Functors of Artin Rings Author(s): Michael Schlessinger Source: Transactions of the American Mathematical Society, Vol. 130, No. 2 (Feb., 1968), pp. 208-222 Published by: American Mathematical Society Stable URL: http://www.jstor.org/stable/1994967 Accessed: 20/01/2011 08:59 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Transactions of the American Mathematical Society. ## FUNCTORS OF ARTIN RINGS(1) ## BY MICHAEL SCHLESSINGER 0. **Introduction.** In the investigation of functors on the category of preschemes, one is led, by Grothendieck [3], to consider the following situation. Let Λ be a complete noetherian local ring, μ its maximal ideal, and $k = \Lambda/\mu$ the residue field. (In most applications Λ is k itself, or a ring of Witt vectors.) Let C be the category of Artin local Λ -algebras with residue field k. A covariant functor F from C to Sets is called pro-representable if it has the form $$F(A) \cong \operatorname{Hom}_{\operatorname{local} \Lambda - \operatorname{alg.}}(R, A), \quad A \in C,$$ where R is a *complete* local Λ -algebra such that R/m^n is in C, all n. (m is the maximal ideal in R.) In many cases of interest, F is not pro-representable, but at least one may find an R and a morphism $\operatorname{Hom}(R, \cdot) \to F$ of functors such that $\operatorname{Hom}(R, A) \to F(A)$ is surjective for all A in C. If R is chosen suitably "minimal" then R is called a "hull" of F; R is then unique up to noncanonical isomorphism. Theorem 2.11, §2, gives a criterion for F to have a hull, and also a simple criterion for pro-representability which avoids the use of Grothendieck's techniques of nonflat descent [3], in some cases. Grothendieck's program is carried out by Levelt in [4]. §3 contains a few geometric applications of these results. To avoid awkward terminology, I have used the word "pro-representable" in a more restrictive sense than Grothendieck [3] has. He considers the category of Λ -algebras of finite length and allows R to be a projective limit of such rings. The methods of this paper are a simple extension of those used by David Mumford in a proof (unpublished) of the existence of formal moduli for polarized Abelian varieties. I am indebted to Mumford and to John Tate for many valuable suggestions. 1. The category C_{Λ} . Let Λ be a complete noetherian local ring, with maximal ideal μ and residue field $k = \Lambda/\mu$. We define $C = C_{\Lambda}$ to be the category of Artinian local Λ -algebras having residue field k. (That is, the "structure morphism" $\Lambda \to A$ of such a ring A induces a trivial extension of residue fields.) Morphisms in C are local homomorphisms of Λ -algebras. Received by the editors March 8, 1966. ⁽¹⁾ The contents of this paper form part of the author's 1964 Harvard Ph.D. Thesis, which was directed by John Tate. This research was supported in part by a grant from the Air Force Office of Scientific Research. Let $\hat{C} = \hat{C}_{\Lambda}$ be the category of complete noetherian local Λ -algebras A for which A/m^n is in C, all n. Notice that C is a full subcategory of \hat{C} . If $p: A \to B$, $q: C \to B$ are morphisms in C, let $A \times_B C$ denote the ring (in C) consisting of all pairs (a, c) with $a \in A$, $c \in C$, for which pa = qc, with coordinatewise multiplication and addition. For any A in \hat{C} , we denote by $t_{A/\Lambda}^*$, or just t_A^* , the "Zariski cotangent space" of A over Λ : $$(1.0) t_A^* = m/(m^2 + \mu A)$$ where m is the maximal ideal of A. A simple calculation shows that the dual vector space, denoted by t_A , may be identified with $\operatorname{Der}_{\Lambda}(A, k)$, the space of Λ linear derivations of A into k. LEMMA 1.1. A morphism $B \to A$ in \hat{C} is surjective if and only if the induced map from t_B^* to t_A^* is surjective. **Proof.** First of all, any A in \hat{C} is generated, as Λ module, by the image of Λ in A and the maximal ideal m of A. (For A and Λ have the same residue field k.) Thus the induced map from μ/μ^2 to $\mu A/(m^2 \cap \mu A)$ is a surjection. If $B \to A$ is a morphism in \hat{C} , then denoting the maximal ideal of B by n, we get a commutative diagram with exact rows: $$0 \longrightarrow \mu A/(\mu A \cap m^2) \longrightarrow m/m^2 \longrightarrow t_A^* \longrightarrow 0$$ $$\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow$$ $$0 \longrightarrow \mu B/(\mu B \cap n^2) \longrightarrow n/n^2 \longrightarrow t_B^* \longrightarrow 0$$ in which the left-hand arrow is a surjection. If the right-hand arrow is also a surjection, then the middle arrow is a surjection, so that the induced map on the graded rings is a surjection. From this it follows that $B \to A$ is a surjection [1, §2, No. 8, Theorem 1]. Conversely, if $B \rightarrow A$ is a surjection, then the induced map on cotangent spaces is obviously surjective. Let $p: B \to A$ be a surjection in C. DEFINITION 1.2. p is a small extension if kernel p is a nonzero principal ideal (t) such that mt = (0), where m is the maximal ideal of B. DEFINITION 1.3. p is essential if for any morphism $q: C \to B$ in C such that pq is surjective, it follows that q is surjective. From Lemma 1.1 we obtain easily LEMMA 1.4. Let $p: B \to A$ be a surjection in C. Then - (i) p is essential if and only if the induced map $p_*: t_B^* \to t_A^*$ is an isomorphism. - (ii) If p is a small extension, then p is not essential if and only if p has a section $s: A \rightarrow B$, with $ps = 1_4$. **Proof.** (i) If p_* is an isomorphism, then by Lemma 1.1, p is essential. Conversely let $\tilde{t}_1, \ldots, \tilde{t}_r$ be a basis of t_A^* , and lift the \tilde{t}_i back to elements t_i in B. Set $$C = \Lambda[t_1, \ldots, t_r] \subseteq B.$$ Then p induces a surjection from C to A, so if p is essential, C=B. But then $\dim_k t_A^* \le r = \dim_k t_A^*$, so $t_B^* \cong t_A^*$. - (ii) If p has a section s, then s is not surjective, so p is not essential. If p is not essential, then the subring C constructed above is a proper subring of B, and hence is isomorphic to A, since length (B)=length (A)+1. The isomorphism $C \cong A$ yields the section. - 2. **Functors on** *C***.** We shall consider only *ccvariant* functors *F*, from *C* to *Sets*, such that F(k) contains just one element. By a couple for *F* we mean a pair (A, ξ) where $A \in C$ and $\xi \in F(A)$. A morphism of couples $u: (A, \xi) \to (A', \xi')$ is a morphism $u: A \to A'$ in *C* such that $F(u)(\xi) = \xi'$. If we extend *F* to \hat{C} by the formula $\hat{F}(A) = \text{proj Lim } F(A/m^n)$ we may speak analogously of *pro-couples* and morphisms of pro-couples. For any ring R in \hat{C} , we set $h_R(A) = \text{Hom}(R, A)$ to define a functor h_R on C. Now if F is any functor on C, and R is in \hat{C} , we have a canonical isomorphism $$\hat{F}(R) \xrightarrow{\sim} \operatorname{Hom}(h_R, F).$$ Namely, let $\xi = \text{proj Lim } \xi_n$ be in $\widehat{F}(R)$. Then each $u: R \to A$ factors through $u_n: R/m^n \to A$ for some n, and we assign to $u \in h_R(A)$ the element $F(u_n)(\xi_n)$ of F(A). This sets up the isomorphism. We therefore say that a pro-couple (R, ξ) for F pro-represents F if the morphism $h_R \to F$ induced by ξ is an isomorphism. (2.1) Relation to global functors. Let G be a contravariant functor on the category of preschemes over Spec Λ , and pick a fixed $e \in G(\operatorname{Spec} k)$. For A in C, let $F(A) \subseteq G(\operatorname{Spec} A)$ be the set of those $\xi \in G(\operatorname{Spec} A)$ such that $G(i)(\xi) = e$ where i is the inclusion of Spec k in Spec A. If G is represented by a prescheme X, then e determines a k-rational point $x \in X$, and it is then clear that F(A) is isomorphic to $\operatorname{Hom}_{\Lambda}(\mathfrak{D}_{X,x},A)$. Thus the completion of $\mathfrak{D}_{X,x}$ pro-represents F. Unfortunately, many interesting functors, for example some "formal moduli" functors (§3.7), are not pro-representable. However, one can still look for a "universal object" in some sense, for example in the sense of Definition 2.7 below. DEFINITION 2.2. A morphism $F \to G$ of functors is *smooth* if for any *surjection* $B \to A$ in C, the morphism $$(*) F(B) \to F(A) \times_{G(A)} G(B)$$ is surjective. Part (i) of the sorités below will perhaps motivate this definition. REMARKS. (2.3) It is enough to check surjectivity in (*) for small extensions $B \rightarrow A$. (2.4) If $F \to G$ is smooth, then $\hat{F} \to \hat{G}$ is *surjective*, in the sense that $\hat{F}(A) \to \hat{G}(A)$ is surjective for all A in \hat{C} (consider the successive quotients A/m^n , $n=1, 2, \ldots$). PROPOSITION 2.5. (i) Let $R \to S$ be a morphism in \hat{C} . Then $h_S \to h_R$ is smooth if and only if S is a power series ring over R. - (ii) If $F \rightarrow G$ and $G \rightarrow H$ are smooth morphisms of functors, then the composition $F \rightarrow H$ is smooth. - (iii) If $u: F \to G$ and $v: G \to H$ are morphisms of functors such that u is surjective and vu is smooth, then v is smooth. - (iv) If $F \to G$ and $H \to G$ are morphisms of functors such that $F \to G$ is smooth, then $F \times_G H \to H$ is smooth. - **Proof.** (i) This is more or less well known (see [3, Theorem 3.1]), but we give a proof for the sake of completeness. Suppose $h_S \to h_R$ is smooth. Let r (resp. s) be the maximal ideal in R (resp. S), and pick x_1, \ldots, x_n in S which induce a basis of $t_{S/R}^* = s/(s^2 + rS)$. If we set $T = R[[X_1, \ldots, X_n]]$ and denote the maximal ideal of T by t, we get a morphism $u_1: S \to T/(t^2 + rT)$ of local R algebras, obtained by mapping x_i on the residue class of X_i . By smoothness u_1 lifts to $u_2: S \to T/t^2$, thence to $u_3: S \to T/t^3, \ldots$ etc. Thus we get a $u: S \to T$ which induces an isomorphism of $t_{S/R}^*$ with $t_{T/R}^*$ (by choice of u_1) so that u is a surjection (1.1). Furthermore, if we choose $y_i \in S$ such that $uy_i = X_i$, we can set $vX_i = y_i$ and produce a local morphism $v: T \to S$ of R algebras such that $uv = 1_T$; in particular v is an injection. Clearly v induces a bijection on the cotangent spaces, so v is also a surjection (1.1). Hence v is an isomorphism of $T = R[[X_1, \ldots, X_n]]$ with S. Conversely, if S is a power series ring over R, then it is obvious that $h_S \to h_R$ is smooth. The proofs of (ii), (iii), (iv) are completely formal and are left to the reader. (2.6) NOTATION. Let $k[\varepsilon]$, where $\varepsilon^2 = 0$, denote the ring of dual numbers over k. For any functor F, the set $F(k[\varepsilon])$ is called the *tangent space* to F, and is denoted by t_F . It is easy to see that if $F = h_R$, then there is a canonical isomorphism $t_F \cong t_R$: $$t_R \cong \operatorname{Hom}_{\Lambda}(R, k[\varepsilon]).$$ Usually t_F will have an intrinsic vector space structure (Lemma 2.10). DEFINITION 2.7. A pro-couple (R, ξ) for a functor F is called a *pro-representable* hull of F, or just a hull of F, if the induced map $h_R \to F$ is smooth (2.2), and if in addition the induced map $t_R \to t_F$ of tangent spaces is a bijection. (2.8) Notice that if (R, ξ) pro-represents F then (R, ξ) is a hull of F. In this case (R, ξ) is unique up to canonical isomorphism. In general we have only noncanonical isomorphism: PROPOSITION 2.9. Let (R, ξ) and (R', ξ') be hulls of F. Then there exists an isomorphism $u: R \to R'$ such that $F(u)(\xi) = \xi'$. **Proof.** By (2.4) we have morphisms $u: (R, \xi) \to (R', \xi')$ and $u': (R', \xi') \to (R, \xi)$, both inducing an isomorphism on tangent spaces, by the definition of hull. Thus u'u say, induces an isomorphism on t_R^* , so that u'u is a surjective endomorphism of R, by Lemma 1.1. But an easy argument, which we leave to the reader, shows that a surjective endomorphism of any noetherian ring is an isomorphism. Thus u'u and uu' are isomorphisms and we are done. REMARK 2.10. Let (R, ξ) be a hull of F. Then R is a power series ring over Λ if and only if F transforms surjections $B \to A$ in C into surjections $F(B) \to F(A)$. In fact the stated condition on F is equivalent to the *smoothness* of the natural morphism $F \to h_{\Lambda}$. By applying (2.6), (ii) and (iii) to the diagram we conclude that $h_R \to h_\Lambda$ is smooth if and only if $F \to h_\Lambda$ is. Now use 2.5 (i). LEMMA 2.10. Suppose F is a functor such that $$F(k[V] \times_k k[W]) \xrightarrow{\sim} F(k[V]) \times F(k[W])$$ for vector spaces V and W over k, where k[V] denotes the ring $k \oplus V$ of C in which V is a square zero ideal. Then F(k[V]), and in particular $t_F = F(k[\varepsilon])$, has a canonical vector space structure, such that $F(k[V]) \cong t_F \otimes V$. **Proof.** k[V] is in fact a "vector space object" in the category \hat{C} (in which k is the final object), for we have a canonical isomorphism $$\operatorname{Hom}(A, k[V]) \cong \operatorname{Der}_{\Lambda}(A, V), \quad A \in \hat{C}.$$ The addition map $k[V] \times_k k[V] \to k[V]$ is given by $(x, 0) \mapsto x, (0, x) \mapsto x \ (x \in V)$, and scalar multiplication by $a \in k$ is given by the endomorphism $x \mapsto ax \ (x \in V)$ of k[V]. Thus if F commutes with the necessary products, F(k[V]) gets a vector space structure. Finally, we identify V with $\text{Hom}(k[\varepsilon], k[V])$ to get a map $$t_F \otimes V \rightarrow F(k[V])$$ which is an isomorphism since k[V] is isomorphic to the product of $r = \dim_k V$ copies of $k[\varepsilon]$. THEOREM 2.11. Let F be a functor from C to Sets such that F(k) = (e) (= one point). Let $A' \to A$ and $A'' \to A$ be morphisms in C, and consider the map $$(2.12) F(A' \times_A A'') \rightarrow F(A') \times_{F(A)} F(A'').$$ Then - (1) F has a hull if and only if F has properties (H_1) , (H_2) , (H_3) below: - (H_1) (2.12) is a surjection whenever $A'' \to A$ is a small extension (1.2). - (H₂) (2.12) is a bijection when A = k, $A'' = k[\varepsilon]$. - $(H_3) \dim_k(t_F) < \infty$. (2) F is pro-representable if and only if F has the additional property (H_4) : $$(H_4) F(A' \times_A A') \xrightarrow{\sim} F(A') \times_{F(A)} F(A')$$ for any small extension $A' \rightarrow A$. Notice that if F is isomorphic to some h_R , then (2.12) is an isomorphism for any morphisms $A' \to A$, $A'' \to A$; that is, the four conditions are trivially necessary for pro-representability. REMARKS. (2.13) (H_2) implies that t_F is a vector space by Lemma 2.10. In fact, by induction on $\dim_k W$ we conclude from (H_2) that (2.12) is an isomorphism when A=k, A''=k[W]; in particular the hypotheses of 2.10 are satisfied. - (2.14) By induction on length A''-length A it follows from (H_1) that (2.12) is a surjection for any surjection $A'' \to A$. - (2.15) Condition (H₄) may be usefully viewed as follows. For each A in C, and each ideal I in A such that $m_A \cdot I = (0)$, we have an isomorphism $$(2.16) A \times_{A/I} A \xrightarrow{\sim} A \times_k k[I],$$ induced by the map $(x, y) \mapsto (x, x_0 + y - x)$, where x and y are in A and x_0 is the k residue of x. Now, given a small extension $p: A' \to A$ with kernel I, we get by (H_2) and (2.16) a map $$(2.17) F(A') \times (t_F \otimes I) \to F(A') \times_{F(A)} F(A')$$ which is easily seen to determine, for each $\eta \in F(A)$, a group action of $t_F \otimes I$ on the subset $F(p)^{-1}(\eta)$ of F(A') (provided that subset is not empty). (H₁) implies that this action is "transitive," while (H₄) is precisely the condition that this action makes $F(p)^{-1}(\eta)$ a (formally) principal homogeneous space under $t_F \otimes I$. Thus, in the presence of conditions (H₁), (H₂), (H₃), it is the existence of "fixed points" of $t_F \otimes I$ acting on $F(p)^{-1}(\eta)$ which obstruct the pro-representability of F. In many applications, where the elements of F(A) are isomorphism classes of geometric objects, the existence of such a fixed point $\eta' \in F(p)^{-1}(\eta)$ is equivalent to the existence of an automorphism of an object y in the class of η which cannot be extended to an automorphism of any (or some) object y' in the class of η' . **Proof of 2.11.** (1) Suppose F satisfies conditions (H_1) , (H_2) , (H_3) . Let t_1, \ldots, t_r be a dual basis of t_F , put $S = \Lambda[[T_1, \ldots, T_r]]$, and let n be the maximal ideal of S. R will be constructed as the projective limit of successive quotients of S. To begin, let $R_2 = S/(n^2 + \mu S) \cong k[\varepsilon] \times_k \cdots \times_k k[\varepsilon]$ (r times). By (H_2) there exists $\xi_2 \in F(R_2)$ which induces a bijection between t_{R_2} ($\cong \text{Hom}(R_2, k[\varepsilon])$) and t_F . Suppose we have found (R_q, ξ_q) , where $R_q = S/J_q$. We seek an ideal J_{q+1} in S, minimal among those ideals J in S satisfying the conditions (a) $nJ_q \subseteq J \subseteq J_q$, (b) ξ_q lifts to S/J. Since the set $\mathscr S$ of such ideals corresponds to a certain collection of vector subspaces of $J_q/(nJ_q)$, it suffices to show that $\mathscr S$ is stable under pairwise intersection. But if J and K are in \mathscr{S} , we may enlarge J, say, so that $J+K=J_q$, without changing the intersection $J\cap K$. Then $$S/J \times_{S/J_a} S/K \cong S/(J \cap K)$$ so that by (H_1) (see (2.14)) we may conclude that $J \cap K$ is in \mathscr{S} . Let J_{q+1} be the intersection of the members of \mathscr{S} , put $R_{q+1} = S/J_{q+1}$, and pick any $\xi_{q+1} \in F(R_{q+1})$ which projects onto $\xi_q \in F(R_q)$. Now let J be the intersection of all the J_q 's (q=2, 3, ...) and let R=S/J. Since $n^q \subseteq J_q$, the J_q/J form a base for the topology in R, so that $R=\text{proj Lim } S/J_q$, and it is legitimate to set $\xi=\text{proj Lim } \xi_q\in \hat{F}(R)$. Notice that $t_F\cong t_R$, by choice of R_2 . We claim now that $h_R \to F$ is smooth. Let $p: (A', \eta') \to (A, \eta)$ be a morphism of couples, where p is a small extension, A = A'/I, and let $u: (R, \xi) \to (A, \eta)$ be a given morphism. We have to lift u to a morphism $(R, \xi) \to (A', \eta')$. For this it suffices to find a $u': R \to A'$ such that pu' = u. In fact, we have a transitive action of $t_F \otimes I$ on $F(p)^{-1}(\eta)$ (resp. $h_R(p)^{-1}(\eta)$) by (2.15); thus, given such a u', there exists $\sigma \in t_F \otimes I$ such that $[F(u')(\xi)]^{\sigma} = \eta'$, so that $v' = (u')^{\sigma}$ will satisfy $F(v')(\xi) = \eta'$, pv' = u. Now u factors as $(R, \xi) \to (R_q, \xi_q) \to (A, \eta)$ for some q. Thus it suffices to complete the diagram or equivalently, the diagram $$\Lambda[[T_1,\ldots,T_r]] = S \xrightarrow{w} R_q \times_A A'$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad pr_1$$ $$R_{q+1} \xrightarrow{R_q} R_q$$ where w has been chosen so as to make the square commute. If the small extension pr_1 has a section, then v obviously exists. Otherwise, by 1.4(ii), pr_1 is essential, so w is a surjection. By (H_1) , applied to the projections of $R_q \times_A A'$ on its factors, $\xi_q \in F(R_q)$ lifts back to $R_q \times_A A'$, so ker $w \supseteq J_{q+1}$, by choice of J_{q+1} . Thus w factors through $S/J_{q+1} = R_{q+1}$, and v exists. This completes the proof that (R, ξ) is a hull of F. Conversely, suppose that a pro-couple (R, ξ) is a hull of F. To verify (H_1) , let $p': (A', \eta') \to (A, \eta)$ and $p'': (A'', \eta'') \to (A, \eta)$ be morphisms of couples, where p'' is a surjection. Since $h_R \to F$ is surjective, there exists a $u': (R, \xi) \to (A', \eta')$, and hence by smoothness applied to p'', there exists $u'': (R, \xi) \to (A'', \eta'')$ rendering the following diagram commutative: Therefore $\zeta = F(u' \times u'')(\xi)$ projects onto η' and η'' , so that (H_1) is satisfied. Now suppose $(A, \eta) = (k, e)$, and A'' = k[e]. If ζ_1 and ζ_2 in $F(A' \times_k k[e])$ have the same projections η' and η'' on the factors, then choosing u' as above we get morphisms $$u' \times u_i : (R, \xi) \to (A' \times_k k[\varepsilon], \zeta_i), \qquad i = 1, 2,$$ by smoothness applied to the projection of $A' \times_k k[\varepsilon]$ on A'. Since $t_F \cong t_R$ we have $u_1 = u_2$, so that $\zeta_1 = \zeta_2$, which proves (H_2) . The isomorphism $t_R \cong t_F$ also proves (H_3) . (2) Suppose now that F satisfies conditions (H_1) through (H_4) . By part (1) we know that F has a hull (R, ξ) . We shall prove that $h_R(A) \xrightarrow{\sim} F(A)$ by induction on length A. Consider a small extension $p: A' \to A = A'/I$, and assume that $h_R(A) \xrightarrow{\sim} F(A)$. For each $\eta \in F(A)$, $h_R(p)^{-1}(\eta)$ and $F(p)^{-1}(\eta)$ are both formally principal homogeneous spaces under $t_F \otimes I$ (2.15); since $h_R(A')$ maps onto F(A'), we have $h_R(A') \xrightarrow{\sim} F(A')$, which proves the induction step. The necessity of the four conditions has already been noted. ## 3. Examples. (3.1) The Picard functor. If X is a prescheme, we define Pic $(X) = H^1(X, \mathfrak{D}_X^*)$, the group of isomorphism classes of invertible (i.e., locally free of rank one) sheaves on X. Recall that the group of automorphisms of an invertible sheaf is canonically isomorphic to $H^0(X, \mathfrak{D}_X^*)$. Now suppose X is a prescheme over Spec Λ . We let X_A abbreviate $X \times_{\operatorname{Spec} \Lambda} \operatorname{Spec} A$ for A in C, and set $X_0 = X_k$. If η (resp. L) is an element of Pic (X_A) (resp. an invertible sheaf on X_A) and $A \to B$ is a morphism in C, let $\eta \otimes_A B$ (resp. $L \otimes_A B$) denote the induced element of Pic (X_B) (resp. induced invertible sheaf on X_B). Let ξ_0 be an element of Pic (X_0) fixed once and for all in this discussion, and let P(A) be the subset of Pic (X_A) consisting of those η such that $\eta \otimes_A k = \xi_0$. We claim that P is pro-representable under suitable conditions, namely: Proposition 3.2. Assume - (i) X is flat over Λ , - (ii) $A \xrightarrow{\sim} H^0(X_A, \mathfrak{O}_{X_A})$ for each $A \in \mathbb{C}$, - (iii) $\dim_k H^1(X_0, \mathfrak{O}_{X_0}) < \infty$. Then **P** is pro-representable by a pro-couple (R, ξ) ; furthermore $t_R \cong H^1(X_0, \mathfrak{D}_{X_0})$. Notice that condition (ii) is equivalent to the condition $k \xrightarrow{\sim} H^0(X_0, \mathfrak{D}_{X_0})$, in view of (i). In fact, by flatness, the functor $M \mapsto T(M) = H^0(X, \mathfrak{D}_X \otimes M)$ of Λ modules is left exact. A standard five lemma type of argument then shows that the natural map $M \to T(M)$ is an isomorphism for all M of finite length. For the proof of 3.2 we need two simple lemmas on flatness. LEMMA 3.3. Let A be a ring, J a nilpotent ideal in A, and $u: M \to N$ a homomorphism of A modules, with N flat over A. If $\bar{u}: M/JM \to N/JN$ is an isomorphism, then u is an isomorphism. **Proof.** Let $K = \operatorname{coker} u$ and tensor the exact sequence $$M \rightarrow N \rightarrow K \rightarrow 0$$ with A/J. Then we find K/JK=0, which implies K=0, since J is nilpotent. Thus, if $K'=\ker u$, we get an exact sequence $$0 \rightarrow K'/JK' \rightarrow M/JM \rightarrow N/JN \rightarrow 0$$ by the flatness of N. Hence K'=0, so that u is an isomorphism. LEMMA 3.4. Consider a commutative diagram of compatible ring and module homomorphisms, where $B = A' \times_A A''$, $N = M' \times_M M''$ and M' (resp. M'') is a flat A' (resp. A'') module. Suppose - (i) $A''/J \xrightarrow{\sim} A$, where J is a nilpotent ideal in A'', - (ii) u' (resp. u'') induces $M' \otimes_{A'} A \xrightarrow{\sim} M$ (resp. $M'' \otimes_{A''} A \xrightarrow{\sim} M$). Then N is flat over B and p' (resp. p") induces $N \otimes_B A' \xrightarrow{\sim} M'$ (resp. $N \otimes_B A'' \xrightarrow{\sim} M''$). **Proof.** We shall consider only the case where M' is actually a *free* A' module. (This case actually suffices for our purposes, since a simple application of Lemma 3.3 shows that a flat module over an Artin local ring is free.) Choose a basis $(x_i')_{i \in I}$ for M'. Then by (ii) we find that M is the free module on generators $u'(x_i')$. Choosing $x_i'' \in M''$ such that $u''(x_i'') = u'(x_i')$, we get a map $\sum A''x_i'' \to M''$ of A'' modules, whose reduction modulo the ideal J is an isomorphism. Therefore M'' is free on generators x_i'' (Lemma 3.3) and it follows easily that $N = M' \times_M M''$ is free on generators $x_i' \times x_i''$, and that the projections on the factors induce isomorphisms $$N \otimes_B A' \xrightarrow{\sim} M', N \otimes_B A'' \xrightarrow{\sim} M''$$ as desired. (A similar argument for the case of general M' is given in [4, \S 1, Proposition 2].) COROLLARY 3.6. With the notations as above, let L be a B module which may be inserted in a commutative diagram where q' induces $L \otimes_B A' \xrightarrow{\sim} M'$. Then the canonical morphism $q' \times q'' : L \to N$ = $M' \times_M M''$ is an isomorphism. **Proof.** Apply Lemma 3.3 to the morphism $u=q'\times q''$. REMARK. Lemma 3.4 is false, in general, if neither $A'' \to A$ nor $A' \to A$ is assumed surjective. For example, let A' be a sublocal ring of the local ring A, and map $A_1 = A''$ into A by inclusion. Let a be a *unit* of A such that the ideal $(aA') \cap A'$ of A' is not flat (=free) over A'. (In C_{Λ} one could take $A = k[t]/(t^3)$, $A' = k[t^2]$, a = 1 + t.) Let M' = M'' = A', M = A, u' = inclusion, u'' = multiplication by a^{-1} . Then $B \cong A'$, while $N \cong (aA') \cap A'$ is not flat over B. **Proof of Proposition 3.2.** Let $u': (A', \eta') \to (A, \eta)$, $u'': (A'', \eta'') \to (A, \eta)$ be morphisms of couples, where u'' is a surjection. Let L', L, L'' be corresponding invertible sheaves on $X' = X_{A'}$, $Y = X_A$, and $X'' = X_{A''}$. Then we have morphisms $p': L' \to L$, $p'': L'' \to L$ (of sheaves on the topological space $|X_0|$, compatible with $\mathfrak{D}_{X'} \to \mathfrak{D}_Y$, $\mathfrak{D}_{X''} \to \mathfrak{D}_Y$) which induce isomorphisms $L' \otimes_{A'} A \xrightarrow{\sim} L$, $L'' \otimes_{A''} A \xrightarrow{\sim} L$. Let $B = A' \times_A A''$, and let $Z = X_B$. Then we have a commutative diagram of sheaves on $|X_0|$; thus by Corollary 3.6 there is a canonical isomorphism $\mathfrak{D}_Z \xrightarrow{\sim} \mathfrak{D}_{X'} \times_{\mathfrak{D}_Y} \mathfrak{D}_{X''}$, where $\mathfrak{D}_{X'} \times_{\mathfrak{D}_Y} \mathfrak{D}_{X''}$ is the sheaf of *B*-algebras whose sections over an open U in $|X_0|$ are given by $$\mathfrak{D}_{X'} \times_{\mathfrak{D}_{Y}} \mathfrak{D}_{X''}(U) = \mathfrak{D}_{X'}(U) \times_{\mathfrak{D}_{Y}(U)} \mathfrak{D}_{X''}(U).$$ Hence $N=L'\times_L L''$ is a sheaf on Z, obviously invertible, and the projections of N on L' and L'' induce isomorphisms $N\otimes_B A' \xrightarrow{\sim} L'$, $N\otimes_B A'' \xrightarrow{\sim} L''$ by Lemma 3.4. If M is another invertible sheaf on Z for which there exist isomorphisms $$M \otimes A' \xrightarrow{\sim} L', \quad M \otimes A'' \xrightarrow{\sim} L'',$$ we have morphisms $q': M \to L'$, $q'': M \to L''$ which induce these isomorphisms, and thus a commutative diagram Here θ is the automorphism of L given by the composition $$L \xrightarrow{\sim} L' \otimes_{A'} A \xrightarrow{\sim} M \otimes_{B} A \xrightarrow{\sim} L'' \otimes_{A'} A \xrightarrow{\sim} L.$$ By hypothesis (ii) of 3.2, θ is multiplication by some unit $a \in A$. Lifting a back to a'' in A'', we can change q'' to a''q''; thus we may assume that u'q' = u''q''. It follows from Corollary 3.6 that $M \xrightarrow{\sim} N$. We have therefore proved that $$P(A' \times_A A'') \xrightarrow{\sim} P(A') \times_{P(A)} P(A'')$$ for any surjection $A'' \rightarrow A$ in C. Finally, letting $Y = X_{k[\varepsilon]}$, we have $\mathfrak{O}_Y = \mathfrak{O}_{X_0} \oplus \varepsilon \mathfrak{O}_{X_0}$, so there is a split exact sequence $$0 \longrightarrow \mathfrak{D}_{x_0} \xrightarrow{\exp} \mathfrak{D}_{\mathtt{Y}}^* \longrightarrow \mathfrak{D}_{x_0}^* \longrightarrow 1$$ where exp maps the (additive) sheaf \mathfrak{D}_{X_0} into \mathfrak{D}_Y^* by $\exp(f) = 1 + \varepsilon f$. Hence $$F(k[\varepsilon]) \cong \ker \{H^1(X_0, \mathfrak{O}_{\mathsf{Y}}^*) \to H^1(X_0, \mathfrak{O}_{\mathsf{X}_0}^*)\} \cong H^1(X_0, \mathfrak{O}_{\mathsf{X}_0})$$ which has finite dimension, by assumption. This completes the proof of Proposition 3.2. (3.7) Formal moduli. Let X be a fixed prescheme over k, and $A \in C$. By an (infinitesimal) deformation of X/k to A we mean a product diagram $$X \xrightarrow{i} Y$$ $$\downarrow \qquad \qquad \downarrow \qquad \qquad X \xrightarrow{\sim} Y \times_{\operatorname{Spec} A} \operatorname{Spec} k$$ $$\operatorname{Spec} k \to \operatorname{Spec} A$$ where Y is flat over Spec A and i is (necessarily) a closed immersion. We will suppress the i and refer to Y as a deformation, if no confusion is possible. If Y' is another deformation to A then Y and Y' are isomorphic if there exists a morphism $f: Y \to Y'$ over A which induces the identity on the closed fibre X. (f must then be an isomorphism of preschemes, by Lemma 3.3.) Given the deformation Y over A and a morphism $A \to B$ in C, one has evidently an induced deformation $Y \otimes_A B$ over B; and if Z is a deformation over B, one can define the notion of morphism $Z \to Y$ of deformations. (Notice that there is a one-to-one correspondence between such morphisms and the isomorphisms $Z \xrightarrow{\sim} Y \otimes_A B$ which they induce. Define the deformation functor $D = D_{X/k}$ by setting $$D(A)$$ = Set of isomorphism classes of deformations of X/k to A . We shall find that, in general, D is not pro-representable, but that with rather weak finiteness restrictions on X, D will have a hull. Suppose that $(A', \eta') \to (A, \eta)$ and $(A'', \eta'') \to (A, \eta)$ are morphisms of couples, where $A'' \to A$ is a surjection. Letting X', Y, X'' denote deformations in the class of η' , η , η'' respectively, we have a diagram of deformations. Therefore we can construct, as in the proof of 3.2 the sheaf $\mathfrak{D}_{X'} \times_{\mathfrak{D}_Y} \mathfrak{D}_{X''}$ of $A' \times_A A''$ algebras, and $(|X|, \mathfrak{D}_{X'} \times_{\mathfrak{D}_Y} \mathfrak{D}_{X''})$ defines a prescheme Z flat over $A' \times_A A''$. (The fact that Z is actually a prescheme consists of straightforward checking; in fact it is the *sum* of X' and X'' in the category of preschemes under Y, homeomorphic to Y. Z is flat over $A' \times_A A''$ by Lemma 3.4.) Furthermore the closed immersions $X \to Y \to Z$ give Z a structure of deformation of X/k to $A' \times_A A''$ such that is a commutative diagram of deformations. In particular this shows that $$D(A' \times_A A') \rightarrow D(A') \times_{D(A)} D(A')$$ is surjective, for every surjection $A'' \to A$. That is, condition (H_1) of 2.11 is satisfied. Suppose now that W is another deformation over B, inducing the deformations X' and X''. Then there is a commutative diagram of deformations, where θ is the composition $$Y \xrightarrow{\sim} X' \otimes_{A'} A \xrightarrow{\sim} W \otimes_{B} A \longrightarrow X'' \otimes_{A''} A \xrightarrow{\sim} Y.$$ If θ can be lifted to an automorphism θ' of X', such that $\theta'u'=u'\theta$, then we can replace q' with $q'\theta'$; then we would have an isomorphism $W \xrightarrow{\sim} Z$ by Corollary 3.6. Now if A=k (so that Y=X, $\theta=\mathrm{id}$) θ' certainly exists, so condition (H_2) is satisfied. To consider the condition (H_4) , let $p: (A', \eta') \to (A, \eta)$ be a morphism of couples, where p is a small extension. For each morphism $B \to A$, let $D_{\eta}(B)$ denote as usual the set of $\zeta \in D(B)$ such that $\zeta \otimes_B A = \eta$. Pick a deformation Y' in the class of η' ; then Lemma 3.8. The following are equivalent - (i) $\boldsymbol{D}_{\eta}(A' \times_A A') \xrightarrow{\sim} \boldsymbol{D}_{\eta}(A') \times \boldsymbol{D}_{\eta}(A')$, - (ii) Every automorphism of the deformation $Y = Y' \otimes_{A'} A$ is induced by an automorphism of the deformation Y'. **Proof.** (i) \Rightarrow (ii). Let $u: Y \rightarrow Y'$ be the induced morphism of deformations. If θ is an automorphism of Y, then one can construct deformations Z, W over $A' \times_A A'$ to yield "sum diagrams" of deformations. Since Z and W have isomorphic projections on both factors, there is an isomorphism $\rho: Z \xrightarrow{\sim} W$. ρ induces automorphisms θ_1 and θ_2 of Y', and an automorphism ϕ of Y such that $$\theta_1 u \theta = u \phi, \quad \theta_2 u = u \phi.$$ Therefore $u\theta = \theta_1^{-1}\theta_2 u$ and $\theta_1^{-1}\theta_2$ induces θ . (ii) \Rightarrow (i). In a similar manner, it follows from (ii) that $t_F \otimes I$ ($I = \ker p$) acts freely on η' (i.e., $(\eta')^{\sigma} = \eta'$ implies $\sigma = 0$). Since the action of $t_F \otimes I$ on $\mathbf{D}_{\eta}(A')$ is transitive, it follows that $\mathbf{D}_{\eta}(A')$ is a principal homogeneous space under $t_F \otimes I$, which is equivalent to (i). It should be remarked that the obstruction to lifting θ lies in $t_F \otimes I$ and is often nonzero (see e.g., [4, §4]). Finally it remains to consider the finiteness condition (H_3) . If X is smooth over k (in ancient terminology *absolutely simple*), then Grothendieck has shown in S.G.A. III, Theorem 6.3, that $$t_{\mathbf{D}} \cong H^1(X, \Theta)$$ where Θ is the tangent sheaf of X over k. Thus t_D has finite dimension if X is smooth and proper over k. In general, it is shown in [4] that for any scheme X locally of finite type over k, there is an exact sequence (3.9) $$0 \to H^1(X, T^0) \to t_D \to H^0(X, T^1) \to H^2(X, T^0)$$ where T^0 is the sheaf of derivations of \mathfrak{D}_X , and T^1 is a (coherent) sheaf isomorphic to the sheaf of germs of deformations of X/k to $k[\varepsilon]$. If X is smooth over k, then $T^0 = \Theta$, $T^1 = 0$. Thus, in summary Proposition 3.10. If X is either - (a) proper over k or - (b) affine with only isolated singularities, then **D** has a hull (R, ξ) . (R, ξ) pro-represents **D** if and only if for each small extension $A' \to A$, and each deformation Y' of X/k to A', every automorphism of the deformation $Y' \otimes_{A'} A$ is induced by an automorphism of Y'. (3.11) The automorphism functor. One can formalize the obstructions to prorepresenting D as follows. Let X be a prescheme proper over k, and let (R, ξ) be a hull of the deformation functor D. ξ is represented by a formal prescheme $\mathfrak{X}=\operatorname{inj} \operatorname{Lim} X_n$ over R, where X_n is a deformation of X/k to R/m^n . For each morphism $R \to A$ in C_{Δ} , we get a deformation $\mathfrak{X}_A = \mathfrak{X} \times_{\operatorname{Spec} R} \operatorname{Spec} A$ of X/k to X. We can therefore define a group functor X on the category X of Artin local X-algebras: $A: A \mapsto \text{group of automorphisms of the deformation } \mathfrak{X}_A.$ If $A' \to A$ and $A'' \to A$ are morphisms in C_R with $A'' \to A$ a surjection, and if we put $B = A' \times_A A''$ then we have a canonical isomorphism, respecting the structures as deformations: $$\mathfrak{O}_{\mathfrak{X}_B} \, \cong \, \mathfrak{O}_{X_A} \, \times_{\mathfrak{O}_{X_A}} \mathfrak{O}_{X_{A''}}$$ by Corollary 3.6. It follows easily that (2.12) is an isomorphism, so that (H_1) , (H_2) and (H_4) of Theorem 2.11 are satisfied. Finally the computations of Grothen-dieck in S.G.A. III, §6, show that the tangent space of A is given by $$t_{A/R}\cong H^0(X_0,T^0)$$ where T^0 is, again, the (coherent) sheaf of derivations of \mathfrak{D}_X over k. Thus t_A has finite dimension, and we find: PROPOSITION 3.12. If X is proper over k, the functor A is pro-represented by a complete local R algebra, S, which is a group object in the category dual to \hat{C}_R (i.e., S is a formal Lie group over R). The deformation functor D is pro-representable (by R) if and only if S is a power series ring over R. The last statement follows from Lemma 3.8 and the smoothness criterion of Remark 2.10. In a future paper I will discuss the deformation functor in more detail, with particular attention to the contribution of singular points on X. ## REFERENCES - 1. N. Bourbaki, Algèbre commutative, Chapitre III, Actualités Sci. Ind., 1923. - 2. A. Grothendieck, Séminaire de géomètrie algébrique (S.G.A.), Inst. Hautes Etudes Sci., Paris. - 3. ——, Technique de descent et théoremès d'existence en géomètrie algébrique, II, Séminaire Bourbaki, Exposé 195, 1959/1960. - 4. A. H. M. Levelt, Sur la proreprésentabilité de certains foncteurs en géomètrie algébrique, Notes, Katholieke Universiteit, Nijmegen, Netherlands. - 5. M. Schlessinger, *Infinitesimal deformations of singularities*, Ph.D. Thesis, Harvard Univ., Cambridge, Mass., 1964. PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY