
THE HOMOTOPY GROUPS OF TMF

AKHIL MATHEW

1. Introduction

The previous talks of this seminar have built up to the following theorem:

Theorem 1 (“TMF theorem”). Let Mell be the moduli stack of stable1 elliptic curves. There is a
functor

Otop : (Affet/Mell
)op → AlgE∞

from the (affine) étale site of Mell to E∞-rings, with the following properties:

• For every affine étale map SpecR → Mell, Otop(SpecR) is an even-periodic E∞-algebra with
a functorial isomorphism π0(Otop(SpecR)) ' R.

• For every map SpecR → Mell classifying a generalized elliptic curve C → SpecR, there is a
functorial isomorphism

Spf
(
Otop(SpecR)0(CP∞)

)
' Ĉ

between the formal group of Otop(SpecR) and the formal group Ĉ of C (that is, the formal
completion of C along the zero section with its natural group structure).

• The functor Otop is a sheaf for the étale topology and extends to a sheaf of E∞-rings on the
étale site of Mell.

Let MFG be the moduli stack of formal groups. In particular, if Mell → MFG is the map which
assigns to an elliptic curve its formal group, then we have an isomorphism of sheaves

πiOtop =

{
0 if i is odd

ωi/2 if i is even
,

where ω is the Lie algebra bundle on Mell, which is pulled back from MFG. (Strictly speaking, πiOtop
is only a sheaf for affine étales; in general we should take its sheafification.) We get this because of
even periodicity. (A useful reference is [AHS01].)

One defines
Tmf = Γ(Mell,O

top).

In other words, Tmf is defined as the homotopy limit of the various elliptic spectra Otop(R) for affine
schemes SpecR étale over Mell — thus Tmf maps canonically to any such, and was initially supposed
to be the “universal” elliptic cohomology theory. There are other spectra that deserve the name
“topological modular forms”: for instance, there is the periodic version

TMF = Γ(Mell,Otop)
obtained by taking global sections over the smooth locus, and the connective version

tmf = τ≥0(Tmf).

A consequence of this definition is that one has a descent spectral sequence (a special case of the
spectral sequence for a cosimplicial spectrum)

Hi(Mell, πj(O
top)) =⇒ πj−iTmf,

which we can also write as
Hi(Mell, ω

j) =⇒ π2j−iTmf.

Date: December 17, 2012.
1In other words, one allows a nodal singularity away from the point at infinity.
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The goal of this talk is to explain how to use this spectral sequence to compute π∗Tmf, in outline.
We’ll start by describing the calculation of Hi(Mell, ω

j) (actually, we’ll do this for the moduli stack of
smooth elliptic curves, so really for TMF), using a series of “algebraic Bockstein spectral sequences.”
Then, we’ll explain how (at the prime 3) we can get differentials in the spectral sequence. Mostly, the
notes will follow [Bau08] and [Rez07]. Another useful survey is [Hen07].

2. A word from our sponsor

1. The derived stack BZ/2. I’d like to start by doing a toy example where there isn’t too much
actual computation involved, but which highlights some of the global features of what happens for
Tmf. Let’s consider KO-theory. On the one hand, KO-theory is a cohomology theory going back
to the 1950s and 60s with a beautiful geometric description in terms of real vector bundles and Bott
periodicity. On the other hand, KO-theory is something that you can describe purely as a homotopy
theorist.

Namely, consider K-theory K. This is an even-periodic E∞-ring associated to the multiplicative
formal group Ĝm. It comes with an automorphism

Ψ−1 : K → K

associated to the automorphism of Ĝm given by inversion, or by complex conjugation of vector bundles.
This gives a Z/2-action on K. One has:

KO = (K)hZ/2.

Therefore, there is a homotopy fixed-point spectral sequence that computes π∗KO (in terms of π∗K).

Aside. The Z/2-action on K-theory goes back, in some form, to [Ati66]. The “Real” KR-theory of
Atiyah is the equivariant cohomology theory (on Z/2-spaces) represented by K.

The existence of the Z/2-action is a consequence of the Hopkins-Miller theorem, for instance, applied

to Morava E-theory E1 at each prime. Recall that E1 = K̂p is p-completed K-theory and Hopkins-
Miller gives E1 the structure of an E∞-ring with a Z/2-action coming from the Adams operation Ψ−1

(actually, a Z×p -action from all the Adams operations).
We can recover integral K-theory via an arithmetic square

K

��

// ∏
p K̂p

��

KQ //
(∏

p K̂p

)
Q

.

We have a Z/2-action on
∏
p K̂p from Hopkins-Miller, and this gives one on

(∏
p K̂p

)
Q

by functori-

ality. Since E∞-algebras over Q are described as cdgas and KQ is the formal cdga Q[u±1] with |u| = 2,

we get a Z/2-action on KQ sending u 7→ −u. The map KQ →
(∏

p K̂p

)
Q

is a map of E∞-rings with a

Z/2-action, by choosing an explicit model over Q. This allows us to build K from the Hopkins-Miller
theorem as an E∞-ring with a Z/2-action, via the above fiber product.

We can also say this in similar terms as for Tmf. Namely, just as we obtain Tmf from the
moduli stack of elliptic curves and their formal groups, we can obtain KO from the moduli stack of
one-dimensional tori (i.e., algebraic groups that become Gm after sufficient base-change) and their
associated formal groups. The moduli stack of tori is precisely BZ/2 since the automorphism group
of the torus Gm is Z/2. In particular, we get a morphism of stacks

BZ/2→MFG

which, equivalently, comes from the Z/2-equivariant formal group Ĝm.

Theorem 2 (“BZ/2 theorem”). There is a functor

Otop : (Affet/BZ/2)op → AlgE∞

with the properties:
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Figure 1. The E2-page for the “descent” spectral sequence for KO-theory

• For every affine étale SpecR → BZ/2, Otop(SpecR) is an even-periodic E∞-algebra with a
functorial isomorphism π0(Otop(SpecR)) ' R.

• For every étale map SpecR→ BZ/2 classifying a one-dimensional torus G→ SpecR, there is
a functorial isomorphism

Spf
(
Otop(SpecR)0(CP∞)

)
' Ĝ

between the formal group of Otop(SpecR) and the formal group Ĝ of G.
• The functor Otop is a sheaf for the étale topology and extends to a sheaf of E∞-rings on BZ/2.

One then has:

KO = Γ(BZ/2,Otop),
and one can study the associated descent spectral sequence — it is exactly the homotopy fixed-point
spectral sequence.

Aside. The “BZ/2 theorem” is a consequence of the fact that complex K-theory is an E∞-ring with
a Z/2-action given by complex conjugation, together with the “topological invariance of the étale site”
for E∞-rings. See [LN12].

2. The descent spectral sequence. What does this spectral sequence look like? It is

Hi(BZ/2, ωj) =⇒ π2j−iKO,

where ω is the “Lie algebra” line bundle on BZ/2 (i.e., the sign representation of Z/2). So to get
the E2-page, we need to know the Z/2-cohomology of the trivial representation (over Z), and the
Z/2-cohomology of the sign representation. The former is the cohomology of RP∞, and the latter is
easy to work out, since the cohomology of Z/2 with coefficients in any representation is 2-periodic.
The result is displayed in Figure 1. The squares denote copies of Z and the dots denote copies of Z/2.

In other words, the E2-page can be described algebraically as the bigraded algebra

Z[t±1, η]/(2η), |η| = (1, 1), |t| = (4, 0).

In order to get the differentials, we’ll need to compare it with the ANSS for the sphere:

Proposition 3. The above spectral sequence is the K-local Adams-Novikov spectral sequence for KO.
In particular, it receives a map from the classical ANSS for the sphere S0, and the representative Hopf
map η ∈ π1(S0) goes to the class called η.

This isn’t obvious, and seems to require some non-formal input. In order to check that something
is a valid resolution for the K-local Adams spectral sequence, we need to know, for example, that

K∗KO → K∗K

is an injection. It isn’t clear what K∗KO is or how we might compute it. In fact, it turns out that one
can run the homotopy fixed-point spectral sequence as K⊗KO = (K⊗K)hZ/2 (where the Z/2-action
is on the second factor) — a priori this would only be obvious if K were a finite spectrum. The
calculus of stacks lets you organize this nicely.
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Figure 2. The differentials in the “descent” spectral sequence for KO-theory

However, one can produce a map from the ANSS of the sphere to the descent spectral sequence
without it, which is actually what we need right now. Namely, the homotopy fixed point spectral
sequence comes from the cosimplicial object

K ⇒
∏
Z/2

K
→
→
→

∏
Z/2×Z/2

K . . .

whose totalization is KO. It suffices to work with the associated semicosimplicial object by a cofinality
argument: the semisimplicial category is cofinal in the simplex category (see §6.5 of [Lur09]).

Warning 1. Actually, I don’t think that the argument here identifying the ANSS with the fixed point
spectral sequence is correct. To be updated.

The ANSS comes from the cosimplicial, or even semicosimplicial, object

MU ⇒MU⊗2→→
→

and we can produce a map of semicosimplicial objects, which corresponds on homotopy groups to the
map of Hopf algebroids

(MU∗,MU∗MU)→ (K∗,
∏
Z/2

K∗)

realizing the map of stacks

BZ/2→MFG.

(In fact, in the homotopy category, we can promote everything to a map of cosimplicial things quite
directly.)

This provides the desired map of spectral sequences. An explicit algebraic calculation in the cobar
construction can be used to verify that η comes from the Hopf map as desired.

Aside. It is probably possible to produce the map directly as a map of cosimplicial spectra, but I am
not quite sure how to do this, unless we know that KO → K is a Galois extension (see below).

Consequently, since η4 = 0 in the stable stems, η4 = 0 ∈ π∗(KO) and a differential must kill η4.
This forces:

Proposition 4. The first differential is d3, and d3(t) = η3.

In figure 2, we display the differentials in the descent spectral sequence. For dimensional reasons,
the spectral sequence collapses at E4 and we get the homotopy groups familiar from Bott periodicity:

π∗KO = Z[η, α, β±1]/(2η, η3, α2 = 4β),

where α is represented by [2t] and β by [t2] where t is as in the E2 page.

3. General features of the ss. Let’s note some of the general features of this spectral sequence,
which will carry over to the one for tmf:

• The E2 term (which was the cohomology of some stack, and here of the group Z/2) had
infinite towers and non-nilpotent elements. This isn’t too surprising: the cohomology of a
finite group is always infinite.
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• Although the (Bott) periodicity element β in degree 2 does not even make it to the E2-
page of the spectral sequence, β2 is in E2, and β4 lives all the way till E∞. In particular, a
sufficiently high power of the even periodicity element β survives, and KO exhibits periodicity
(of a longer nature). This holds for any homotopy fixed-point spectrum of a Landweber-
exact, even-periodic ring spectrum under a finite group action. For instance, TMF is 576-fold
periodic.

• Most importantly, the spectral sequence degenerates at a finite stage with a flat vanishing
line. One can see this as follows: there is a pro-spectrum coming from the cosimplicial tower
that computes KhZ/2; however, this pro-spectrum turns out to be a constant pro-spectrum.
This implies the desired claim.

• In particular, for any (possibly infinite) spectrum X, one has:

(K ⊗X)hZ/2 ' KO ⊗X.

Therefore, for any spectrum X, one has a descent spectral sequence that computes KO∗X.

Let us sketch proofs of some of these assertions.

Proposition 5. The pro-spectrum associated to the cosimplicial object

Fix•(Z/2,K) : K ⇒
∏
Z/2

K
→
→
→

∏
Z/2×Z/2

K . . .

(which computes homotopy fixed points) is constant. In particular, for any spectrum X, the natural
map KO ⊗X → (K ⊗X)hZ/2 is an equivalence.

The two statements are equivalent: the pro-spectrum associated to the cosimplicial object Fix•(Z/2,K)
can be identified with the functor X 7→ (K ⊗X)hZ/2 on spectra.

Proof. One can deduce this as a general consequence of the nilpotence theorem and its associated
consequences (in particular, the Hopkins-Ravenel smashing theorem [Rav92]), and then prove an
analog for TMF. Something like this is apparently “well-known” to the experts but I don’t know of
a source—ask me after the talk if you’re curious.

Here is a simple direct argument: consider the collection of finite spectraX such that Fix•(Z/2,K)⊗
X is constant as a pro-object (i.e., equivalent to the constant pro-object given by its homotopy inverse
limit). This is a thick subcategory: that is, it is closed under finite limits and colimits and retracts;
we want to show that it contains S0. The “theorem of Reg Wood” KO⊗Σ−2CP2 = K can be proved
by observing that we have an equivalence of spectra acted upon by Z/2:

K ⊗ Σ−2CP2 ' K ⊕K

where the Z/2-action on the latter is by flipping the factors. To check this, compute K∗(CP2) with
its Z/2-action.

The associated homotopy fixed point cosimplicial object for K ⊗ Σ−2CP2 is therefore constant: it
is a split cosimplicial object. So our thick subcategory contains Σ−2CP2. Now a thick subcategory of
finite spectra containing Σ−2CP2 contains the sphere. The thick subcategory theorem ([HS98]) tells
us that it contains S0.2 �

Corollary 1. The map KO → K is a faithful Galois extension (in the sense of [Rog08]).

Sketch of the proof of Proposition 3. The homotopy fixed-point (or descent) spectral sequence for
KO-theory comes from the following cosimplicial resolution of KO-theory:

Fix•(Z/2,K) : K ⇒
∏
Z/2

K
→
→
→

∏
Z/2×Z/2

K . . . .

The canonical Adams resolution for KO is obtained from the “Amitsur complex” which runs

Am(K)• : K ⇒ K⊗2→→
→
. . .

2It’s fun to show that a thick subcategory containing Σ−2CP2 contains the sphere directly from η4 = 0; this illustrates

what nilpotence has to do with thick subcategories (and is a prototype for the general Hopkins-Smith result).
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by tensoring with KO. We don’t have to use this one, though. The defining property of the resolution
for the K-ASS is that the associated cosimplicial object obtained by applying K∗-homology is split
(which is true) and resolves K∗(KO) (which can be checked from the homotopy fixed point spectral
sequence for K∗(KO)).

�

There are analogs of all this for TMF. Localized at a prime p, the moduli stack of smooth elliptic
curves admits finite étale Galois covers by affine schemes (given by the moduli of elliptic curves with
a level N structure, for p - N) and N not too small. The associated elliptic spectrum may be written
TMF(N) for “topological modular forms of level N ,” and we have

TMF = (TMF(N))hGL2(Z/NZ).

These too are Galois covers.
But maybe it’s time to start actually talking about TMF.

3. Cubic curves and the Weierstrass Hopf algebroid

Let’s now discuss the spectral sequence

Hi(Mell, ω
⊗j) =⇒ π2j−iTMF

for computing TMF. The input data is the moduli stack Mell and its cohomology, so we need a way
of computing that — this will be a lot more difficult than for KO. It’s easier to start with the moduli
stack of cubic curves. The basic and handy reference for this, and for integral modular forms, is
[Del75].

Definition 1. A cubic curve over a scheme S is a morphism p : X → S with a section e : S → X
such that Zariski locally on S, X is given by an equation in P2

S

y2 + a1xy = x3 + a2x
2 + a4x+ a6

with e : S → X the line at ∞.
(Equivalently, p is a proper, flat morphism with a section contained in the smooth locus, whose

fibers are geometrically integral curves of arithmetic genus one.)

There is a natural moduli stack Mcub of cubic curves. The moduli stack of smooth elliptic curves
Mell is cut out by the nonvanishing of the discriminant ∆ ∈ H0(Mcub, ω

12). In particular, to compute
H∗(Mell, ω

⊗), we can compute H0(Mcub, ω
⊗) and invert ∆. So we’ll start with this.

Aside. In fact, there is a morphism Mcub →MFG, and a spectral sequence

Hi(Mcub, ω
j)→ π2j−itmf;

this is the Adams-Novikov spectral sequence for tmf. I haven’t been able to find in the literature a
good explanation of this that doesn’t already rely on computations in Tmf. In [Bau08], this is used
to work out π∗tmf directly.

In order to compute the cohomology of Mcub, we can use a presentation of Mcub by a Hopf algebroid.
Strictly speaking, we note that Mcub has a Gm-torsor M◦cub over it, given by the moduli stack of cubic
curves together with a trivialization of the Lie algebra. (This Gm-torsor is equivalent to a line bundle,
namely ω.) The cohomology of the tensor powers of ω on Mcub is equivalent to the cohomology of the
structure sheaf on M◦cub.

Aside. In general, a Gm-action on something serves to record a grading. It’s therefore safe to pass
to a Gm-torsor over a stack (or scheme) to compute cohomology.

In order to compute the cohomology of M◦cub, consider the map

SpecZ[a1, a2, a3, a4, a6]→M◦cub

classifying the Weierstrass elliptic curve

y2 + a1xy = x3 + a2x
2 + a4x+ a6
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over T = SpecZ[a1, a2, a3, a4, a6], together with the trivialization −x/y of the tangent space. This
turns out to be a faithfully flat cover, and it is Gm-equivariant if we grade things so that

|x| = 4, |y| = 6, |ai| = 2i.

In fact, we can recover the moduli stack M◦cub from the simplicial scheme

. . .
→
→
→
T ×M◦cub

T ⇒ T.

Since the diagonal of Mcub is affine, this is a simplicial object in affine schemes. In fact, it is a groupoid
object: that is, it is a Hopf algebroid. Let’s describe it.

The scheme T ×M◦cub
T classifies the universal isomorphism between Weierstrass curves (respecting

the trivialization of the tangent space). The universal such isomorphism is given by

x 7→ x+ r(1)

y 7→ y + sx+ t,(2)

where

|r| = 4, |s| = 2, |t| = 6.

It follows that

T ×M◦cub
T = SpecZ[a1, a2, a3, a4, a6][r, s, t],

and the moduli stack M◦cub can be presented by the following Hopf algebroid.

Definition 2. The Weierstrass Hopf algebroid (A,Γ) keeps track of Weierstrass equations and
isomorphisms between them. Here

A = Z[a1, a2, a3, a4, a6], Γ = A[r, s, t];

the right unit is given by

ηR(a1) = a1 + 2s(3)

ηR(a2) = a2 − sa1 + 3r − s2(4)

ηR(a3) = a3 + ra1 + 2t(5)

ηR(a4) = a4 − sa3 + 2a2r − (t+ rs)a1 + 3r2 − 2st(6)

ηR(a6) = a6 + ra4 + r2a2 + r3 − ta3 − t2 − rta1(7)

The coproduct is given by the composition law for isomorphisms; thus

∆(r) = r ⊗ 1 + 1⊗ r(8)

∆(s) = s⊗ 1 + 1⊗ r(9)

∆(t) = t⊗ 1 + t⊗ 1 + s⊗ r.(10)

The grading has already been specified above.

Given a Hopf algebroid, there is a cobar complex which one can use to compute its cohomology.
Unfortunately, the Weierstrass Hopf algebroid is rather unwieldy, with a whole bunch of free variables.
It’s more efficient to localize at a prime and then use simpler presentations of the stack. (Analogy: to
compute with the ANSS, it’s easier to use BP than MU .)

Example 1. When we invert 6, the moduli stack of cubics becomes very simple. By completing the
square and the cube, we can put any cubic in the form

y2 = x3 +Ax+B.

The only isomorphisms between cubics in this form over a Z[1/6]-algebra come from the Gm-action:
that is, y 7→ u3y and x 7→ u2x. It follows that

M◦cub[1/6] = SpecZ[1/6][A,B],

so there is no higher cohomology when 6 is inverted (a fact which would not be obvious from the
Weierstrass Hopf algebroid).
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In particular, the descent spectral sequence degenerates with the terms concentrated on the bottom
line; the homotopy groups of TMF when 6 is inverted are given simply by Z[1/6][A,B,∆−1] where ∆
is the discriminant.

4. The moduli stack Mcub at p = 3

The Weierstrass Hopf algebroid described in the previous section is one way of presenting Mcub.
It is the groupoid object one gets from the faithfully flat cover SpecZ[a1, a2, a3, a4, a6] → M◦cub. The
key insight is that the specific Hopf algebroid is not as important as the stack, and the stack can be
presented at a specific prime (the interesting ones are p = 2, p = 3) in simpler ways. Henceforth, we
will focus on the prime 3, and by Mcub or M◦cub we will tacitly mean the localization at 3.

For example, consider the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

When we have inverted 2, we can “complete the square” to eliminate a1 and a3. After a faithfully
flat base change, we can perform a translation in x to eliminate a6. This motivates, though does not
quite prove:

Proposition 6. The map SpecZ(3)[a2, a4]→M◦cub classifying the cubic curve

y2 = x3 + a2x
2 + a4x

is a flat cover of M◦cub.

What we have shown is that the map is a cover: any map toM◦cub lifts, fppf locally, to SpecZ(3)[a2, a4].
In particular, the map of stacks is surjective. To check flatness, we consider a map SpecR → M◦cub
classifying a cubic curve, and consider the fiber product

SpecZ(3)[a2, a4]×M◦cub
SpecR.

If SpecR → M◦cub classifies a Weierstrass equation, the above fiber product is the universal change
of coordinates that makes its a1, a3, a6 vanish. One can directly compute this to be a finite, flat
R-algebra.

Example 2. For example, if R = Z(3)[a2, a4] itself, then we find

SpecZ(3)[a2, a4]×M◦cub
SpecZ(3)[a2, a4] = Z(3)[a2, a4, r]/(r

3 + a2r
2 + a4r).

This states that the isomorphisms of Weierstrass equations with a1 = a3 = a6 = 0 are precisely given
by x-translations by elements r satisfying the above cubic: this is easy to check by playing with the
equations themselves.

This calculation tells us something important:

Proposition 7. SpecZ(3)[a2, a4]→M◦cub is a finite flat cover of rank three.

We thus obtain a more economical Hopf algebroid for computing H∗(M◦cub,O). The associated
unnormalized cobar complex begins

Z(3)[a2, a4]
ηL−ηR→ Z(3)[a2, a4][r]/(r3 + a2r

2 + arr)→ . . . .

This is much more sensible. (Actually, can get something even smaller if we used the normalized cobar
complex.)

Aside. There are a host of covers of the moduli stack of elliptic curves which come from “moduli of
elliptic curves with some level structure.” The particular cover here comes from the moduli stack of
elliptic curves together with a nonzero point of order 2 (and a trivialization of the Lie algebra). It
isn’t obvious, though, that what we get actually extends to a three-fold cover of the moduli stack of
cubic curves.

Let’s just set down the formulas for this Hopf algebroid.

ηR(a2) = a2 + 3r(11)

ηR(a4) = a4 + 2a2r + 3r2(12)

∆(r) = r ⊗ 1 + 1⊗ r.(13)
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5. The Bockstein spectral sequence

1. The general setup. At the prime 3, we now have a sensible Hopf algebroid (A,Γ) for calculating
the cohomology of M◦cub. Still, it will be convenient to employ a further collection of spectral sequences
to compute H∗(M◦cub,O). These spectral sequences are “algebraic Bockstein spectral sequences” and
were apparently first developed by Miller and Novikov for computing the E2-page of the Adams-
Novikov spectral sequence.

To set this up, let (A,Γ) be a graded, connected Hopf algebroid, presenting a stack X. Let x ∈ An
be an invariant, homogeneous element: ηR(x) = x. Then the ideal (x) is invariant, and cuts out a
closed substack of the stack associated to (A,Γ). The Bockstein spectral sequence uses the (x)-adic
filtration to give rise to a spectral sequence starting from the cohomology of the stack cut out by (x)
to the cohomology of the whole stack.

Theorem 8 (Miller-Novikov). There is a multiplicative spectral sequence

H∗A/(x),Γ/(x)(A/(x),Γ/(x))[t] =⇒ H∗(A,Γ),

where we use H∗(A,Γ) to refer to H∗(X, ω⊗∗) for X the stack presented by (A,Γ).

For example, if x = p is a prime number, then this is the classical Bockstein spectral sequence from
mod p cohomology to Zp-cohomology. To obtain the spectral sequence, consider the cosimplicial ring

A⇒ Γ
→
→
→

Γ⊗A Γ . . .

whose cohomology computes H∗(A,Γ) (via the cobar complex). Give it the x-adic filtration to get
a filtered cosimplicial ring. The associated graded is the cobar complex for the Hopf algebroid
(A/(x),Γ/(x)), and the spectral sequence we get is the spectral sequence for a filtered chain com-
plex. In particular, we can work out the differentials by looking at the boundary maps in the cobar
complex (they are Bocksteins and higher Bocksteins).

In many cases, when there is a grading and when we are dealing with connected objects, the
convergence is very good. If x has positive degree, for example, the filtration we get is a finite
filtration in each degree, and we have strong convergence.

2. Filtering Mcub. In the Hopf algebroid (A,Γ) = (Z(3)[a2, a4],Z(3)[a2, a4, r]/(r
3 + a2r

2 + a4r)), we
note the sequence of invariant ideals

I1 = (3), I2 = (3, a2), I3 = (3, a2, a4).

These correspond to the closed substacks cut out by 3, the Hasse invariant v1, and then v2. (All that is
left at the end is the “cuspidal” cubic y2 = x3, whose formal group is the additive one.) The strategy
is to compute the cohomology of these closed substacks, starting from the smallest and working one’s
way up, using the Bockstein spectral sequence. The differentials in the Bockstein spectral sequence
are Bocksteins and come from a known filtration of the cobar complex, so they can be calculated
explicitly.

First, though, let’s note some general features of what we should get about the cohomology:

• The stack M◦cub admits a three-fold flat cover by an affine scheme. Consequently, the only
torsion in the cohomology can be of order three.

• The global sections of OM◦cub
are called integral modular forms (localized at 3).3 The ring of

integral modular forms can be calculated ([Del75]) to be isomorphic to

Z[c4, c6,∆]/(c34 − c26 = 1728∆),

where ∆ is the discriminant and c4, c6 are certain modular forms. One can explicitly write
(see [Del75]) formulas for these.

3Why “modular forms”? A modular form of weight 2k in the classical sense of the word can be described as a

function from the space of lattices in C to C satisfying certain holomorphicity and homogeneity conditions. But an

elliptic curve over C with a trivialization of its tangent space is the same thing as a lattice. So a modular form in the
classical sense can be identified as a function from elliptic curves equipped with a trivialization of the Lie algebra to C
satisfying certain holomorphicity and homogeneity conditions. These conditions are encoded algebraically here.
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Figure 3. The cohomology of Bα3, with Adams indexing
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Figure 4. The BSS for the cohomology of (A/I2,Γ/I2)

• There has to be nontrivial cohomology of M◦cub (or tmf would be rather uninteresting). One
can see this by noting the existence of a “mod 3” modular form (the Hasse invariant) which
is not liftable to characteristic zero. (By contrast, for primes p > 3, the Hasse invariant is
liftable to characteristic zero, via the Eisenstein series Ep−1.)

3. Let’s start by computing the cohomology of the Hopf algebroid (A/I3,Γ/I3). This is the moduli
stack of cubic curves with additive reduction — i.e., whose formal group is locally isomorphic to the
additive one. As a Hopf algebroid, this is

(Z/3,Z/3[r]/(r3)),

where r is primitive. In other words, it is the classifying stack of the group scheme α3.
Using a minimal resolution, one computes the cohomology of this stack:

Proposition 9. The cohomology ring ofBα3 (as presented by the above Hopf algebroid) is Z/3[α, β]/(α2)
where:

• α ∈ H1,4 is represented by [r] in the cobar complex.
• β ∈ H2,12 is represented by [r2|r]− [r|r2] in the cobar complex, and β = 〈α, α, α〉.

The result is displayed in Figure 3. In all diagrams, we use Adams indexing : the spot (s, t) refers
to Hs,s+t.

Note that α and β are defined in terms of r and rely only on the fact that r is primitive; thus
they lift to the cohomology of M◦cub (which means that the Bockstein differentials exiting them are
all trivial in future BSSes).

4. Let’s now work our way up to the cohomology of (A/I2,Γ/I2). To get here, we use the Bockstein
spectral sequence. To get the Bockstein spectral sequence, we just add a free variable a4 to the picture
we got in the previous section. This is displayed in Figure 4.

The Bockstein spectral sequence starts with this picture. All the differentials go up by one and to
the left by one, which sounds at first strange except that the BSS actually has a trigrading that I am
ignoring. In any event, the fact that α, β lift as cohomology classes (they lift all the way to M◦cub)
means that the BSS degenerates. We find:

Proposition 10. The cohomology ring of (A/I2,Γ/I2) (as presented by the above Hopf algebroid) is
Z/3[α, β, a4]/(α2) where:

• α ∈ H1,4 is represented by [r] in the cobar complex.
• β ∈ H2,12 is represented by [r2|r]− [r|r2] in the cobar complex, and β = 〈α, α, α〉.
• a4 ∈ H0,8 is represented by a4 in the cobar complex (i.e., it is an invariant element of the

ground ring).
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Figure 5. The BSS for the cohomology of (A/I1,Γ/I1) after the first round of differentials

And so the picture of the BSS is the picture of the cohomology.

5. Let’s now continue our way up to the cohomology of (A/I1,Γ/I1). The passage to here is the
hard part.

We start with the diagram of the cohomology of (A/I2,Γ/I2), and adjoin a free variable a2 in
position (4, 0). This time, there are differentials:

• As before, α, β are permanent cycles that survive the BSS.
• However, now a4 is not a permanent cycle. Looking at the boundary of a4 in the cobar

complex shows that the Bockstein differential has

a4 7→ 2a2α,

since α is represented by [r] in the cobar complex. The spectral sequence is multiplicative, so
that determines the first page of differentials in the BSS.

In particular, we can enumerate the cycles and boundaries:

• The cycles are the subring generated by a2, α, β, a4α, a
2
4α, a

3
4.

• The boundaries are the ideal (in the ring of cycles!) generated by a2α and a4a2α = d(a2
4).

While a4 does not survive, αa4 does, and represents a class in the next page denoted [αa4]. Also,
a3

4 does, thanks to the power of the Frobenius.
We display in Figure 5 what happens after the first round of BSS differentials. We observe that

a2[αa4] = 0 but [αa2
4] generates a free Z/3[a2]-module summand. The whole thing is periodic with

[a3
4].
Now let’s try to consider the second round of differentials. The question is where [a3

4] and [αan4 ] go.

• [αa4] is represented in the cobar complex by a4[r]. The cobar boundary of this is

2a2[r|r].

Therefore, if we consider a4[r] − a2[r2], then this is equal to a4[r] modulo terms of positive
a2-filtration, and is an honest cycle mod 3. It follows that [αa4] is a cycle.

• By contrast, [αa2
4] is no longer a cycle. This is represented in the cobar complex by a2

4[r], and
the cobar boundary of this is (ηL(a2

4)− ηR(a2
4))[r] or(

(a2
4 − (a4 + 2a2r)

2
)

[r] = −a2a4[r|r]− a2
2[r2|r].

Let’s try to modify this by another cocycle of positive (a2)-filtration to get something
whose boundary has even smaller (a2)-filtration, and hope that this calculation doesn’t have
too many sign errors. Namely, observe that

d(a2a4[r2]) = 2a2
2[r|r2] + 2a2a4[r|r] = −(a2

2[r|r2] + a2a4[r|r]),

and therefore

d(a2
4[r]− a2a4[r2]) = a2

2

(
[r|r2]− [r2|r]

)
.

Unwinding the definition of the spectral sequence, this means that the higher Bockstein on
[αa2

4] is hitting precisely a2
2β.
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Figure 6. The BSS for the cohomology of (A/I1,Γ/I1) after the second round of
differentials (and the final thing)
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Figure 7. The cohomology of Mcub at 3

• It is easy to see that a3
4 can go nowhere, since there is nothing for it to kill. In fact, a2[αa2

4]
is the only option, and we have just seen that it is not a cycle.

In other words, (since [α3
4] is a permanent cycle in the BSS) we find that [an4α] is a permanent cycle

for n ≡ 0, 1 mod 3, while at n = 2 is kills a2
2β.

This means in the spectral sequence, the ideal a2
2β is now killed, and it is displayed in Figure 6.

There are no more differentials. Observe that there is a periodicity with period [a3
4].

6. In the previous section, we computed the cohomology of (A/(3),Γ/(3)), and found that it was
generated by classes a2, α, β, [αa4], [a3

4]. Here [αa4], α had square zero, and βa2
2 = 0.

Now we have to run a final Bockstein spectral sequence to get the cohomology of (A,Γ). The
Bockstein spectral sequence is really trigraded, with multiplication by 3 jutting out of the page and
giving an infinite cube spectral sequence. We won’t draw that. Suffice it to say:

• α, β are known to be permanent cycles.
• d(a2) = 3α.
• d([αa4]) = ±3β or otherwise β would have order more than three (which is impossible, as we

saw); of course, this can be checked in the cobar complex too.
• [a3

4] is, for dimensional reasons, a permanent cycle.

Observe that a2
2 survives, as does a3

2.
The final output of the spectral sequence is displayed above in Figure 7. Here, modulo signs, a2

2 is
represented by c4, a3

2 by c6 (mod something divisible by 3), and a4
3 is represented by ∆.

Theorem 11. The cohomology of Mcub is given by

Z(3)[α, β, c4, c6,∆]/I,
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where I is the ideal generated by the relations

3α = 3β = 0(14)

α2 = 0(15)

c4α = c4β = c6α = c6β = 0(16)

c34 − c26 = 1728∆,(17)

The last statement is a known result about integral modular forms. We note in particular that the
cohomology exhibits a ∆-periodicity (by contrast, if we invert c4, we get nothing in higher cohomol-
ogy).

6. The homotopy groups of TMF

In the previous section, we computed the cohomology groups of Mcub at 3. We find as a result that
the E2-page of the descent spectral sequence for TMF is given by

Z(3)[α, β, c4, c6,∆
±1]/I,

where I is the ideal generated by the same relations. In this section, we will determine the differentials
in the spectral sequence (called the elliptic spectral sequence by [Bau08]) and thus describe π∗TMF.
It will turn out that the entire spectral sequence is a consequence of a single differential, which will
come out of the homotopy groups of spheres.

Proposition 12. c4, c6 are permanent cycles in the elliptic spectral sequence at p = 3 (that is, they
survive to elements in π∗TMF). Ditto for α, β.

Proof. By comparison with the ANSS at p = 3, α is in the image of the Hurewicz homomorphism
(under the class in the homotopy groups of spheres usually called α). We get β = 〈α, α, α〉 since the
same relation is true in π∗(S

0).
To see that c4, c6 are permanent cycles, we first show that they are in the image of the transfer

from the three-fold cover of Mell given by
(
SpecZ(3)[a2, a4][∆−1]

)
/Gm. To see this, we may pass to

the 6-fold Galois cover of Mell by imposing a full level 2 structure (i.e., a choice of two distinct nonzero
points of order two on an elliptic curve). This gives a Galois cover

Mell[2]→Mell

which is Galois with group S3. The claim is that c4, c6 are in the image of the transfer (trace) from
this 6-fold cover; this is equivalent to the statement about the 3-fold cover as we are localized at 3.
This follows from the next lemma since c4, c6 kill the torsion in the cohomology of the moduli stack.

Once one sets up an appropriate topological theory of the transfer (trace maps) for E∞-rings, this
proposition should be a corollary of the algebraic observation just made, because c4, c6 arise in the
image of the transfer from “topological modular forms of level 2.”

�

Lemma 13. Let M be a Z(3)[S3]-module. Let x ∈M ; then x ∈MS3 is a norm if and only if xβ = 0

where β ∈ H2(S3;Z(3)) is a certain 3-torsion element.

Proof. We can replace S3 by the cyclic group C3. In this case, given x ∈ H0(C3,M), to say that x is

a norm is to say that x maps to zero in the Tate cohomology Ĥ0(C3,M). The Tate cohomology of C3

with any coefficients is periodic with periodicity operator given by β ∈ H2(C3,Z) = H2(S3;Z(3)). �

In Figure 8, we display the elliptic spectral sequence. The ideal in the zero-line generated by c4, c6
is not shown, because these are permanent cycles by the above proposition and they annihilate the
torsion of the spectral sequence. Instead of writing α, we use a line of slope 1/3 to indicate that two
classes are connected by a multiple of α.

Proposition 14. The first differential in the spectral sequence is a d5, and

d5(∆) = ±β2α.
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Figure 8. The E2-page of the elliptic spectral sequence at p = 3
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Figure 9. d5 in the elliptic spectral sequence at p = 3
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Figure 10. The elliptic spectral sequence at p = 3 after d5

Proof. There are no differentials before d5 for dimensional reasons. One knows that β3α = 0 in the
homotopy groups of spheres; this is the “Toda relation” ([Tod68]) and must therefore hold in TMF as
well. In particular, a differential must kill β3α in the elliptic spectral sequence. The only possibilities
for elements which can kill β3α are already visible in the spectral sequence, and we get

d5(∆β) = ±β3α.

This forces the desired differential. �

To recap:

• The survivors of this spectral sequence include α, β, [3∆], b = [α∆], c = [α∆2],∆3, and in fact
are the ring generated by these.
• We have the relations αβ2 = 0 and ∆β2α = 0. bβ2 = 0 and [3∆] kills all the torsion.

Figure 10 displays the elliptic spectral sequence after the d5 differential; we observe that this forces
αβ2 = 0 ∈ π∗(TMF) rather than simply up to higher filtration (in fact, there is nothing in the column
that used to be β2α, even from towers starting at other powers of ∆). Observe that there is now a
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Figure 11. The d9 in the elliptic spectral sequence at p = 3

periodicity generated by ∆3 rather than ∆. We are not done, though. The powers of β continue,
while we know that β is nilpotent in π∗(TMF): in fact, the spectral sequence should degenerate at a
finite stage with a horizontal vanishing line, which we certainly do not have right now.

However, if we play with Massey products, we can say a few things. First, let’s recall the equation

β = 〈α, α, α〉

which is already valid in the homotopy groups of spheres, and which we saw in the cohomology of the
moduli stack of elliptic curves. Consider that

β3 = β2 〈α, α, α〉 ⊂
〈
β2α, α, α

〉
.

Since α2β is nullhomotopic in π∗TMF, we find that (in π∗TMF) that

β3 ∈ 〈0, α, α〉 = απ27TMF.

In particular, since β3 ∈ π∗TMF is nonzero (clearly it is a permanent cycle and nothing can kill it in
the spectral sequence), we find that there is a nonzero class in π27TMF such that when multiplied by
α, it gives β3. This class must have filtration lower than β3 and a look at the spectral sequence now
shows:

Proposition 15. The class b is a permanent cycle and converges to an element of π27TMF with
bα = β3 (at least modulo terms of higher filtration).

In fact, we will see that there are no terms of higher filtration. For now, we just need to know that
b survives.

The transfer argument showed that 3∆ and 3∆2 survive in the spectral sequence. If ∆3 supports
a differential, we know that at least it is a very long differential (certainly not until d10).

The next order of business is c. We have

β5 = β2β2 〈α, α, α〉 ⊂
〈
αβ2, α, αβ2

〉
= 〈0, α, 0〉 = 0.

Therefore, something must kill β5. The only possibility is that

d9(c) = ±β5.

We draw the ninth differential next:
After d9, there is room for no more differentials. We conclude with the desired computation:

Theorem 16. We have

π∗TMF(3) = Z(3)[c4, c6, [3∆], [3∆2],∆±3, α, β, b]/J
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Figure 12. The homotopy groups of TMF (at p = 3)

where J is the ideal generated by the relations

c34 − c26 = 576[3∆](18)

[3∆]2 = 3[3∆2](19)

3α = 3β = 3b = 0(20)

α[3∆] = α[3∆2] = β[3∆] = β[3∆2] = 0(21)

αβ2 = β5 = 0(22)

c4α = c4β = c4b = c6α = c6β = c6b = 0(23)

(24)

Once again, we find that the spectral sequence degenerates at a finite stage (at E10) with a horizontal
vanishing line. Let SpecR → Mell be an étale cover (localized at 3, as always). Then we can form a
simplicial diagram

. . .
→
→
→

SpecR×Mell
SpecR⇒ SpecR

and consequently a cosimplicial diagram in E∞-rings

Otop(SpecR) ⇒ Otop(SpecR×Mell
SpecR)

→
→
→
. . .

whose homotopy limit is, by definition, TMF. The descent spectral sequence is the homotopy spectral
sequence for this cosimplicial E∞-rings. However, the degeneration of the descent ss at a finite stage
with a horizontal vanishing line reflects the fact that the seemingly infinite homotopy limit here is
really a finite one. The pro-object associated to the Tot tower is a constant pro-object. Moreover,
TMF exhibits its own periodicity, here of order 72 (when localized at 3).

We remark that there are maps

π∗S
0 → π∗TMF→MF∗[∆

−1]

where MF∗ = H∗(Mcub, ω
⊗∗) is the ring of integral modular forms. The first map is the Hurewicz

homomorphism and the second map is the edge homomorphism in the descent spectral sequence.
Surprisingly, most of the torsion in π∗TMF (at 3, at least) comes from π∗S

0, and the torsion-free part
is still pretty close to MF∗. This perhaps justifies the name “topological modular forms.”

7. Further remarks

1. p = 2. At the prime 2, the calculation is handled somewhat similarly, at least in outline. However,
the details are much more complicated. Rather than a two-fold cover of the moduli stack of cubics,
one has to use an eight-fold cover (given by a elliptic curves with a Γ1(3) structure) to compute the
Hopf algebroid cohomology. Then, when computing π∗TMF, the modular forms c4, c6 support quite
a few differentials, too—not just ∆. For inspiration, see [Hop08].

In short, both the computation of the cohomology of the stack and the differentials is far more
complicated, but it is worked out in [Bau08].
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2. The classical Adams spectral sequence. It is also possible to compute π∗tmf using the classical
Adams spectral sequence. Namely, it is known that

H∗(tmf;Z/2) ' A//A2,

where A is the (mod 2) Steenrod algebra and A2 ⊂ A is the 64-dimensional subalgebra generated by
Sq1,Sq2,Sq4. The “change-of-rings isomorphism” enables one to calculate the E2-page of the classical
ASS for tmf(2) via

Exts,tA2
(Z/2,Z/2) =⇒ πt−stmf(2).

This is a more complicated analog of the fact that

H∗(bo;Z/2) ' A//A1,

from which one can compute π∗bo as in chapter 3 of [Rav86]. Computing Ext over A2 is much more
complicated than making the computations for bo, and the ASS for tmf is a mess.

Aside. It is not possible to have spectra whose cohomology is A//An for n > 2. This is a consequence
of the solution to the Hopf invariant one problem.

Aside. It was initially (incorrectly) believed that there was no spectrum with the cohomology A//A2.

At the prime 3, the cohomology of tmf is not cyclic over the Steenrod algebra, but one can still
run the ASS. See [Beh].

As far as I know, to prove such things (or in general anything about tmf) requires some prior
knowledge about the homotopy groups of Tmf—that is, I don’t think you can get away from the
Adams-Novikov (or descent) spectral sequence for Tmf.

3. The ANSS for tmf. The ANSS for tmf is well-understood. Recall that the ANSS runs

Exts,tMU∗MU (MU∗,MU∗tmf) =⇒ πt−stmf.

It is known that the E2-page of this spectral sequence is isomorphic to H∗(Mcub, ω
⊗j). More is true:

the Hopf algebroid

(MU∗tmf,MU∗(MU ⊗ tmf))

presents a stack equivalent to the moduli stack Mcub of pointed cubic curves. This result is used in
[Bau08].

There is an analog of this result, too, for KO-theory. The ANSS for bo can be described using the
moduli stack of “quadratic equations and translations.”

I know a rather convoluted argument for this result, but it too relies on computations in π∗Tmf
(specifically, the existence of a “gap theorem”) in the homotopy groups. Does anyone know how to
prove this directly? Please enlighten me!

4. Duality. Given the homotopy groups of tmf (computed using the ASS or ANSS above), one can
work out the homotopy groups of TMF via TMF = tmf[∆−1]. Obtaining the homotopy groups of
Tmf is more subtle. The following result enables us to do so:

Theorem 17 (Stojanoska [Sto12]). The Anderson dual of Tmf is Σ21Tmf.

The result does not immediately tell us how to compute, for instance, π−1Tmf. However, we have:

Theorem 18 (Gap theorem). πiTmf = 0 for −21 < i < 0.

It would be interesting if there were a way to prove this result directly from duality. The compu-
tations done above are sufficient to prove the gap theorem at p = 3, though.
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