

Math 207 First Midterm Solutions

December 12, 2006

1. (a) Let $d \in \mathbb{Z}$ such that $d > 1$ and define a relation on \mathbb{Z} by $a \sim b$ if there exists $k \in \mathbb{Z}$ such that $a - b = kd$. Show that \sim is an equivalence relation, that addition and multiplication are well defined on equivalence classes, and that the set of equivalence classes forms a commutative ring with 1. We shall denote this ring as $\mathbb{Z}/(d)$.

Proof. First, we must show that \sim is an equivalence relation.

- i. (*Reflexive*) $\forall a \in \mathbb{Z}, a - a = 0 = 0 * d$ so $a \sim a$.
- ii. (*Symmetric*) If $a \sim b$, then $a - b = kd \Rightarrow b - a = (-k)d$.
- iii. (*Transitive*) If $a \sim b$ and $b \sim c$ then $a - b = k_1d$ and $b - c = k_2d$
so $a - c = (a - b) + (b - c) = k_1d + k_2d = (k_1 + k_2)d$.

Next, we show that $+$ and $*$ are well defined. Let $a \sim a', b \sim b'$. Then $\exists k_1, k_2 \in \mathbb{Z}$ such that $a = a' + k_1d, b = b' + k_2d$. Thus we have

$$\begin{aligned} (a + b) - (a' + b') &= ((a' + k_1d) + (b' + k_2d)) - (a' + b') \\ &= (k_1 + k_2)d \end{aligned}$$

and so $(a + b) \sim (a' + b')$. Similarly,

$$\begin{aligned} ab - a'b' &= ((a' + k_1d) * (b' + k_2d)) - (a'b') \\ &= (a'b' + a'k_2d + k_1db + k_1k_2d^2) - a'b' \\ &= (a'k_2 + k_1b + k_1k_2d)d \end{aligned}$$

so $ab \sim a'b'$. Thus multiplication is well defined. Let us denote the class of a by $[a]$. We have shown $[a] + [b] = [a + b]$ and $[a][b] = [ab]$. We inherit the properties of a ring from the corresponding properties of \mathbb{Z} . For example, $[-a] + [a] = [-a + a] = [0]$, $[1][a] = [1 * a] = [a]$, and $[a]([b] + [c]) = [a][b + c] = [a(b + c)] = [ab + ac] = [a][b] + [a][c]$. \square

- (b) For what values of d is $\mathbb{Z}/(d)$ an integral domain?

Proof. $\mathbb{Z}/(d)$ is an integral domain if and only if d is a prime. If d is composite, then $d = ab$ with $1 < a, b < d$, $a, b \in \mathbb{Z}$, and so $[a][b] = [d] = [0] = [0][b]$ but $[a] \neq 0$ and $[b] \neq 0$. Conversely, if d is

prime and $[a][b] = [a][c]$, then $[a(b - c)] = [0]$, so $a(b - c) = dk$ for some $k \in \mathbb{Z}$. Since d is prime, one of a and $(b - c)$ must be a multiple of d , and hence either $[a] = 0$ or $[b] = [c]$. \square

- (c) Show that $\mathbb{Z}/(d)$ can never be made into an ordered integral domain.

Proof. Assume that we could find some ordering $<$ for $\mathbb{Z}/(d)$. As proved in class, $[0] < [1]$. Therefore, $[n] < [n + 1]$ for all $n \in \mathbb{Z}$. In particular, $[0] < [1] < \dots < [d - 1] < [d]$, hence by transitivity, $[0] < [d] = [0]$. This violates trichotomy, so no such ordering can exist. \square

2. Show that any finite integral domain is a field.

Proof. Let R be a finite integral domain with elements $\{a_1, \dots, a_n\}$. If $a_i \neq 0$, consider the set $a_iR = \{a_i a_1, a_i a_2, \dots, a_i a_n\} = \{a_i r \mid r \in R\}$. All n elements of this set are distinct elements of R because if $a_i b = a_i c$, then $b = c$, so $a_i R = R$. In particular, $1 \in a_i R$, so for some $r \in R$, $a_i r = r a_i = 1$. Thus, each a_i has a multiplicative inverse, and R is a field. \square

3. (a) Let $(a_i)_{i \in \mathbb{N}}$ and $(b_i)_{i \in \mathbb{N}}$ be Cauchy sequences with $a_i, b_i \in \mathbb{Q}$. Define $c_i = a_i b_i$. Prove that $(c_i)_{i \in \mathbb{N}}$ is a Cauchy sequence.

Proof. First, we need a lemma.

Lemma 1. *Every Cauchy sequence is bounded.*

Proof. Let (a_i) be a Cauchy sequence. Then there exists $N \in \mathbb{N}$ such that for all $m, n > N$, $|a_m - a_n| < 1$. By the triangle inequality, $|a_i| \leq \max(|a_1|, \dots, |a_N|, |a_{N+1}| + 1) \forall i \in \mathbb{N}$. \square

Let M be a bound for both (a_i) and (b_i) , so that $|a_i| < M$ and $|b_i| < M$ for all $i \in \mathbb{N}$. Let $\epsilon > 0$. Then there exist $N_1, N_2 \in \mathbb{N}$ such that $|a_m - a_n| < \epsilon/2M$ for all $m, n > N_1$ and $|b_m - b_n| < \epsilon/2M$ for all $m, n > N_2$. Let $N > \max(N_1, N_2)$. If $m, n > N$, then

$$\begin{aligned} |a_m b_m - a_n b_n| &= |a_m b_m - a_m b_n + a_m b_n - a_n b_n| \\ &= |a_m(b_m - b_n) + b_n(a_m - a_n)| \\ &\leq |a_m(b_m - b_n)| + |b_n(a_m - a_n)| \\ &= |a_m| |b_m - b_n| + |b_n| |a_m - a_n| \\ &< M(\epsilon/2M) + M(\epsilon/2M) = \epsilon. \end{aligned}$$

Thus, $(a_i b_i)$ is a Cauchy sequence. \square

- (b) Let $(a_i)_{i \in \mathbb{N}}$ and $(b_i)_{i \in \mathbb{N}}$ be sequences with $a_i, b_i \in \mathbb{Q}$, $b_i \neq 0$. Suppose that there exist $a, b \in \mathbb{Q}$, $b \neq 0$ such that (a_i) converges to a and (b_i) converges to b . Define $c_i = \frac{a_i}{b_i}$. Prove that (c_i) converges to $\frac{a}{b}$.

Proof. A similar calculation to the one in the previous solution shows that

$$\left| \frac{a_i}{b_i} - \frac{a}{b} \right| \leq \frac{|a_i - a| |b| + |a| |b - b_i|}{|b_i| |b|}.$$

Let $\epsilon > 0$. Let $N_1 \in \mathbb{N}$ such that $|b - b_n| < |b|/2$ for all $n > N_1$, let $N_2 \in \mathbb{N}$ such that $|a - a_n| < \epsilon |b|/4$, and if $|a| \neq 0$, let $N_3 \in \mathbb{N}$ such that $|b - b_n| < \epsilon(|b|^2/|a|)/4$ for all $n > N_3$. Let $N > \max(N_1, N_2, N_3)$. Note that if $n > N_1$, then $|b_n| > |b|/2$. Then for all $n > N$, we have that

$$\begin{aligned} \left| \frac{a_n}{b_n} - \frac{a}{b} \right| &\leq \frac{|a_n - a| |b| + |a| |b - b_n|}{|b_n| |b|} \\ &< \frac{(\epsilon |b|/4) |b| + |a| \epsilon(|b|^2/|a|)/4}{|b|^2/2} \\ &= 2(\epsilon/4 + \epsilon/4) = \epsilon. \end{aligned}$$

Thus, (c_i) converges to a/b . □

4. Let $K = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$. Show that K is an ordered subfield of \mathbb{R} in which the least upper bound property does not hold.

Proof. Let $a, b, c, d \in \mathbb{Q}$. Then $(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \in K$ and $(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in K$ so K is closed under addition and multiplication. Since $K \subset \mathbb{R}$, addition and multiplication are associative, commutative, and distributive. Since $0, 1 \in \mathbb{Q}$, we have that $0, 1 \in K$. If $a, b \in \mathbb{Q}$, then $-a, -b \in \mathbb{Q}$, and since $(a + b\sqrt{2}) + (-a + -b\sqrt{2}) = 0$, K has additive inverses. Thus K is a commutative ring with 1. If $a, b \in \mathbb{Q}$ are not both zero, then since $\sqrt{2}$ is irrational, $\frac{a}{a^2 - 2b^2}, \frac{-b}{a^2 - 2b^2} \in \mathbb{Q}$, and since $(a + b\sqrt{2})(\frac{a}{a^2 - 2b^2} - \frac{b}{a^2 - 2b^2}\sqrt{2}) = 1$, K has multiplicative inverses. Thus K is a field.

Since K is a field and a subset of \mathbb{R} , K is a subfield of \mathbb{R} , and since \mathbb{R} is ordered, we can restrict the ordering to K to turn K into an ordered subfield. If a subset $A \subset K$ has a least upper bound, then since K is dense in \mathbb{R} , A has the same least upper bound when viewed as a subset of \mathbb{R} . Thus, if we let $A = \{x \in K \mid x < \pi\}$, then $\sup(A) = \pi \notin K$, and thus K does not satisfy the least upper bound property. □