Math 207 Final Examination Solutions

December 6, 2006

Note: the wording of some of the problems has been changed to make them
clearer, as a few were misinterpreted.

1. (20 points) Let (X, d) be a metric space, and let F' be either R or C in the
usual metric. Let (BC(X,F),d’) be the space of bounded and continuous
functions from X to F' with metric d'(f,g) = sup,cx [f(x) — g(x)|. Show
that (BC(X,F),d’) is complete.

Proof. Let f, be a Cauchy sequence. Let € > 0. Then, there exists some
N € N such that d’(f,,f,) < € for all m,n > N. Then for any g € X, we
have [f,(z0) = fm(20)| < sup,ex [fn(z) = fm(2)], s0 (fn(z0)) is @ Cauchy
sequence. Since F' is complete, (f,(z)) converges for every € X. For
each z € X, let f(z) = lim,, f,(z).

Let € > 0. Then there exist N € N such that d'(f,,fn) < €/2 for all
m,n > N. Let x € X. Then for sufficiently large m, |f(x) — fi(z)| < €/2.
Therefore | f(z) — fu(2)| < [f(2) = fm(@)| + [ fm(2) — fu(2)| <e. Since x
was arbitrary, we have that |f(z) — f,(x)| < e for all x € X and n > N.
We have that for some n € N, |f,(z) — f(z)| <1 for all z € X. Therefore
|f(z)| < |fn(z)] + 1. Since f, is bounded, so is f.

Let € > 0, and let 9 € X. From above, there is some n € N such
that for all © € X, |f(z) — fu(z)| < €/3. Since f, is continuous, there
is some § > 0 such that if d(x,z) < 0, then |f,(z) — fn(z0)| < €/3.
Then, if d(z, 20) < 8, | F(x) — £(@0)] < [£(2) — fa(@)| + |fa(w) — fu(zo)| +
| fr(x0) — f(xo)| = €/3+€¢/3+¢/3 =€ Thus f is continuous.

Therefore, f € BC(X, F) and lim f,, = f, hence every Cauchy sequence
has a limit, so BO(X, F) is complete.

O
2. (20 points) Let p be a prime, and let Q, be the p-adic numbers. Let

{an}nen be a sequence in Q,. Let b, = > _, ar. Show that {b,} con-
verges if and only if lima; = 0.



Proof. If lima,, = 0, then for any ¢ > 0, there exists N € N such
that |an|p < ¢ whenever n > N. Then if n > m > N, |bn—bm|p =
|Z?=m+1 ai|p < max({|am+1l, - |an|,}) < e Thus (by) is Cauchy and
thus converges.

Conversely, if (b,,) converges, lim a,, = lim(b,,+1 —b,,) = lim b, 1 —limb,, =
0. O

. (20 points) Let p be a prime and r a rational number. Prove that the
p-adic expansion of r is repeating.

Proof. By multiplying r by a power of p (which will not change periodicity
of the expansion of r, we may assume that r € R,.

Let r = a/b in lowest terms with b > 0. We wish to find (a;) such that
I -
5= 2
i=0

To begin, we choose ag € {0,1,...,p—1} such that ‘% — ao}p =la-— ba0|p <
1, and at stage n we choose a,, € {0,1,...,p—1} such that |[a — b (>}

1=

P
p~™. We have that p" | a—b (Z?;ol ai), and hence ¢, = (a —b (Z?:Ol ai)) /™
is an integer for all n.

By construction, a,, is chosen so that [a — b (37, ai)l, = [p"cn — banp™|, =

" |en — ban\p < p~ ", that is |¢, — ban|p < 1. Thus, ¢, uniquely deter-
mines a,, and since ¢, and a,, determine ¢, 1, if (¢,,) ever repeats a value,
then (c¢,) is periodic, and thus (a,) is periodic.

Since ¢, 11 = (cpp™ — banp™)/p" T = (¢, — bay,)/p, we have that |c,11| <
b+ |cn| /p < max(cy, pbfpl), and thus that (c,) takes on only finitely many
values. Therefore, some value must be repeated. Therefore, (a,) is peri-
odic. O

Proof. Here is a sketch of a second solution. There are only finitely many
congruence classes in Z/(b), so there exist m,n > 0 such that p™ = p”
(mod b). Since GCD(p,b) = 1, p is a unit in Z/(b) and thus p"~™ = 1
(mod b), and hence we can find ¢, k € N with bc = p* — 1.

ac

First, assume that r is positive. Write r = ¢ = P p,%l
m € NU{0} and 0 < d < p* —1. Since pk_'iil =" dp*", we have that p,jfl
has a periodic p-adic expansion on length k. Since m is positive, it clearly
has a finite expansion (just it’s base p expression). The proof (from the
homework) that the sum of two periodic decimal numbers is periodic then

shows that r is periodic.

If r is negative, let 3" a;p® be the expansion of —r. Then 1+ ((p — 1) — a;)p’
is an expansion of of r. O

=m — where




4.

5.

(20 points) Let p be a prime. Prove that in Q,, every bounded infinite
sequence has a convergent subsequence (i.e., Q, satisfies the Bolzano-
Weirstrass property).

Proof. If either an infinite number of a; are zero or if for every n, there
exists a nonzero a; with |ai|p < p~", then there exists a subsequence
converging to 0. Assume otherwise. Then there is some n with |a;| > p™
for all ¢ € N. Since (a;) is bounded, there is also an m with |a;| < p™ for
all 1 € N. Thus, |a;| takes on only finitely many values, and so we can find
some n € Z such that |a;| = p~™ infinitely often. Let by be one of those
elements.

Since p"U,, can be written as p disjoint cosets of p™gp, an infinite number
of a; must occur in one of these cosets. Let by be one of these elements
occurring after b;. In general, b; will lay in some coset of p" i1, which
in turn can be broken into p cosets of p"T1gp, one of which will contain
an infinite number of a;. Let b;;; be an sequence member in this coset
occurring after b;. Since |b; — bi+1‘p < p~i+mn, (b,) is Cauchy, and thus
a convergent subsequence. O

(a) (10 points) Find the 5-adic expansion of 3/7.

Proof. The algorithm from problem 3 can be used to show that 3/7 =
44-5%(042%5+ 1552 +4x5% +2x54 +3%5%) +57 % (04+2+5+ 1552 +4 %
53 +2%5%+3%55%)+.... Alternately, 3/7 =1—4/7 = 1-8928/(5°—1)
and 8928 has expansion 3 + 0% 5 + 2% 52 + 1% 5% + 4 % 5% + 2% 55,
and the expansion follows. O

(b) (10 points) In Q5, what rational number has the 5-adic expansion
1+3%5+1%5243%5%+

Proof. Let x = 1+3x5+1%52+3%5%+.... Then 5%z = z— (1+3%5),
so 24x = —16 or x = —2/3 O

(a) (10 points) Let n € N and 1 < p,q < oo. Show that there exist
¢, C' > 0 such that edp(x,y) < dq(x,y) < Cdp(x,y) for all z,y € R™.

Proof. First note that do(z,y) < dp(z,y) < di(z,y) for all 1 < p <
oo. Also, n*sup |x; — y;| > > |z; — yi|, and hence

1 1
Edp(x?y) < Edl(xay> < d00($7y)
< dq(xvy) < d1($7y)
S ndoo(xay) S ndp(xay)
Thus, we can take ¢ = 1/n and C' = n. O



(b) (10 points) Prove that U C R™ is open in 2 if an only if U is open
in £4.

Proof. Let Be,(x) denote the e-ball around x in ¢£. If U is open
in ¢, then for each z € U, we can find ¢ such that B, ,(z) C U.
Then Bee ¢(x) C Bep(x) C U, and thus B is open in ¢2. The other
direction is similar. O

7. Let (X,d) be a metric space, and define d’ : X x X — R by

d(x,y)

d/(X» y) = m

(a) (10 points) Prove that d’ is a metric on X.

Proof. i. Since d(x,y) > 0, we have d’(x,y) > 0. Furthermore,
since 1 + d(x,y) is always positive, d(x,y)/(1 + d(x,y)) = 0 <
d(x,y) =0« x =y. Thus d’ is positive definite.

i d'(x,y) = (%, y)/(1+ (5 y)) = d(y, /(1 +d(y, %)) = 'y, %)

ili. Since d is a metric, d(x,z) < d(x,y)+d(y,z), and since t/(14+t) =
1—1/(t+1) is increasing when ¢ > 0, we have

d(x,z)
1+d(x,2)
d(x,y) +d(y,2)
— 14d(x,y) +d(y,2)
d(x,y)
1+d(x,y) +d(y,2)
d(y, )
1+d(x,y) +d(y,2)
d(x,y) d(y;2)

I+d(xy)  1+d(y,2)

= d(xy)+d(y,2)

d'(x,2)

IN

O

(b) (10 points) Prove that U C X is open in (X,d) if and only if U is
open in (X, d’).

Proof. Tt is easy to verify that for all zp € X and ¢ > 0 we have
B.(xg) C Bl(zg) and Bé/(l%) (x0) C Be(xg). The result follows.
O

8. (20 points) Let (X,d) and (X', d’) be metric spaces, and define d: (X x
X,) X (X X X/) - IB by d((xlayl)v(x27y2)) = SUP(d(X17X2)ad/(Yl7Y2))-
Show that (X x X’,d) is a metric space.



Proof. Positive definiteness and symmetry are easy to check and similar to
the previous problem. For the triangle inequality, we have that d(x1,21) <
d(x1,y1) +d(y1,21) and d’(x2,22) < d'(x2,y2) + d'(y2,22), and hence

d((z1,22), (21, 22)) sup(d(xy,21),d (x2,22))

sup(d(x1,y1) +d(y1,21),d’ (x2,y2) +d'(v2,22))
sup(d(x1,y1),d (x2,¥2))

+ sup(d(y1,2z1),d (y2,22))

d((21, 22), (1, 92)) + d((y1, 92), (21, 22))

IN A I

O

9. Let (X, d) be a metric space. A subset A is said to be disconnected if there
exist open sets U,V C X such that

(a) (ANU)#0,(ANV)#0
(b) (AND)U(ANV)=A
() (ANU)N(ANV)=10

A is said to be connected if it is not disconnected.

(a) (10 points) Prove that if A C X is connected and f : X — Y is a
continuous function, then f(A) is connected.

Proof Assume U and V disconnect f(A), that is

L(f(A)NT)#0,(f(ANV) #D
L (f(AND)U(fA)NV) = f(A)

ii. (f(LANU)YN(f(ANV)=0

Then f~1(U) and f~(V) are open sets such that

L (ANSTHU) #0,(ANFHV)) #0
i (AnfLU)HuAnf (V) =A
iii. (ANfHU)NANFYV)) =0
Thus, if A is connected, f(A) is connected.
O

(b) (10 points) A subset I C R is said to be an interval if whenever
a,b €I and a < x < b, then x € I. Prove that A C R is connected if
and only if A is an interval.

Proof. If A is not an interval, then we can find, a < x < b with
a,be A x ¢ A Let U = (—o0,z),V = (x,00). Then U and V
disconnect A.

Conversely, suppose that A is an interval, and that there exist U
and V' disconnecting A. Without loss of generality, we can find a €



10.

11.

ANU, b e ANV with a < b. Let ¢ = sup{z € [a,b] | UN
[a, ] is an interval}). Since A is an interval, ¢ € A. Note that if
a < x < ¢, then x € U. We cannot have ¢ € V (e.g., b = ¢) since
otherwise we could find some e-ball around ¢ contained in V', and
then c —¢/2 € (ANU)N(ANV). If ¢ € U, then we can find some
e-ball around ¢ contained in U, and then [a,c + €/2] is an interval,
contradicting maximality of ¢. Thus, c € (ANU)U (ANV) = A,
contradicting that A is an interval. O

(20 points) Let (X, d) be a compact metric space, and let f : X — R be
a continuous function. Prove that f attains some maximum value on X,
i.e., there exists some x € X such that if y € X, f(y) < f(x).

Proof. Since X is compact and f is continuous, f(X) is compact, and
hence closed and bounded. Since R has the least upper bound property,
f(X) aleast upper bound ¢, and since f(X) is closed ¢ € f(X). Thus, for
some x € X, f(x) =4 > f(y) forally € Y. O

Let (X,d) be a metric spaces, and let A, B C X. We define the distance
between A and B as d(A,B) = inf{d(a,b) | a € A,b € B}. We say the
distance is realized if there exist a € A,b € B such that d(A, B) = d(a,b).
For each of the following, give a proof or a counterexample.

(a) (10 points) If A and B are closed, must d(A, B) be realized?

(b) (10 points) If A is closed and B is compact, must d(A, B) be realized?

In both these cases, d(A, B) need not be realized. Consider Q in the
usual metric, and let A = {x | 2% < 2} and B = {2}. A is closed, B
is compact, and d(A,B) = 2 — v/2 is not realized.

For an example with X complete, let X = B(N,R). Let e, denote
the function which is 1 on n and 0 elsewhere. Let A = {(1+1/n)e, |
n € N} and B = {0}. All the points of A are isolated, so A is closed,
and d(A,B) = 1 is not realized.

(¢) (10 points) If A and B are compact, must d(A, B) be realized?

Let ¢ = d(A,B). Then for all n € N, we can find a,, € A,b, € B
such that d(a,,b,) < €4 1/n. Since A is compact, (a,) has some
convergent subsequence (a;,). Since B is compact, (b;,) has some
convergent subsequence (bj,). Let a = lima;,, b = limb;,. Then
for any n € N, we have d(a,b) < d(a,an) + d(ay, bn) + d(b,by).
Therefore, d(a,b) < ¢. By the definition of ¢, we must have that a
and b realize the distance.



