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Math 207 First Midterm Solutions

December 12, 2006

Let d € Z such that d > 1 and define a relation on Z by a ~ b
if there exists k € Z such that @ — b = kd. Show that ~ is an
equivalence relation, that addition and multiplication are well defined
on equivalence classes, and that the set of equivalence classes forms
a commutative ring with 1. We shall denote this ring as Z/(d).

Proof. First, we must show that ~ is an equivalence relation.
i. (Reflexive)Va € Z,a—a=0=0%d so a ~ a.
ii. (Symmetric) If a ~ b, then a —b = kd = b —a = (—k)d.
ili. (Transitive) If a ~ b and b ~ ¢ then a —b = kid and b — ¢ = kod
soa—c=(a—>b)+ (b—c)=kid+ kod = (k1 + k2)d.

Next, we show that + and * are well defined. Let a ~ a’,b ~ V.
Then 3kq, ko € Z such that a = a’ + k1d,b = b’ + kod. Thus we have

(a+b)—(d+b) = (¢ +kid)+ ¥ + kad)) — (a' + V)
= (kl + kz)d

and so (a + b) ~ (a/ +V'). Similarly,

ab—a't = ((d +kid)* (V' + kad)) — (a'b")
= (a’b’ + a/k‘gd + k1db + k‘lk‘ng) —a't
— (ks + kb + kkad)d

so ab ~ a'b’. Thus multiplication is well defined. Let us denote the
class of a by [a] We have shown [a]+ [b] = [a+b] and [a][b] = [ab]. We
inherit the properties of a ring from the corresponding properties of
Z. For example, [—a] + [a] = [—a+a] = [0], [1][a] = [1 *a] = [a], and
[a]([b] + [c]) = [al[b+ c] = [a(b+ ¢)] = [ab+ ac] = [a][b] + [a][c]. O

For what values of d is Z/(d) an integral domain?

Proof. Z/(d) is an integral domain if and only if d is a prime. If
d is composite, then d = ab with 1 < a,b < d, a,b € Z, and so
[a][b] = [d] = [0] = [0][b] but [a] # 0 and [b] # 0. Conversely, if d is
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prime and [a][b] = [a][c], then [a(b — ¢)] = [0], so a(b — ¢) = dk for
some k € Z Since d is prime, one of a and (b — ¢) must be a multiple
of d, and hence either [a] = 0 or [b] = [¢]. O

(¢) Show that Z/(d) can never be made into an ordered integral domain.

Proof. Assume that we could find some ordering < for Z/(d). As
proved in class, [0] < [1]. Therefore, [n] < [n + 1] for all n € Z.
In particular, [0] < [1] < ... < [d — 1] < [d], hence by transitivity,
[0] < [d] = [0]. This violates trichotomy, so no such ordering can
exist. O

Show that any finite integral domain is a field.

Proof. Let R be a finite integral domain with elements {a1,...,a,}. If
a; # 0, consider the set a;R = {a;a1,a;a2,...a;a,} = {a;r | r € R}.
All n elements of this set are distinct elements of R because if a;b = a;c,
then b = ¢, so a;R = R. In particular, 1 € a;R, so for some r € R,

a;r = ra; = 1. Thus, each a; has a multiplicative inverse, and R is a
field. O

(a) Let (a;)ien and (b;);en be Cauchy sequences with a;,b; € Q. Define
¢; = a;b;. Prove that (¢;);en is a Cauchy sequence.

Proof. First, we need a lemma.

Lemma 1. Every Cauchy sequence is bounded.

Proof. Let (a;) be a Cauchy sequence. Then there exists N € N such
that for all m,n > N, |a,, —a,| < 1. By the triangle inequality,
la;| < max(lai],...|an|,lan+1] +1) Vi e N. O

Let M be a bound for both (a;) and (b;), so that |a;| < M and
|b;] < M for all : € N. Let € > 0. Then there exist N1, N € N such
that |am, — an| < €/2M for all m,n > Ny and |b,, — b,| < €/2M for
all m,n > Ny. Let N > max(Ny, Na). If m,n > N, then

|@mbm — anbn| = |ambm — amby + amb, — anby|
|am (b — bn) + br(am — an)|
< am (b — bp)| + [bn(am — an)|
lam| bm — bn| + |bn| lam — an
< M(e/2M)+ M(e/2M) = e.

Thus, (a;b;) is a Cauchy sequence. O



(b) Let (a;)ien and (b;);en be sequences with a,, b; € Q, b; # 0. Suppose
that there exist a,b € Q, b # 0 such that (a;) converges to a and (b;)
converges to b. Define ¢; = §*. Prove that (¢;) converges to 3.

Proof. A similar calculation to the one in the previous solution shows that

%)

_a| _ lai —al[b +a] b — bi|
b; b

- [bi [6]

Let € > 0. Let N; € N such that |b—b,| < |b|/2 for all n > Ny, let
Ny € N such that |a —a,| < €|b| /4, and if |a| # 0, let N3 € N such that
|b—b,| < €(|b]*/|al)/4 for all n > N3. Let N > max(Ny, Na, N3). Note
that if n > Ny, then |b,| > |b| /2. Then for all n > N, we have that

an _a |an — al [b] + |af [b — ba|
bn b T |n | (0]
(¢ || /4) [b] + |al (b / |a]) /4
bl /2
= 2(e/d+¢/4) =e.
Thus, (¢;) converges to a/b. O

. Let K = {a+bv2|a,b e Q}. Show that K is an ordered subfield of R in
which the least upper bound property does not hold.

Proof. Let a,b,c,d € Q. Then (a + bv2) + (c+dv2) = (a+c¢)+ (b+
d)V2 € K and (a + bv/2)(c + dv/2) = (ac + 2bd) + (ad + bc)v/2 € K so
K is closed under addition and multiplication. Since K C R, addition
and multiplication are associative, commutative, and distributive. Since
0,1 € Q, we have that 0,1 € K. If a,b € Q, then —a, —b € Q, and since
(a + bv2) + (—a + —bv/2) = 0, K has additive inverses. Thus K is a
commutative ring with 1. If a,b € Q are not both zero, then since v/2 is
irrational, <5, ﬁ € Q, and since (a+bﬂ)(ﬁfﬁ\/§) =1,
K has multiplicative inverses. Thus K is a field.

Since K is a field and a subset of R, K is a subfield of R, and since R
is ordered, we can restrict the ordering to K to turn K into an ordered
subfield. If a subset A C K has a least upper bound, then since K is dense
in R, A has the same least upper bound when viewed as a subset of R.
Thus, if we let A = {x € K | z < «w}, then sup(4) = 7 ¢ K, and thus K
does not satisfy the least upper bound property.

O



