
Math 207 First Midterm Solutions

December 12, 2006

1. (a) Let d ∈ Z such that d > 1 and define a relation on Z by a ∼ b
if there exists k ∈ Z such that a − b = kd. Show that ∼ is an
equivalence relation, that addition and multiplication are well defined
on equivalence classes, and that the set of equivalence classes forms
a commutative ring with 1. We shall denote this ring as Z/(d).

Proof. First, we must show that ∼ is an equivalence relation.

i. (Reflexive) ∀a ∈ Z, a− a = 0 = 0 ∗ d so a ∼ a.
ii. (Symmetric) If a ∼ b, then a− b = kd ⇒ b− a = (−k)d.
iii. (Transitive) If a ∼ b and b ∼ c then a− b = k1d and b− c = k2d

so a− c = (a− b) + (b− c) = k1d + k2d = (k1 + k2)d.

Next, we show that + and ∗ are well defined. Let a ∼ a′, b ∼ b′.
Then ∃k1, k2 ∈ Z such that a = a′ + k1d, b = b′ + k2d. Thus we have

(a + b)− (a′ + b′) = ((a′ + k1d) + (b′ + k2d))− (a′ + b′)
= (k1 + k2)d

and so (a + b) ∼ (a′ + b′). Similarly,

ab− a′b′ = ((a′ + k1d) ∗ (b′ + k2d))− (a′b′)
= (a′b′ + a′k2d + k1db + k1k2d

2)− a′b′

= (a′k2 + k1b + k1k2d)d

so ab ∼ a′b′. Thus multiplication is well defined. Let us denote the
class of a by [a] We have shown [a]+[b] = [a+b] and [a][b] = [ab]. We
inherit the properties of a ring from the corresponding properties of
Z. For example, [−a] + [a] = [−a + a] = [0], [1][a] = [1 ∗ a] = [a], and
[a]([b] + [c]) = [a][b + c] = [a(b + c)] = [ab + ac] = [a][b] + [a][c].

(b) For what values of d is Z/(d) an integral domain?

Proof. Z/(d) is an integral domain if and only if d is a prime. If
d is composite, then d = ab with 1 < a, b < d, a, b ∈ Z, and so
[a][b] = [d] = [0] = [0][b] but [a] 6= 0 and [b] 6= 0. Conversely, if d is
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prime and [a][b] = [a][c], then [a(b − c)] = [0], so a(b − c) = dk for
some k ∈ Z Since d is prime, one of a and (b− c) must be a multiple
of d, and hence either [a] = 0 or [b] = [c].

(c) Show that Z/(d) can never be made into an ordered integral domain.

Proof. Assume that we could find some ordering < for Z/(d). As
proved in class, [0] < [1]. Therefore, [n] < [n + 1] for all n ∈ Z.
In particular, [0] < [1] < . . . < [d − 1] < [d], hence by transitivity,
[0] < [d] = [0]. This violates trichotomy, so no such ordering can
exist.

2. Show that any finite integral domain is a field.

Proof. Let R be a finite integral domain with elements {a1, . . . , an}. If
ai 6= 0, consider the set aiR = {aia1, aia2, . . . aian} = {air | r ∈ R}.
All n elements of this set are distinct elements of R because if aib = aic,
then b = c, so aiR = R. In particular, 1 ∈ aiR, so for some r ∈ R,
air = rai = 1. Thus, each ai has a multiplicative inverse, and R is a
field.

3. (a) Let (ai)i∈N and (bi)i∈N be Cauchy sequences with ai, bi ∈ Q. Define
ci = aibi. Prove that (ci)i∈N is a Cauchy sequence.

Proof. First, we need a lemma.

Lemma 1. Every Cauchy sequence is bounded.

Proof. Let (ai) be a Cauchy sequence. Then there exists N ∈ N such
that for all m,n > N , |am − an| < 1. By the triangle inequality,
|ai| ≤ max(|a1| , . . . |aN | , |aN+1|+ 1) ∀i ∈ N.

Let M be a bound for both (ai) and (bi), so that |ai| < M and
|bi| < M for all i ∈ N. Let ε > 0. Then there exist N1, N2 ∈ N such
that |am − an| < ε/2M for all m,n > N1 and |bm − bn| < ε/2M for
all m,n > N2. Let N > max(N1, N2). If m,n > N , then

|ambm − anbn| = |ambm − ambn + ambn − anbn|
= |am(bm − bn) + bn(am − an)|
≤ |am(bm − bn)|+ |bn(am − an)|
= |am| |bm − bn|+ |bn| |am − an|
< M(ε/2M) + M(ε/2M) = ε.

Thus, (aibi) is a Cauchy sequence.
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(b) Let (ai)i∈N and (bi)i∈N be sequences with ai, bi ∈ Q, bi 6= 0. Suppose
that there exist a, b ∈ Q, b 6= 0 such that (ai) converges to a and (bi)
converges to b. Define ci = ai

bi
. Prove that (ci) converges to a

b .

Proof. A similar calculation to the one in the previous solution shows that∣∣∣∣ai

bi
− a

b

∣∣∣∣ ≤ |ai − a| |b|+ |a| |b− bi|
|bi| |b|

.

Let ε > 0. Let N1 ∈ N such that |b− bn| < |b| /2 for all n > N1, let
N2 ∈ N such that |a− an| < ε |b| /4, and if |a| 6= 0, let N3 ∈ N such that
|b− bn| < ε(|b|2 / |a|)/4 for all n > N3. Let N > max(N1, N2, N3). Note
that if n > N1, then |bn| > |b| /2. Then for all n > N , we have that∣∣∣∣an

bn
− a

b

∣∣∣∣ ≤ |an − a| |b|+ |a| |b− bn|
|bn| |b|

<
(ε |b| /4) |b|+ |a| ε(|b|2 / |a|)/4

|b|2 /2
= 2(ε/4 + ε/4) = ε.

Thus, (ci) converges to a/b.

4. Let K = {a + b
√

2 | a, b ∈ Q}. Show that K is an ordered subfield of R in
which the least upper bound property does not hold.

Proof. Let a, b, c, d ∈ Q. Then (a + b
√

2) + (c + d
√

2) = (a + c) + (b +
d)
√

2 ∈ K and (a + b
√

2)(c + d
√

2) = (ac + 2bd) + (ad + bc)
√

2 ∈ K so
K is closed under addition and multiplication. Since K ⊂ R, addition
and multiplication are associative, commutative, and distributive. Since
0, 1 ∈ Q, we have that 0, 1 ∈ K. If a, b ∈ Q, then −a,−b ∈ Q, and since
(a + b

√
2) + (−a + −b

√
2) = 0, K has additive inverses. Thus K is a

commutative ring with 1. If a, b ∈ Q are not both zero, then since
√

2 is
irrational, a

a2−2b2 , −b
a2−2b2 ∈ Q, and since (a+b

√
2)( a

a2−2b2−
b

a2−2b2

√
2) = 1,

K has multiplicative inverses. Thus K is a field.

Since K is a field and a subset of R, K is a subfield of R, and since R
is ordered, we can restrict the ordering to K to turn K into an ordered
subfield. If a subset A ⊂ K has a least upper bound, then since K is dense
in R, A has the same least upper bound when viewed as a subset of R.
Thus, if we let A = {x ∈ K | x < π}, then sup(A) = π 6∈ K, and thus K
does not satisfy the least upper bound property.
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