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FUNCTORS OF ARTIN RINGS(') 

BY 

MICHAEL SCHLESSINGER 

0. Introduction. In the investigation of functors on the category of preschemes, 
one is led, by Grothendieck [3], to consider the following situation. Let A be a 
complete noetherian local ring, ,u its maximal ideal, and k = A/l the residue field. 
(In most applications A is k itself, or a ring of Witt vectors.) Let C be the category 
of Artin local A-algebras with residue field k. A covariant functor F from C to 
Sets is called pro-representable if it has the form 

F(A) Homlocal A-a1g.(R, A), A E C, 

where R is a complete local A-algebra such that R/mn is in C, all n. (m is the maximal 
ideal in R.) 

In many cases of interest, F is not pro-representable, but at least one may find 
an R and a morphism Hom(R, -) -- F of functors such that Hom(R, A) -- F(A) 
is surjective for all A in C. If R is chosen suitably "minimal" then R is called a 
"hull" of F; R is then unique up to noncanonical isomorphism. Theorem 2.11, 
?2, gives a criterion for F to have a hull, and also a simple criterion for pro-repre- 
sentability which avoids the use of Grothendieck's techniques of nonflat descent 
[3], in some cases. Grothendieck's program is carried out by Levelt in [4]. ?3 
contains a few geometric applications of these results. 

To avoid awkward terminology, I have used the word "pro-representable" in a 
more restrictive sense than Grothendieck [3] has. He considers the category of 
A-algebras of finite length and- allows R to be a projective limit of such rings. 

The methods of this paper are a simple extension of those used by David Mum- 
ford in a proof (unpublished) of the existence of formal moduli for polarized 
Abelian varieties. I am indebted to Mumford and to John Tate for many valuable 
suggestions. 

1. The category CA. Let A be a complete noetherian local ring, with maximal 
ideal ,u and residue field k = A/v. We define C= CA to be the category of Artinian 
local A-algebras having residue field k. (That is, the " structure morphism" A ->- A 
of such a ring A induces a trivial extension of residue fields.) Morphisms in C are 
local homomorphisms of A-algebras. 

Received by the editors March 8, 1966. 
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Let C= CA be the category of complete noetherian local A-algebras A for which 
A/Mn iS in C, all n. Notice that C is a full subcategory of C. 

If p: A -> B, q: C->- B are morphisms in C, let A XB C denote the ring (in C) 
consisting of all pairs (a, c) with a E A, c E C, for which pa = qc, with coordinatewise 
multiplication and addition. 

For any A in C, we denote by tA*/, or just t *, the "Zariski cotangent space" of 
A over A: 

(1.0) t* = mr/(m +tA) 

where m is the maximal ideal of A. A simple calculation shows that the dual vector 
space, denoted by tA, may be identified with DerA (A, k), the space of A linear 
derivations of A into k. 

LEMMA 1.1. A morphism B ->- A in C is surjective if and only if the induced map 
from t* to t* is surjective. 

Proof. First of all, any A in C is generated, as A module, by the image of A in 
A and the maximal ideal m of A. (For A and A have the same residue field k.) 
Thus the induced map from t/t2 to tLA/(M2 n ,UA) is a surjection. If B ->- A is a 
morphism in C, then denoting the maximal ideal of B by n, we get a commutative 
diagram with exact rows: 

0 > tA/(tA ri M2) > Mr/M2 > t* > 0 

0 > tB/(tB rl n2) > nln2 > t* > 0 

in which the left-hand arrow is a surjection. If the right-hand arrow is also a 
surjection, then the middle arrow is a surjection, so that the induced map on the 
graded rings is a surjection. From this it follows that B -? A is a surjection [1, ?2, 
No. 8, Theorem 1]. 

Conversely, if B ->- A is a surjection, then the induced map on cotangent spaces 
is obviously surjective. 

Let p: B ->- A be a surjection in C. 
DEFINITION 1.2. p is a small extension if kernel p is a nonzero principal ideal (t) 

such that mt = (0), where m is the maximal ideal of B. 
DEFINITION 1.3. p is essential if for any morphism q: C ->- B in C such that pq is 

surjective, it follows that q is surjective. 
From Lemma 1.1 we obtain easily 

LEMMA 1.4. Let p: B ->- A be a surjection in C. Then 
(i) p is essential if and only if the induced map p*: t* ->- t* is an isomorphism. 
(ii) If p is a small extension, then p is not essential if and only if p has a section 

s: A ->- B, with ps= IA. 
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Proof. (i) If p* is an isomorphism, then by Lemma 1.1, p is essential. Conversely 
let T, . ., 4, be a basis of t*, and lift the ti back to elements ti in B. Set 

C = A[tl,. . ., tr] (- B. 

Then p induces a surjection from C to A, so if p is essential, C=B. But then 
dimk tB <r=diMk tC, so tC t= 

(ii) If p has a section s, then s is not surjective, so p is not essential. If p is not 
essential, then the subring C constructed above is a proper subring of B, and 
hence is isomorphic to A, since length (B)= lerngth (A)+1. The isomorphism 
C- A yields the section. 

2. Functors on C. We shall consider only ccvariant functors F, from C to 
Sets, such that F(k) contains just one element. By a couple for F we mean a pair 
(A, e) where A E C and e E F(A). A morphism of couples u: (A, e) -? (A', e') is a 
morphism u: A ->- A' in C such that F(u)(e) = e'. If we extend F to C by the formula 
F(A) =proj Lim F(A/mn) we may speak analogously of pro-couples and morphisms 
of pro-couples. 

For any ring R in C, we set hR(A) = Hom(R, A) to define a functor hR on C. 
Now if F is any functor on C, and R is in C, we have a canonical isomorphism 

F(R) - > Hom(hR, F). 

Namely, let e = proj Lim n be in F(R). Then each u: R -- A factors through 
un: R/mn z4->A for some n, and we assign to u E hR(A) the element F(un)( n) of 
F(A). This sets up the isomorphism. We therefore say that a pro-couple (R, e) for 
F pro-represents F if the morphism hR ->- F induced by e is an isomorphism. 

(2.1) Relation to globalfunctors. Let G be a contravariant functor on the cate- 
gory of preschemes over Spec A, and pick a fixed e E G(Spec k). For A in C, let 
F(A) c G(Spec A) be the set of those e E G(Spec A) such that G(i)(e) = e where i is 
the inclusion of Spec k in Spec A. If G is represented by a prescheme X, then e 
determines a k-rational point x E X, and it is then clear that F(A) is isomorphic to 
HomA(Z.X, x, A). Thus the completion of ?C,x pro-represents F. 

Unfortunately, many interesting functors, for example some "formal moduli" 
functors (?3.7), are not pro-representable. However, one can still look for a 
" universal object" in some sense, for example in the sense of Definition 2.7 below. 

DEFINITION 2.2. A morphism F G of functors is smooth if for any surjection 
B -+ A in C, the morphism 

(*) F(B) F(A) XG(A) G(B) 

is surjective. 
Part (i) of the sorite's below will perhaps motivate this definition. 
REMARKS. (2.3) It is enough to check surjectivity in (*) for small extensions 

B-?A. 
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(2.4) If F -? G is smooth, then F G is surjective, in the sense that F(A) -* G(A) 
A 

is surjective for all A in C (consider the successive quotients A/mn, n = 1, 2,...). 

PROPOSITION 2.5. (i) Let R ->- S be a mcrphism in C. Then hs -- hR is smooth if 
and only if S is a power series ring over R. 

(ii) If F -- G and G -? H are smooth morphisms offunctors, then the composition 
F-- H is smooth. 

(iii) If u: F -? G and v: G -* H are morphisms offunctors such that u is surjective 
and vu is smooth, then v is smooth. 

(iv) If F -? G and H -> G are morphisms offunctors such that F -? G is smooth, 
then F XG H-* His smooth. 

Proof. (i) This is more or less well known (see [3, Theorem 3.1]), but we give 
a proof for the sake of completeness. Suppose hs -? hR is smooth. Let r (resp. s) 
be the maximal ideal in R (resp. S), and pick x1,. .., xn in S which induce a basis 
of t*R=sI(s2+rS). If we set T=R[[X1,. . ., XJ] and denote the maximal ideal of 
T by t, we get a morphism u1: S -- T/(t2 +rT) of local R algebras, obtained by 
mapping xi on the residue class of Xi. By smoothness u1 lifts to u2: S -Tt2, 

thence to U3: S -- T/t3,... etc. Thus we get a u: S -- T which induces an iso- 
morphism of t*R with t*TR (by choice of u1) so that u is a surjection (1.1). Further- 
more, if we choose yi E S such that uyi= Xi, we can set vXi =yi and produce a 
local morphism v: T -? S of R algebras such that uv= 1T; in particular v is an in- 
jection. Clearly v induces a bijection on the cotangent spaces, so v is also a surjec- 
tion (1.1). Hence v is an isomorphism of T=R[[X1,..., Xn]] with S. 

Conversely, if S is a power series ring over R, then it is obvious that hs -- hR is 
smooth. 

The proofs of (ii), (iii), (iv) are completely formal and are left to the reader. 
(2.6) NOTATION. Let k[e], where e2 =0, denote the ring of dual numbers over k. 

For any functor F, the set F(k[e]) is called the tangent space to F, and is denoted by 
tF. It is easy to see that if F= h,, then there is a canonical isomorphism tF tR: 

tR - HomA(R, k[e]). 

Usually tF will have an intrinsic vector space structure (Lemma 2.10). 
DEFINITION 2.7. A pro-couple (R, e) for a functor F is called a pro-representable, 

hull of F, or just a hull of F, if the induced map hR -* F is smooth (2.2), and if in 
addition the induced map tR -> tF of tangent spaces is a bijection. 

(2.8) Notice that if (R, 6) pro-represents F then (R, e) is a hull of F. In this case 
(R, e) is unique up to canonical isomorphism. In general we have only noncanonical 
isomorphism: 

PROPOSITION 2.9. Let (R, e) and (R', e') be hulls of F. Then there exists an iso- 
morphism u: R -- R' such that F(u)(e)= e'. 

Proof. By (2.4) we have morphisms u: (R, e) -> (R', e') and u': (R', e') ->- (R, e), 
both inducing an isomorphism on tangent spaces, by the definition of hull. Thus 
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ulu say, induces an isomorphism on t*, so that u'u is a surjective endomorphism 
of R, by Lemma 1.1. But an easy argument, which we leave to the reader, shows 
that a surjective endomorphism of any noetherian ring is an isomorphism. Thus 
u'u and uu' are isomorphisms and we are done. 

REMARK 2.10. Let (R, e) be a hull of F. Then R is a power series ring over A if 
and only if F transforms surjections B ->- A in C into surjections F(B) -> F(A). In 
fact the stated condition on F is equivalent to the smoothness of the natural mor- 
phism F-- hA. By applying (2.6), (ii) and (iii) to the diagram 

F 

we conclude that hR -* hA is smooth if and only if F-- hA is. Now use 2.5 (i). 

LEMMA 2.10. Suppose F is a functor such that 

F(k[V] Xkk[W]) "'4 F(k[V])xF(k[W]) 

for vector spaces V and W over k, where k[ V] denotes the ring k 0 V of C in which V 
is a square zero ideal. Then F(k[V]), and in particular tF=F(k[e]), has a canonical 
vector space structure, such that F(k[V])-) tF 0 V. 

Proof. k[V] is in fact a "vector space object" in the category C (in which k is 
the final object), for we have a canonical isomorphism 

Hom(A, k[V]) DerA(A, V), A E C. 

The addition map k[V] Xk k[V] -+ k[V] is given by (x, 0)-> x, (0, x) -> x (x E V), 
and scalar multiplication by a E k is given by the endomorphism x 1-> ax (x E V) 
of k[V]. Thus if F commutes with the necessary products, F(k[V]) gets a vector 
space structure. Finally, we identify V with Hom(k[e], k[V]) to get a map 

tF0 V->F(k[VI) 

which is an isomorphism since k[V] is isomorphic to the product of r=dimk V 
copies of k[e]. 

THEOREM 2.1 1. Let F be afunctor from C to Sets such that F(k) = (e) (= one point). 
Let A'-- A and A"'-- A be morphisms in C, and consider the map 

(2.12) F(A' XAA") F(A') XF(A)F(A"). 

Then 
(1) F has a hull if and only if F has properties (H1), (H2), (H3) below: 
(H1) (2.12) is a surjection whenever A" -> A is a small extension (1.2). 
(H2) (2.12) is a bijection when A=k, A" =k[e]. 
(H3) diMk(tF) < oo. 
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(2) F is pro-representable if and only if F has the additional property (H4): 

(H4) F(A' XA A') 4 F(A') XF(A) F(A') 

for any small extension A'--> A. 

Notice that if F is isomorphic to some hR, then (2.12) is an isomorphism for any 

morphisms A'-- A, A"'-- A; that is, the four conditions are trivially necessary for 

pro-representability. 
REMARKS. (2.13) (H2) implies that tF is a vector space by Lemma 2.10. In fact, 

by induction on dimk W we conclude from (H2) that (2.12) is an isomorphism 
when A=k, A"'=k[W]; in particular the hypotheses of 2.10 are satisfied. 

(2.14) By induction on length A'-length A it follows from (H1) that (2.12) is a 

surjection for any surjection A"'-> A. 
(2.15) Condition (H4) may be usefully viewed as follows. For each A in C, and 

each ideal I in A such that mA'I= (0), we have an isomorphism 

(2.16) A XAlIA "> A xkk[I], 

induced by the map (x, y) -> (x, x0 +y-x), where x and y are in A and x0 is the k 
residue of x. Now, given a small extension p: A'--> A with kernel I, we get by 
(H2) and (2.16) a map 

(2.17) F(A') X (tF 0 I) -? F(A') XF(A) F(A') 

which is easily seen to determine, for each 77 E F(A), a group action of tF ( I on 
the subset F(p)- 1(v) of F(A') (provided that subset is not empty). (H1) implies 

that this action is "transitive," while (H4) is precisely the condition that this action 
makes F(p) - 1(vq) a (formally) principal homogeneous space under tF X L Thus, 

in the presence of conditions (H1), (H2), (H3), it is the existence of "fixed points" 

of tF 0 I acting on F(p)- 1(v) which obstruct the pro-representability of F. In 

many applications, where the elements of F(A) are isomorphism classes of geometric 

objects, the existence of such a fixed point -q' E F(p) - 1(v,) is equivalent to the exist- 
ence of an automorphism of an object y in the class of rj which cannot be extended 

to an automorphism of any (or some) object y' in the class of -,'. 

Proof of 2.11. (1) Suppose F satisfies conditions (H1), (H2), (H3). Let tl,. .., tr 

be a dual basis of tF, put S= A[[T1 ..., Tr]], and let n be the maximal ideal of S. 

R will be constructed as the projective limit of successive quotients of S. To begin, 
let R2= S/(n 2+tLS)-k[e] Xk* xkk[e] (r times). By (H2) there exists e2 e F(R2) 
which induces a bijection between tR2 ( Hom(R2, k[e])) and tF. Suppose we have 

found (Rq, eq), where Rq = S/Jq. We seek an ideal Jq +1 in S, minimal among those 

ideals J in S satisfying the conditions (a) nfJq' Jc Jq, (b) eq lifts to S/J. Since the 

set Y of such ideals corresponds to a certain collection of vector subspaces of 

Jq/(nJq), it suffices to show that 9Y is stable under pairwise intersection. But if 
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J and K are in 9, we may enlarge J, say, so that J+ K= Jq, without changing the 
intersection J n K. Then 

S/J xSIJq S/K S/(Jr K) 

so that by (H1) (see (2.14)) we may conclude that J n K is in Y. Let Jq+, be the 
intersection of the members of Y, put Rq,+1 S/Jq +1, and pick any eq +1 E F(Rq+) 
which projects onto eq E F(Rq). 

Now let J be the intersection of all the Jq's (q = 2, 3, .. .) and let R = S/J. Since 
nq Jq, the Jq/J form a base for the topology in R, so that R = proj Lim S/Jq, and 
it is legitimate to set e = proj Lim eq E F(R). Notice that tF tR, by choice of R2. 

We claim now that hR ->- F is smooth. Let p: (A', 9y') (A, -q) be a morphism of 
couples, where p is a small extension, A =A'/I, and let u: (R, e) (A, -q) be a 
given morphism. We have to lift u to a morphism (R, e) ->- (A', 9 For this it 
suffices to find a u': R ->- A' such that pu' = u. In fact, we have a transitive action 
of tF 0 I on F(p)-1(v)) (resp. hR(p) -Q()) by (2.15); thus, given such a u', there 
exists a E tF 0 I such that [F(u')(e)]a=7i', so that v' = (u')a will satisfy F(v')(e)=i)', 

pv' =u. 

Now u factors as (R, e) ->- (Rq, eq) (A, -q) for some q. Thus it suffices to com- 
plete the diagram 

Rq+1_ - - - A' 

Ir IP 
Iq A 

or equivalently, the diagram 

A[[T19 .. gTr]] S rRq XAAI 

| V, ' Pr, 

Rq+1 --. Rq 

where w has been chosen so as to make the square commute. If the small extension 
prl has a section, then v obviously exists. Otherwise, by 1.4(ii), prl is essential, so 
w is a surjection. By (H1), applied to the projections of Rq XA A' on its factors, 
eq f F(Rq) lifts back to Rq XA A', so ker w' Jq+ 1, by choice of Jq+ 1. Thus w factors 

through S/Jq + 1 = Rq + 1, and v exists. This completes the proof that (R, e) is a hull 
of F. 

Conversely, suppose that a pro-couple (R, e) is a hull of F. To verify (H1), let 
p': (A', -q') -? (A, -q) and p": (A", <q') - (A, -) be morphisms of couples, where p" 
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is a surjection. Since hR -* F is surjective, there exists a u': (R, e) (A', -q'), and 
hence by smoothness applied to p", there exists u": (R, e) -* (A", 7') rendering the 
following diagram commutative: 

(A' XA A", I) 

u'I x u"/ 
U' XXU" 

(A', 

p' (A, ~) 

Therefore ?=F(u' x u")(e) projects onto 71' and rj", so that (H1) is satisfied. 
Now suppose (A, 77)=(k, e), and A"=k[e]. If 4, and 42 in F(A' Xk k[e]) have the 

same projections 7' and 4" on the factors, then choosing u' as above we get 
morphisms 

u' x uj: (R, ) ->-(A' Xkk[e], ?i), i = 1, 2, 

by smoothness applied to the projection of A' Xk k[e] on A'. Since tF=- tR we have 

l= u2, so that 1 = 2, which proves (H2). The isomorphism tR-= tF also proves 

(H3). 
(2) Suppose now that F satisfies conditions (H1) through (H4). By part (1) we 

know that F has a hull (R, e). We shall prove that hR(A) - > F(A) by induction 

on length A. Consider a small extension p: A' -> A = A'/I, and assume that 

hR(A) - > F(A). For each 71 E F(A), hR(p) - 1(77) and F(p)- '() are both formally 
principal homogeneous spaces under tF 0 I (2.15); since hR(A') maps onto F(A'), 
we have hR(A') - > F(A'), which proves the induction step. 

The necessity of the four conditions has already been noted. 

3. Examples. 
(3.1) The Picardfunctor. If X is a prescheme, we define Pic (X) = H1(X, d:*), 

the group of isomorphism classes of invertible (i.e., locally free of rank one) sheaves 
on X. Recall that the group of automorphisms of an invertible sheaf is canonically 
isomorphic to HO(X, ?*). 

Now suppose Xis a prescheme over Spec A. We let XA abbreviate X xSpecA Spec A 

for A in C, and set XO = Xk. If -1 (resp. L) is an element of Pic (XA) (resp. an in- 

vertible sheaf on XA) and A -? B is a morphism in C, let 1 ?A B (resp. L OA B) 
denote the induced element of Pic (XB) (resp. induced invertible sheaf on XB). 
Let eo be an element of Pic (X0) fixed once andfor all in this discussion, and let 
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P(A) be the subset of Pic (XA) consisting of those iq such that 7 ?A k = e%. We 
claim that P is pro-representable under suitable conditions, namely: 

PROPOSITION 3.2. Assume 
(i) X is flat over A, 

(ii) A - > HO(XA, ZXA) for each A E C, 
(iii) dimk H1(Xo, ?xo) < Go. 

Then P is pro-representable by a pro-couple (R, e); furthermore tR- H1(X0, )xo). 

Notice that condition (ii) is equivalent to the condition k 4 > H0(XQ, Cx,), 
in view of (i). In fact, by flatness, the functor M -> T(M) = HO(X, ?X 0 M) of A 
modules is left exact. A standard five lemma type of argument then shows that the 
natural map M -> T(M) is an isomorphism for all M of finite length. 

For the proof of 3.2 we need two simple lemmas on flatness. 

LEMMA 3.3. Let A bearing,Janilpotent idealin A, andu: M ->Na homomorphism 
of A modules, with Nflat over A. If iu: M/JM -> N/JN is an isomorphism, then u is 
an isomorphism. 

Proof. Let K=coker u and tensor the exact sequence 

M -->N -->K -> 

with A/J. Then we find K/JK= 0, which implies K= 0, since J is nilpotent. Thus, 
if K' = ker u, we get an exact sequence 

O ->K'IJK' ->MIJM >NIJN -- 

by the flatness of N. Hence K'=0, so that u is an isomorphism. 

LEMMA 3.4. Consider a commutative diagram 

N- 

B A 

\Al' 

of compatible ring and module homomorphisms, where B =A' XA A', N=M' XM M" 
and M' (resp. M') is a flat A' (resp. A") module. Suppose 

(i) A/'J -- > A, where J is a nilpotent ideal in A', 

(ii) u' (resp. u') induces M' ?A' A - > M (resp. M"' A" A > M). 
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Then N is flat over B and p' (resp. p") induces NOB A' > M' (resp. 
NOBA" - > M"). 

Proof. We shall consider only the case where M' is actually a free A' module. 
(This case actually suffices for our purposes, since a simple application of Lemma 
3.3 shows that a flat module over an Artin local ring is free.) Choose a basis 

(X{)i c I for M'. Then by (ii) we find that M is the free module on generators u'(x'). 
Choosing xi' E M" such that u"(x') = u'(x'), we get a map E A"x" --> M" of A" 
modules, whose reduction modulo the ideal J is an isomorphism. Therefore M" 
is free on generators xX (Lemma 3.3) and it follows easily that N= M' XM M" is 
free on generators x x xx, and that the projections on the factors induce iso- 
morphisms 

NOBA' - -> M', NOBA" 1e"> M" 

as desired. (A similar argument for the case of general M' is given in [4, ?1, 
Proposition 2].) 

COROLLARY 3.6. With the notations as above, let L be a B module which may be 
inserted in a commutative diagram 

L 

q q 

M 

where q' induces L ?B A' - > M'. Then the canonical morphism q' x q": L -* N 
=M' XM M" is an isomorphism. 

Proof. Apply Lemma 3.3 to the morphism u =q' x q". 
REMARK. Lemma 3.4 is false, in general, if neither A" -* A nor A'-* A is assumed 

surjective. For example, let A' be a sublocal ring of the local ring A, and map 
A1 =A" into A by inclusion. Let a be a unit of A such that the ideal (aA') r' A' of 
A' is not flat (=free) over A'. (In CA one could take A=k[t]/(t3), A'=k[t2], 
a=1+t.) Let M'=M"=A', M=A, u'=inclusion, u"=multiplication by a-1. 
Then B A'" while N-(aA') r' A' is not flat over B. 

Proof of Proposition 3.2. Let u': (A', 7') (A, 71), u": (A", 71) (A, 71) be mor- 
phisms of couples, where u" is a surjection. Let L', L, L" be corresponding invertible 
sheaves on X' = XA', Y= XA, and X"= XA". Then we have morphisms p': L' L, 
p": L" -* L (of sheaves on the topological space I XI, compatible with , -S-, 

-x Oy) which induce isomorphisms L'?A' A A ? L, L" ?A A A > L. 
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Let B=A' XA A", and let Z= XB. Then we have a commutative diagram 

cz 

Cy 

of sheaves on JX0j; thus by Corollary 3.6 there is a canonical isomorphism 
CZ > ?)x Cy x,, where ?)x xzy Ox is the sheaf of B-algebras whose sec- 
tions over an open U in IXoI are given by 

ZX, X y ?Xt!(U) = zx'(U) X>y(U) ?Xtt(U). 

Hence N=L' XLL'" is a sheaf on Z, obviously invertible, and the projections of 
N on L' and L" induce isomorphisms N (B A' -4> L', N OBA" A' > L" by 

Lemma 3.4. 
If M is another invertible sheaf on Z for which there exist isomorphisms 

M&A IA'. > LI, M&A A" > Lit, 

we have morphisms q': M -* L', q": M -* L" which induce these isomorphisms, 
and thus a commutative diagram 

M 

SL 8 eL L 

Here 0 is the automorphism of L given by the composition 

L L' OA, A - M(DBAA - L" A - > L. 

By hypothesis (ii) of 3.2, 0 is multiplication by some unit a E A. Lifting a back to 
a" in A", we can change q" to a"q"; thus we may assume that u'q' = u"q". It follows 
from Corollary 3.6 that M 4 > N. We have therefore proved that 

P(A' XA A") --> P(A') XP(A) P(A") 

for any surjection A" -? A in C. 
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Finally, letting Y= Xk[S], we have ?y= Ox. (? eOx., so there is a split exact 
sequence 

~~ ~exp ~ - ? > OX0 
c * DO * 

where exp maps the (additive) sheaf Oxo into D* by exp (f) =1+ ef. Hence 

F(k[e]) ker {H1(Xo, ?*) -* H1(Xo, ?4)} H1(Xo, ?x) 
which has finite dimension, by assumption. This completes the proof of Proposi- 
tion 3.2. 

(3.7) Formal moduli. Let X be a fixed prescheme over k, and A E C. By an 
(infinitesimal) deformation of X/k to A we mean a product diagram 

i 
x > y 

t 1 X > Y XSpecA Spec k 

Spec k -* Spec A 

where Y is flat over Spec A and i is (necessarily) a closed immersion. We will 
suppress the i and refer to Y as a deformation, if no confusion is possible. If Y' is 
another deformation to A then Y and Y' are isomorphic if there exists a morphism 
f: Y-* Y' over A which induces the identity on the closed fibre X. (f must then 
be an isomorphism of preschemes, by Lemma 3.3.) Given the deformation Y over 
A and a morphism A -* B in C, one has evidently an induced deformation Y ?A B 
over B; and if Z is a deformation over B, one can define the notion of morphism 
Z -* Y of deformations. (Notice that there is a one-to-one correspondence between 
such morphisms and the isomorphisms Z 4 > Y ?A B which they induce. 

Define the deformation functor D = DX,k by setting 

D(A) = Set of isomorphism classes of deformations of X/k to A. 

We shall find that, in general, D is not pro-representable, but that with rather weak 
finiteness restrictions on X, D will have a hull. 

Suppose that (A', 1')- (A, 71) and (A", 71') - (A, 7) are morphisms of couples, 
where A" -* A is a surjection. Letting X', Y, X" denote deformations in the class 
of 71', 71, 71' respectively, we have a diagram 

X' X" 

U U" 

y 

of deformations. Therefore we can construct, as in the proof of 3.2 the sheaf 
OX X y OX, of A' XA A' algebras, and (IXj, Ox x cy Ox) defines a prescheme Z 
flat over A' XA A". (The fact that Z is actually a prescheme consists of straight- 
forward checking; in fact it is the sum of X' and X" in the category of preschemes 



220 MICHAEL SCHLESSINGER [February 

under Y, homeomorphic to Y. Z is flat over A' XA A" by Lemma 3.4.) Furthermore 
the closed immersions X -* Y -* Z give Z a structure of deformation of X/k to 

A' XA A" such that 

z 

p p 

Y 

is a commutative diagram of deformations. In particular this shows that 

D(A' XA A') -* D(A') XD(A) D(A') 

is surjective, for every surjection A" -* A. That is, condition (H1) of 2.11 is satisfied. 
Suppose now that W is another deformation over B, inducing the deformations 

w 
q ~~~~~~qi 

X' Xy" 

X' and X". Then there is a commutative diagram of deformations, where 0 is 
the composition 

Y -"> X' A, A- W0BA > X" A, A > Y. 

If 0 can be lifted to an automorphism 0' of X', such that 0'u'= u'0, then we can 

replace q' with q'O'; then we would have an isomorphism W - > Z by Corollary 
3.6. Now if A =k (so that Y= X, 0=id) 0' certainly exists, so condition (H2) is 
satisfied. 

To consider the condition (H), let p: (A', 71') -* (A, 71) be a morphism of couples, 
where p is a small extension. For each morphism B -* A, let D,(B) denote as usual 
the set of 4 E D(B) such that 4 ?B A = 1. Pick a deformation Y' in the class of 7'; 

then 

LEMMA 3.8. The following are equivalent 
(i) DJ(A' XA A') -> D,(A') xD,(A') 

(ii) Every automorphism of the deformation Y= Y' ?A, A is induced by an auto- 
morphism of the deformation Y'. 

Proof. (i) => (ii). Let u: Y-* Y' be the induced morphism of deformations. 
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If 0 is an automorphism of Y, then one can construct deformations Z, W over 
A' XA A' to yield " sum diagrams" 

z w 

Y' Y' y/ 1~~~~ y 

y y 

of deformations. Since Z and W have isomorphic projections on both factors, 
there is an isomorphism p: Z - > W. p induces automorphisms 01 and 02 of 
Y', and an automorphism b of Y such that 

OlUo = Uk, 02U = Ub. 

Therefore u=0oL102u and 01-102 induces 0. 
(ii) => (i). In a similar manner, it follows from (ii) that tF 0 I (I= ker p) acts 

freely on 71' (i.e., (7')f=7' implies g=O). Since the action of tF 0 I on D,(A') is 
transitive, it follows that D,(A') is a principal homogeneous space under tF 0 I, 

which is equivalent to (i). 
It should be remarked that the obstruction to lifting 0 lies in tF 0 I and is often 

nonzero (see e.g., [4, ?4]). 
Finally it remains to consider the finiteness condition (H3). If X is smooth over k 

(in ancient terminology absolutely simple), then Grothendieck has shown in 

S.G.A. III, Theorem 6.3, that 
tD H1(X, ?) 

where 0 is the tangent sheaf of X over k. Thus tD has finite dimension if X is 

smooth and proper over k. In general, it is shown in [4] that for any scheme X 

locally of finite type over k, there is an exact sequence 

(3.9) 0 -* H1(X, TO) - tD - HO(X, T1) -* H2(X, TO) 

where TO is the sheaf of derivations of 0, and T1 is a (coherent) sheaf isomorphic 
to the sheaf of germs of deformations of X/k to k[e]. If X is smooth over k, then 

TO= ?, T1= 0. Thus, in summary 

PROPOSITION 3.10. If X is either 
(a) proper over k or 
(b) affine with only isolated singularities, 

then D has a hull (R, e). (R, e) pro-represents D if and only iffor each small extension 
A' -* A, and each deformation Y' of X/k to A', every automorphism of the deformation 
Y' (DA' A is induced by an automorphism of Y'. 
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(3.11) The automorphism functor. One can formalize the obstructions to pro- 
representing D as follows. Let X be a prescheme proper over k, and let (R, e) be a 
hull of the deformation functor D. e is represented by a formal prescheme 

= inj Lim X,, over R, where Xn is a deformation of X/k to R/mn. For each mor- 
phism R -* A in CA, we get a deformation XA = X Xspec R Spec A of X/k to A. 
We can therefore define a group functor A on the category CR of Artin local 
R-algebras: 

A: A H-* group of automorphisms of the deformation XA. 

If A' -* A and A" -* A are morphisms in CR with A" -* A a surjection, and if 
we put B= A' XA A" then we have a canonical isomorphism, respecting the struc- 
tures as deformations: 

XB - ?XA XC?X A ?)XA 

by Corollary 3.6. It follows easily that (2.12) is an isomorphism, so that (H1), 
(H2) and (H4) of Theorem 2.1 1 are satisfied. Finally the computations of Grothen- 
dieck in S.G.A. III, ?6, show that the tangent space of A is given by 

tAIR HO(X0, TO) 

where TO is, again, the (coherent) sheaf of derivations of Ox over k. Thus tA has 
finite dimension, and we find: 

PROPOSITION 3.12. If X is proper over k, the functor A is pro-represented by a 
complete local R algebra, S, which is a group object in the category dual to CR (i.e., S 
is a formal Lie group over R). The deformation functor D is pro-representable (by R) 
if and only if S is a power series ring over R. 

The last statement follows from Lemma 3.8 and the smoothness criterion of 
Remark 2.10. 

In a future paper I will discuss the deformation functor in more detail, with 
particular attention to the contribution of singular points on X. 
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