)π

n

)
, α0

) (
cos
(
m1π
n

)
, cos

(
(2l2)π
n

)
, cos

(
(2n−1)π

2n

))
and thus we obtain a grid-like attachment of handles, which produces a connected manifold Zαn . Since

Zn is obtained by attaching more d-handles to Zαn with d > 0 (because we already included all 0-handles),
it follows that Zn is connected.

Remark 4.1. For n = 2, there are no 1-handles, and Z2
∼= S2, which is connected.
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Figure 2: n(n−2)
2 1-handles are attached to the 1

4n
2 0-handles, shown for n = 4, 6.

4.6 Genus

Now that we know that Zn is a connected closed orientable surface, we are only left to determine its genus.
This is equivalent to determining its Euler characteristic, since

χ (Zn) = 2− 2g (Zn) .

For this, we will employ our Morse function p, and the characterization of its critical points.

Theorem 4.5. The genus of Zn is n2(n−3)
4 + 1.

Proof. Since p is a Morse function on Zn, by 2.3 and 4.1 we have that

χ (Zn) = 2− 2g (Zn) =

2∑
i=0

(−1)
i |Morse index i points of p|

=
∣∣C+

2

∣∣− |C0|+
∣∣C−2 ∣∣

=
n2

4
− n2 (n− 2)

2
+
n2

4

=
n2 (3− n)

2

Hence, we conclude that

g (Zn) =
n2 (n− 3)

4
+ 1.

Hence, we have completely characterized the topology of Zn, summarized as our main theorem:

Theorem 4.6. For even n, Zn is a smooth closed orientable surface of genus n2(n−3)
4 + 1.
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A Handle decomposition of Z4

Figure 3: Handle decomposition of Z4 via some manifolds Zα4 with α near a critical value of p.
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B Handle decomposition of Z6

Figure 4: Handle decomposition of Z6 via some manifolds Zα6 with α near a critical value of p.
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