
SIMPLICIAL COMMUTATIVE RINGS, I

AKHIL MATHEW

1. Introduction

Classical algebraic geometry begins with the category Algk/,red of finitely generated, reduced al-
gebras over an algebraically closed field k. The opposite category is the category of affine algebraic
varieties, and general algebraic varieties are obtained by gluing affine ones in a similar way as man-
ifolds are obtained from charts. After Grothendieck, algebraic geometry begins with the category of
affine schemes: the opposite category of the category CR of all commutative rings. In particular,
one allows nilpotents, and one allows rings which are very large. For the purposes of DAG, we want
to make things a bit more homotopyish, and work with slightly fancier rings.

A natural “homotopical” replacement is provided by the category of topological commutative rings.
To avoid point-set technicalities, it is convenient to work in simplicial commutative rings. Simplicial
sets are a nicer category than topological spaces (they are presentable and are specifiable by first-order
data).

An alternate motivation for the use of simplicial methods is provided by the following. One of the
examples in which one makes a category more homotopyish comes from homological algebra: given
an abelian category A, one can form the category Ch(A) of chain complexes in A. We might try to
generalize this procedure to the category of commutative rings. Commutative rings do not form an
abelian category, but we might recall that the Dold-Kan correspondence furnishes an equivalence

DK : Ch≥0(A) ' Fun(∆op,A)

between nonnegatively graded chain complexes in A and simplicial objects in A. This suggests that
the use of simplicial methods might allow a way of making a category more homotopyish.

Definition 1. A simplicial commutative ring A• is a simplicial object in the category of commutative
rings.

What does this mean? Essentially, we have a simplicial set A•, but we also have the structure of
a commutative ring on each An, n ∈ Z≥0, such that the simplicial operators are ring-homomorphisms
with respect to this. A morphism of simplicial commutative rings is just a morphism of simplicial sets
which in each degree is a ring-homomorphism. This yields a category SCR of simplicial commutative
rings.

Example. A rather uninteresting example of a simplicial commutative ring is the constant simplicial
commutative ring at a given ring R. This gives a fully faithful imbedding

CR ↪→ SCR.

We would expect ordinary rings to imbed inside “brave new” rings, so this is not too surprising.
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Example. Given any simplicial set X• and any ring R, we can form the simplicial commutative ring
R[X•], which in each degree is the polynomial algebra R[{Xn}].

Observe that the singular complex of a topological commutative ring is a simplicial commutative
ring, and the geometric realization of a simplicial commutative ring is a topological commutative ring.

2. Homotopy groups

Every simplicial commutative ring is a simplicial group, so it is in particular a Kan complex. Let
R• ∈ SCR. Then, because R• is a Kan complex, we can talk about its homotopy groups relative to
a basepoint ∗ ∈ R0, which we take to be the zero element. A priori, π0R• is only a set, but the fact
that R• is a simplicial abelian group identifies π∗R• with the homology of the associated normalized
chain complex (by the Dold-Kan correspondence). Consequently, all the homotopy groups are abelian
groups. However, there is additional structure:

Proposition 1. The homotopy groups π∗R• form a graded commutative ring.

We consequently get a functor

π∗ : SCR→ GrCommAlg≥0,

where GrCommAlg≥0 is the category of nonnegatively graded commutative rings.

Proof. Let Sn be the simplicial sphere. Given based maps f, g : Sn → R• representing classes in

πnR•, the sum f +g ∈ πnR• can be be represented by the pointwise sum f +g : Sn → R•×R•
+→ R•,

by the Eckmann-Hilton argument. Consequently, all the homotopy groups are abelian groups. Given
f : Sn → R•, g : Sm → R•, we define their product in πn+mR• to be

f ∧ g : Sm ∧ Sn → R• ∧R• → R•,

where the product operation factors through the smash product R• ∧ R•. This is well-defined, and
is easily seen to satisfy the relevant conditions. Graded-commutativity follows from the fact that the
involution Sm ∧ Sn → Sn ∧ Sm creates a sign (−1)nm. �

For instance, π0R• can be obtained as the ring

R0/(d1 − d0)R1.

A quick way to see that (d1 − d0)R1 is an ideal is to observe that the degeneracy map s0 : R0 → R1

is a section of both d1 and d0, and all these maps are ring-homomorphisms.
We want to think of the relationship between simplicial commutative rings and ordinary rings as

being something like the relationship between ordinary rings and ordinary reduced rings. Just as
Grothendieck-style algebraic geometry allows one to add in nilpotents, derived algebraic geometry
offers a fancier version of nilpotents: higher homotopy groups. The analog of the canonical map
R→ Rred valid for any ring R is the map

R• → π0R

for any simplicial ring. Here π0R is regarded as a constant simplicial ring. In fact, this map is just
a special case of the map X• → π0X valid for any simplicial set X• (π0 is the right adjoint for the
inclusion of sets in simplicial sets).

Example. We might think of the relationship between R• and π0R• as a homotopyish version of
killing nilpotents; the later talks will make this precise.
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Example. Simplicial fields are constant. In fact, the map R• → π0R is surjective in each degree, so
if the Rn are fields, then these maps are isomorphisms.1

There is an analogous theory of simplicial modules M• over a simplicial ring R•. Such an M• is
equipped with a simplicial map

R• ×M• →M•

satisfying all the usual axioms degreewise. Using similar reasoning, we find that there is a natural
map

π∗R× π∗M → π∗M,

which makes π∗M a graded module over the graded ring π∗M . In particular, π0M is a π0R-module.

3. The homotopy theory

We said we wanted to do homotopy theory. In fact, we have a good notion of simplicial homotopy
in SCR (unlike CR): the category SCR comes with an enrichment over the category of simplicial
sets. In other words, SCR is a simplicial category : between any two objects there is a simplicial set
(rather than simply a set) of maps.

In any category C with coproducts, the category Fun(∆op, C) of simplicial objects in C comes with
an enrichment over the category of simplicial sets: one defines the tensor K• ⊗X• for K ∈ SSet and
X• ∈ Fun(∆op, C) via

(K ⊗X)n =
⊔
Kn

Xn.

The simplicial structure on SCR is a special case of this. So, given a simplicial set K• and a simplicial
commutative ring R•, we define

(K• ⊗R•)n =
⊗
Kn

Rn.

Given X•, Y• ∈ SCR, we define the simplicial set hom(X•, Y•) ∈ SSet via

hom(X•, Y•)n = homSCR(K• ⊗X•, Y•).

In a similar way, we can define the structure of a simplicial category on the category of simplicial
modules over R• ∈ SCR.

This automatically gives us a notion of simplicial homotopy: a simplicial homotopy between two
morphisms

f, g : X• ⇒ Y•

as a morphism

∆1 ⊗X• → Y•

which restricts to f on ∆{0} ⊗X• and to g on ∆{1} ⊗X•.
In fact, SCR comes with a simplicial model structure that enables us to say more.

(1) A fibration in SCR is just a fibration of underlying simplicial sets.
(2) A weak equivalence in SCR is just a weak equivalence of underlying simplicial sets (that is,

an equivalence on π∗).
(3) The cofibrations are determined.

1I learned this from Mathoverflow: http://mathoverflow.net/questions/45273/

what-facts-in-commutative-algebra-fail-miserably-for-simplicial-commutative-rings.

http://mathoverflow.net/questions/45273/what-facts-in-commutative-algebra-fail-miserably-for-simplicial-commutative-rings
http://mathoverflow.net/questions/45273/what-facts-in-commutative-algebra-fail-miserably-for-simplicial-commutative-rings
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The existence of the model structure is not obvious. It can be established by a process called “transfer”
which was already implicit in Quillen’s work. The setup is as follows. One has an adjunction:

F,U : SSet→ SCR

where F is the free functor and U is the forgetful functor. We already have a nice model structure
(“homotopy theory”) on SSet; the strategy is to “transfer” this to SCR in such a way that the above
adjunction is actually a Quillen adjunction. Since U has to preserve fibrations and weak equivalences,
this gives us a natural definition of those in SCR. This process applies more generally to algebraic
structures in a model category.

In any event, one has:

Theorem 1 (Quillen). There exists a cofibrantly generated simplicial model structure on the category
SCR of simplicial commutative rings with the above weak equivalences and fibrations. One obtains a
Quillen adjunction between SSet and SCR from the free-forgetful adjunction.

In fact, SCR is a monoidal model category under the tensor product, and it is proper.

The proof of Quillen’s theorem requires some work, and it will not be given. Nonetheless, we will
indicate a basic outline. The theorem can be deduced from the following more general result.

Theorem 2. Let A,B be complete, cocomplete categories together with an adjunction F,G : A → B.
Suppose that:

(1) A is a cofibrantly generated model category.
(2) B admits a path object factorization and a fibrant replacement functor.
(3) A and B are presentable categories (or satisfy some weaker cardinality hypotheses), and G is

an accessible functor. (This is to be able to run the small object argument.)

Then there is a model structure on B such that a morphism f in B is a fibration or weak equivalence
if and only if Gf is so.

This result is a machine for transferring model structures along right adjoint functors, and can be
used to put model structures on simplicial groups, simplicial associative rings, simplicial Lie algebras,
and so forth, by transferring the model structure from simplicial sets along a free-forgetful adjunction.

Outline of proof. Define a map f to be a fibration or weak equivalence in B if and only if Gf is one
in A. Define a map f in B to be a cofibration precisely if it has the left lifting property with respect
to the fibrations which are also weak equivalences.

Choose generating sets I, J of cofibrations and trivial cofibrations in A; then FI and FJ are chosen
as generating cofibrations and trivial cofibrations in B. It is “formal” to see the lifting axioms are
satisfied (by adjointness). The factorization axioms require more work, and it’s also not obvious
that FJ actually represents a set of generating trivial cofibrations (or even that the FJ are weak
equivalences).

The key strategy to make this work is to show that F preserves trivial cofibrations, by arguing
that F (j) for a trivial cofibration j has the left lifting property with respect to all fibrations. One
can show, using the second axiom, that any morphism in B with the left lifting property against all
fibrations is a weak equivalence. �

Repeating the same arguments, for any ring R, we can form a model category SCRR/ of simplicial
R-algebras. This is simply the model structure obtained from the model category SCR on the
undercategory.
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Example. Let X• be a simplicial set and consider the free simplicial commutative ring Z[X•]. We’d
like to compute the homotopy groups of this simplicial ring. Observe that the homotopy type of this
(by the discussion of the model structure, since Z[] is a left Quillen functor) only depends on the
homotopy type of X• and that the image of this functor lands in the cofibrant-fibrant objects.

We observe that Z[X•] is the symmetric algebra (dimensionwise) of the free simplicial abelian group
ZX• As a simplicial abelian group, there is a weak equivalence

ZX• '
⊕

K(Hn(X•), n),

where K(Hn(X•), n) is a simplicial abelian group with one homotopy group in dimension n, equal to
Hn(X•) (i.e., an Eilenberg-MacLane space). In particular, if we assume that the symmetric algebra
is independent of the homotopy type, we find

Z[X•] = Sym•ZX• '
⊗

Sym•K(Hn(X•), n).

We should be careful, though: here we have to make sure that K(Hn(X•), n) is taken to be a
cofibrant simplicial abelian group, for each n, because ZX•. In other words, we are really taking the
derived symmetric algebra functor. To be more precise, then we have a weak equivalence in SCR

Z[X•] '
⊗

LSym•K(Hn(X•), n).

In principle, we can completely work out the homotopy groups of Z[X•] once we know LSymk

and the Künneth formula. Unfortunately, the former is somewhat complicated: see the discus-
sion at http://mathoverflow.net/questions/97035/derived-functors-of-symmetric-powers/

97225#97225. In [4], a small portion of LSymk is computed.

The existence of the model structure enables us to define a notion of simplicial resolution analogous
to the classical notion of a projective resolution in homological algebra.

Definition 2. Let S be an R-algebra. Then a simplicial resolution for S is a cofibrant replacement
for S in the category of simplicial R-algebras. In other words, it is the data of a trivial fibration of
simplicial algebras

X• → S

such that X• is a cofibrant simplicial R-algebra.

The existence of the model structure enables us to see very efficiently that X• is unique up to
homotopy.

Example. In view of the model structure, we can define the derived functor of a left Quillen functor

F : SCR → A for a model category A. Namely, we set LF (X•) = F (X̃•) for X̃• a cofibrant
replacement of X•. This is well-defined up to homotopy.

In a similar vein, we can use the monoidal model structure on SCR to define a (symmetric)
monoidal structure on the homotopy category given by the derived tensor product. Given A• ∈ SCR
and A• → B•, A• → C•, we define the derived tensor product as

B•
L
⊗A• C• = B̃• ⊗A• C̃•

where B̃•, C̃• are cofibrant replacements for A• → B•, A• → C•.

Let us try to elucidate what the condition “cofibrant” means. Let A•A
′
• be a cofibration of simplicial

sets (that is, a monomorphism). Then Z[A•]→ Z[A′•] is a cofibration of simplicial commutative rings,
since the free functor is a left Quillen functor SSet→ SCR. If we were working in SCRR/, we would

http://mathoverflow.net/questions/97035/derived-functors-of-symmetric-powers/97225#97225
http://mathoverflow.net/questions/97035/derived-functors-of-symmetric-powers/97225#97225
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take R[A•] → R[A′•] instead. Moreover, as A• → A′• ranges over a set of generating cofibrations for
simplicial sets (for instance, ∂∆[n]• → ∆[n]•), we get a set of generating cofibrations for SCRR/, by
the argument sketched above. It follows that if we have a map R → X• of simplicial commutative
rings, then to say that it is a cofibration implies that each Xn is a retract of a polynomial algebra on
R—in particular, each Xn is a (formally) smooth R-algebra. This smoothness condition suggests that
a cofibrant replacement of S might be the appropriate place to apply the relative Kähler differential
functor (if one makes the analogy between “smooth” and “projective”), and in a later talk this will
be discussed further.

Example. Let R be a ring, and let S• be a simplicial R-algebra. We say that S• is free if there exist
subsets Cn ⊂ Sn such that:

(1) Sn is R-free (as an algebra) on the set Cn.
(2) For any φ : [m] � [n], we have φ∗Cn ⊂ Cm.

In this case, the inclusion R→ S• is a cofibration in SCR. In fact, S• can be obtained by “attaching
cells” from R for each of the generators in the Cn (well, at least the nondegenerate ones), upwards on
n.

Let R• ∈ SCR. Then the category ModR• of simplicial R•-modules has been defined. Then ModR•

comes with a simplicial enrichment: given a module M• and a simplicial set K•, one defines the tensor
K• ⊗M• = Z[K•]⊗Z M•. It is, in a similar manner, a simplicial model category :

(1) The fibrations are the underlying fibrations of simplicial sets (in particular, every simplicial
module is fibrant).

(2) The weak equivalences are the weak equivalences of underlying simplicial sets (equivalently,
the quasi-isomorphisms of chain complexes).

(3) The cofibrations are determined.

We can obtain this model structure from transfer along the free-forgetful adjunction from simplicial
abelian groups, for instance, or from simplicial sets.

4. Examples of simplicial resolutions

The model structure on SCR (or on SCRR/) enables us to see that we can always find a simplicial
resolution for any ring (or R-algebra). Nonetheless, for the purposes of the cotangent complex (or
otherwise), we might want to explicitly be able to compute one. Here are two inefficient ways of doing
this, one efficient one, and a general fact.

We start with a general finiteness result, which implies, for instance, finiteness properties of the
cotangent complex.

Proposition 2. Let R be a noetherian ring, S a finitely generated R-algebra. Then there exists a
simplicial resolution X• → S where X• is a cofibrant (even free) simplicial R-algebra such that Xn is
finitely generated over R for each n.

Proof. We will build up the resolution in stages. Namely, we will find approximations X
(1)
• , X

(2)
• , . . .

in SCRR//S such that each X
(i)
• → X

(i+1)
• is a cofibration and such that X(i) has a homotopy type

closer to that of S as i increases.
Choose a surjection R[x1, . . . , xn] � S. Let X

(0)
• be the simplicial R-algebra which is constant at

R[x1, . . . , xn]; then X
(0)
• is cofibrant, and one has a map

X
(0)
• → S
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which is a surjection in degree zero. Let I ⊂ X
(0)
0 be the kernel; it is a finitely generated ideal by

Hilbert’s basis theorem. Choose generators x1, . . . , xm and for each 1 ≤ j ≤ m, a based simplicial

map φj : ∂∆[1]• → X
(0)
• sending the non-basepoint to xj . These defines maps of simplcial R-algebras

R[∂∆[1]•]→ X
(0)
• .

Let X(1) be the pushout

X
(0)
• ⊗⊗m

j=1 R[∂∆[1]]• ⊗
m⊗
j=1

R[∆[1]]•.

In other words, we have attached 1-cells to annihilate I. It is easy to see that π0X
(1)
• = S, and that

X
(0)
• ↪→ X

(1)
• is a cofibration.

Inductively, suppose that i is given, and that we have a sequence

X
(0)
• ↪→ X

(1)
• ↪→ . . . ↪→ X

(i)
• → S

of cofibrations in SCRR/, such that πjX
(i) → S is an isomorphism for j ≤ i, and such that everything

is finitely generated. We want to extend this chain a step further (to make a better approximation).
Let I ⊂ πi+1X

(i) be the kernel of πi+1X
(i) → S; choose generators x1, . . . , xm represented by maps

∂∆[i+ 1]• → X(i). As before, form a pushout

X(i+1) = X(i) ⊗⊗m
j=1 R[∂∆[i+1]•]

m⊗
j=1

R[∆[i+ 1]•].

If we iterate this, we find (since homotopy groups are compatible with filtered colimits) that there is a
cofibrant simplicial R-algebra X• with a surjective map to S which is an isomorphism on all homotopy
groups. Note that any surjection of simplicial abelian groups is a Kan fibration; consequently, X•
is the requisite simplicial resolution. As X• was built by attaching a finite number of cells in each
dimension, we get the finiteness condition as well. �

Next, we will write down a few examples of simplicial resolutions.

Example (The bar construction). We begin with a general bit of category theory. Let C be any
category, and T : C → C a monad. Let X ∈ C be a T -algebra. Then we can form a simplicial object
B(T,X)• ∈ Fun(∆op, C) (called the bar construction). We have

B(T,X)n = Tn+1X

and the simplicial operators come from the action of T on itself as well as the action of T on X. If one
thinks of T as a monoid object in the functor category, this becomes more transparent: it is analogous
to the construction of the (simplicial) universal space EG• of a group G. There is a map of simplicial
T -algebras

B(T,X)• → X

(where X is the constant simplicial object). This map comes from applying the action of T to
X repeatedly. By “formal” arguments (direct combinatorics), this map is a simplicial homotopy
equivalence in Fun(∆op, C) (and thus, often a weak equivalence in Fun(∆op, T − alg)). In particular,
since T is often a “free” functor in some sense, the bar construction provides a way to obtain a
simplicial resolution of an object.

For instance, let C be the category of sets, and let T be the functor which sends a set S to the
underlying set of the ring R[S]. The algebras over this monad are precisely the R-algebras. Given an
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R-algebra R′, one gets a simplicial R-algebra B(T,R′)• together with a weak equivalence of simplicial
algebras

B(T,R′)• → R′.

In fact, B(T,R′)• is cofibrant as a simplicial R-algebra, so we have obtained an explicit (if extremely
inefficient) choice of simplicial resolution of R′. To see that it is cofibrant, observe that it is free as a
simplicial R-algebra in the previous sense. In each dimension, B(T,R′)n is defined as a free algebra
on a (large) set of generators; the simplicial operators that raise degree send generators to generators.

We give a (very) slightly more economical illustration of the bar construction.

Example. We have a monad F on the category of R-modules which sends any R-module M to the free
R-algebra FM = Sym•M on R′ (considered as an R-module). This monad comes from the adjunction
between R-modules and R-algebras. Note that F takes values in the category of R-algebras, and an
algebra over the monad F is just an R-algebra. As in the previous example, we can associate to any
R-algebra S a simplicial R-algebra B(F, S)• together with a morphism of simplicial R-algebras

B(F, S)• → S

which is a weak equivalence of simplicial R-algebras (in fact, a homotopy equivalence of simplicial
R-modules). If S is projective as an R-module, then B(F, S)• is free and hence cofibrant.

Example (Killing a polynomial generator). The real reason we wanted to introduce the bar con-
struction was for this example, from Iyengar’s paper in [1]. Consider a ring R and the map R[y]→ R
sending y 7→ 0. We can use the bar construction to obtain a simplicial resolution of R as an R[y]-
algebra.

The strategy is to consider the monad T = R[y] ⊗ − in the category of R-algebras, and observe
that an algebra over T is an R[y]-algebra. We can thus form a simplicial R[y]-algebra B(T,R)• and
a map

B(T,R)• → R

which is a weak equivalence. As a simplicial object, we have B(T,R)n = R[y]⊗(n+1), and the face
simplicial operators come either from the multiplication R[y]⊗2 → R[y] or the map R[y]→ R, y 7→ 0.
This is cofibrant as a simplicial R[y]-algebra (indeed, free) and we have a simplicial resolution.

Very concretely, we see that elements of B(T,R)n can be represented as sums of R-linear formal
symbols

g[f1|f2| . . . |fn], g, f1, . . . , fn ∈ R[y].

(The g is the R[y]-algebra structure on B(T,R)n = Tn+1R: it comes from the action of T on the very
left.) We can express the face and degeneracy operators as follows:

(1) For 0 ≤ i ≤ n, we have

di(gf1[f2| . . . |fn]) =


gf1[f2| . . . |fn] if i = 0

g[f1|f2| . . . |fifi+1| . . . |fn] if 0 < i < n

gφ(fn)[f1|f2 . . . |fn−1] if i = n

where φ : R[y]→ R is the homomorphism, y 7→ 0.
(2) For 0 ≤ i ≤ n, we have

si(g[f1|f2| . . . |fn]) = g[f1|f2| . . . |fi|1|fi+1| . . . fn].
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We have a map B(T,R)• → R; this sends a bar g[f1|f2| . . . |fn] to φ(g)φ(f1) . . . φ(fn) ∈ R.
As an application of this factorization R[y] ↪→ B(T,R)• � R, we can compute the homotopy

groups of the derived tensor product

R
L
⊗R[y] R.

This is represented by the simplicial commutative ring X• = B(T,R)• ⊗R[y] R. Elements of Xn are
represented by “bars:” they are sums of R-linear symbols g[f1| . . . |fn] where each fi ∈ R[y] and g ∈ R;
the simplicial operators are given by the same formulas as before.

Let us compute the homotopy groups of X•, or the homology of the Moore complex. Here X0 = R,
X1 = R[y], and the boundary map (for the Moore complex) is given by ∂([f ]) = 0. So π0X• = R
(which is not surprising). Here X2 consists of R-linear combinations of symbols [f1|f2], f1, f2 ∈ R[y]
and the differential is given by

∂[f1|f2] = φ(f1)[f2]− [f1f2] + φ(f2)[f1].

So in particular

∂[yn|ym] =


−[yn+m] if n,m > 0

0 if one of n,m is 0

1 if n = m = 0

.

In particular, the cokernel of ∂ is precisely a free module of rank one (corresponding to [y]). So
π1(X•) = π0(X•) = R.

It gets a little messy after that, but the higher homotopy groups are all zero. This isn’t, of course,

too surprising: the homotopy groups π∗(R
L
⊗R[y] R) are just the groups Tor

R[y]
i (R,R), which can be

computed in terms of the resolution 0→ R[y]
y→ R[y]→ 0 of the R[y]-module R.

In general, given a simplicial commutative ring R•, and maps R• → S•, R• → S′•, there is a spectral
sequence

Torπ∗R•
p,q (π∗S•, π∗S

′
•) =⇒ πp+q(S•

L
⊗R• S

′
•).

See [5].
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