
Math 207 Final Examination Solutions

December 6, 2006

Note: the wording of some of the problems has been changed to make them
clearer, as a few were misinterpreted.

1. (20 points) Let (X, d) be a metric space, and let F be either R or C in the
usual metric. Let (BC(X,F),d′) be the space of bounded and continuous
functions from X to F with metric d′(f, g) = supx∈X |f(x)− g(x)|. Show
that (BC(X,F),d′) is complete.

Proof. Let fn be a Cauchy sequence. Let ε > 0. Then, there exists some
N ∈ N such that d′(fn, fn) < ε for all m,n > N . Then for any x0 ∈ X, we
have |fn(x0)− fm(x0)| ≤ supx∈X |fn(x)− fm(x)|, so (fn(x0)) is a Cauchy
sequence. Since F is complete, (fn(x)) converges for every x ∈ X. For
each x ∈ X, let f(x) = limn fn(x).

Let ε > 0. Then there exist N ∈ N such that d′(fn, fm) < ε/2 for all
m,n > N . Let x ∈ X. Then for sufficiently large m, |f(x)− fm(x)| < ε/2.
Therefore |f(x)− fn(x)| < |f(x)− fm(x)|+ |fm(x)− fn(x)| < ε. Since x
was arbitrary, we have that |f(x)− fn(x)| < ε for all x ∈ X and n > N .

We have that for some n ∈ N, |fn(x)− f(x)| < 1 for all x ∈ X. Therefore
|f(x)| < |fn(x)|+ 1. Since fn is bounded, so is f .

Let ε > 0, and let x0 ∈ X. From above, there is some n ∈ N such
that for all x ∈ X, |f(x)− fn(x)| < ε/3. Since fn is continuous, there
is some δ > 0 such that if d(x, x0) < δ, then |fn(x)− fn(x0)| < ε/3.
Then, if d(x, x0) < δ, |f(x)− f(x0)| < |f(x)− fn(x)|+ |fn(x)− fn(x0)|+
|fn(x0)− f(x0)| = ε/3 + ε/3 + ε/3 = ε. Thus f is continuous.

Therefore, f ∈ BC(X, F ) and lim fn = f , hence every Cauchy sequence
has a limit, so BC(X, F ) is complete.

2. (20 points) Let p be a prime, and let Qp be the p-adic numbers. Let
{an}n∈N be a sequence in Qp. Let bn =

∑n
k=1 ak. Show that {bn} con-

verges if and only if lim ai = 0.
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Proof. If lim an = 0, then for any ε > 0, there exists N ∈ N such
that |an|p < ε whenever n > N . Then if n > m > N , |bn − bm|p =∣∣∑n

i=m+1 ai

∣∣
p
≤ max({|am+1|p , . . . |an|p}) < ε. Thus (bn) is Cauchy and

thus converges.

Conversely, if (bn) converges, lim an = lim(bn+1−bn) = lim bn+1−lim bn =
0.

3. (20 points) Let p be a prime and r a rational number. Prove that the
p-adic expansion of r is repeating.

Proof. By multiplying r by a power of p (which will not change periodicity
of the expansion of r, we may assume that r ∈ Rp.

Let r = a/b in lowest terms with b > 0. We wish to find (ai) such that

a

b
=

∞∑
i=0

aip
i.

To begin, we choose a0 ∈ {0, 1, . . . , p−1} such that
∣∣a

b − a0

∣∣
p

= |a− ba0|p <

1, and at stage n we choose an ∈ {0, 1, . . . , p−1} such that |a− b (
∑n

i=0 ai)|p <

p−n. We have that pn | a−b
(∑n−1

i=0 ai

)
, and hence cn =

(
a− b

(∑n−1
i=0 ai

))
/pn

is an integer for all n.

By construction, an is chosen so that |a− b (
∑n

i=0 ai)|p = |pncn − banpn|p =
p−n |cn − ban|p < p−n, that is |cn − ban|p < 1. Thus, cn uniquely deter-
mines an, and since cn and an determine cn+1, if (cn) ever repeats a value,
then (cn) is periodic, and thus (an) is periodic.

Since cn+1 = (cnpn − banpn)/pn+1 = (cn − ban)/p, we have that |cn+1| <
b + |cn| /p ≤ max(cn, bp

p−1 ), and thus that (cn) takes on only finitely many
values. Therefore, some value must be repeated. Therefore, (an) is peri-
odic.

Proof. Here is a sketch of a second solution. There are only finitely many
congruence classes in Z/(b), so there exist m,n ≥ 0 such that pm ≡ pn

(mod b). Since GCD(p,b) = 1, p is a unit in Z/(b) and thus pn−m ∼= 1
(mod b), and hence we can find c, k ∈ N with bc = pk − 1.

First, assume that r is positive. Write r = a
b = ac

pk−1
= m − d

pk−1
where

m ∈ N∪{0} and 0 ≤ d < pk−1. Since −d
pk−1

=
∑

dpkn, we have that −d
pk−1

has a periodic p-adic expansion on length k. Since m is positive, it clearly
has a finite expansion (just it’s base p expression). The proof (from the
homework) that the sum of two periodic decimal numbers is periodic then
shows that r is periodic.

If r is negative, let
∑

aip
i be the expansion of−r. Then 1+

∑
((p− 1)− ai)pi

is an expansion of of r.
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4. (20 points) Let p be a prime. Prove that in Qp, every bounded infinite
sequence has a convergent subsequence (i.e., Qp satisfies the Bolzano-
Weirstrass property).

Proof. If either an infinite number of ai are zero or if for every n, there
exists a nonzero ai with |ai|p < p−n, then there exists a subsequence
converging to 0. Assume otherwise. Then there is some n with |ai| > p−n

for all i ∈ N. Since (ai) is bounded, there is also an m with |ai| < pm for
all ı ∈ N. Thus, |ai| takes on only finitely many values, and so we can find
some n ∈ Z such that |ai| = p−n infinitely often. Let b1 be one of those
elements.

Since pnUn can be written as p disjoint cosets of pn℘, an infinite number
of ai must occur in one of these cosets. Let b2 be one of these elements
occurring after b1. In general, bi will lay in some coset of pn+i−1℘, which
in turn can be broken into p cosets of pn+1℘, one of which will contain
an infinite number of ai. Let bi+1 be an sequence member in this coset
occurring after bi. Since |bi − bi+1|p < p−i + n, (bn) is Cauchy, and thus
a convergent subsequence.

5. (a) (10 points) Find the 5-adic expansion of 3/7.

Proof. The algorithm from problem 3 can be used to show that 3/7 =
4+5∗(0+2∗5+1∗52+4∗53+2∗54+3∗55)+57∗(0+2∗5+1∗52+4∗
53+2∗54+3∗55)+. . .. Alternately, 3/7 = 1−4/7 = 1−8928/(56−1)
and 8928 has expansion 3 + 0 ∗ 5 + 2 ∗ 52 + 1 ∗ 53 + 4 ∗ 54 + 2 ∗ 55,
and the expansion follows.

(b) (10 points) In Q5, what rational number has the 5-adic expansion
1 + 3 ∗ 5 + 1 ∗ 52 + 3 ∗ 53 + . . .?

Proof. Let x = 1+3∗5+1∗52+3∗53+. . .. Then 52x = x−(1+3∗5),
so 24x = −16 or x = −2/3

6. (a) (10 points) Let n ∈ N and 1 ≤ p, q ≤ ∞. Show that there exist
c, C > 0 such that cdp(x, y) ≤ dq(x, y) ≤ Cdp(x, y) for all x, y ∈ Rn.

Proof. First note that d∞(x, y) ≤ dp(x, y) ≤ d1(x, y) for all 1 ≤ p ≤
∞. Also, n ∗ sup |xi − yi| ≥

∑
|xi − yi|, and hence

1
n

dp(x, y) ≤ 1
n

d1(x, y) ≤ d∞(x, y)

≤ dq(x, y) ≤ d1(x, y)
≤ nd∞(x, y) ≤ ndp(x, y)

Thus, we can take c = 1/n and C = n.

3



(b) (10 points) Prove that U ⊂ Rn is open in `p
n if an only if U is open

in `q
n.

Proof. Let Bε,p(x) denote the ε-ball around x in `p
n. If U is open

in `p
n, then for each x ∈ U , we can find ε such that Bε,p(x) ⊂ U .

Then Bcε,q(x) ⊂ Bε,p(x) ⊂ U , and thus B is open in `q
n. The other

direction is similar.

7. Let (X, d) be a metric space, and define d′ : X×X → R by

d′(x, y) =
d(x, y)

1 + d(x, y)

(a) (10 points) Prove that d′ is a metric on X.

Proof. i. Since d(x, y) ≥ 0, we have d′(x, y) ≥ 0. Furthermore,
since 1 + d(x, y) is always positive, d(x, y)/(1 + d(x, y)) = 0 ⇔
d(x, y) = 0 ⇔ x = y. Thus d′ is positive definite.

ii. d′(x, y) = d(x, y)/(1 + d(x, y)) = d(y, x)/(1 + d(y, x)) = d′(y, x).
iii. Since d is a metric, d(x, z) ≤ d(x, y)+d(y, z), and since t/(1+t) =

1− 1/(t + 1) is increasing when t ≥ 0, we have

d′(x, z) =
d(x, z)

1 + d(x, z)

≤ d(x, y) + d(y, z)
1 + d(x, y) + d(y, z)

=
d(x, y)

1 + d(x, y) + d(y, z)

+
d(y, z)

1 + d(x, y) + d(y, z)

≤ d(x, y)
1 + d(x, y)

+
d(y, z)

1 + d(y, z)
= d′(x, y) + d′(y, z).

(b) (10 points) Prove that U ⊂ X is open in (X, d) if and only if U is
open in (X, d′).

Proof. It is easy to verify that for all x0 ∈ X and ε > 0 we have
Bε(x0) ⊂ B′

ε(x0) and B′
ε/(1−ε)(x0) ⊂ Bε(x0). The result follows.

8. (20 points) Let (X, d) and (X ′,d′) be metric spaces, and define d̃ : (X ×
X ′) × (X × X ′) → R by d̃((x1, y1), (x2, y2)) = sup(d(x1, x2),d′(y1, y2)).
Show that (X ×X ′, d̃) is a metric space.
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Proof. Positive definiteness and symmetry are easy to check and similar to
the previous problem. For the triangle inequality, we have that d(x1, z1) ≤
d(x1, y1) + d(y1, z1) and d′(x2, z2) ≤ d′(x2, y2) + d′(y2, z2), and hence

d̃((x1, x2), (z1, z2)) = sup(d(x1, z1),d′(x2, z2))
≤ sup(d(x1, y1) + d(y1, z1),d′(x2, y2) + d′(y2, z2))
≤ sup(d(x1, y1),d′(x2, y2))

+ sup(d(y1, z1),d′(y2, z2))

= d̃((x1, x2), (y1, y2)) + d̃((y1, y2), (z1, z2))

9. Let (X, d) be a metric space. A subset A is said to be disconnected if there
exist open sets U, V ⊂ X such that

(a) (A ∩ U) 6= ∅, (A ∩ V ) 6= ∅
(b) (A ∩ U) ∪ (A ∩ V ) = A

(c) (A ∩ U) ∩ (A ∩ V ) = ∅

A is said to be connected if it is not disconnected.

(a) (10 points) Prove that if A ⊂ X is connected and f : X → Y is a
continuous function, then f(A) is connected.

Proof. Assume U and V disconnect f(A), that is

i. (f(A) ∩ U) 6= ∅, (f(A) ∩ V ) 6= ∅
ii. (f(A) ∩ U) ∪ (f(A) ∩ V ) = f(A)
iii. (f(A) ∩ U) ∩ (f(A) ∩ V ) = ∅
Then f−1(U) and f−1(V ) are open sets such that

i. (A ∩ f−1(U)) 6= ∅, (A ∩ f−1(V )) 6= ∅
ii. (A ∩ f−1(U)) ∪ (A ∩ f−1(V )) = A

iii. (A ∩ f−1(U)) ∩ (A ∩ f−1(V )) = ∅
Thus, if A is connected, f(A) is connected.

(b) (10 points) A subset I ⊂ R is said to be an interval if whenever
a, b ∈ I and a < x < b, then x ∈ I. Prove that A ⊂ R is connected if
and only if A is an interval.

Proof. If A is not an interval, then we can find, a < x < b with
a, b ∈ A, x 6∈ A. Let U = (−∞, x), V = (x,∞). Then U and V
disconnect A.
Conversely, suppose that A is an interval, and that there exist U
and V disconnecting A. Without loss of generality, we can find a ∈
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A ∩ U , b ∈ A ∩ V with a < b. Let c = sup({x ∈ [a, b] | U ∩
[a, x] is an interval}). Since A is an interval, c ∈ A. Note that if
a < x < c, then x ∈ U . We cannot have c ∈ V (e.g., b = c) since
otherwise we could find some ε-ball around c contained in V , and
then c − ε/2 ∈ (A ∩ U) ∩ (A ∩ V ). If c ∈ U , then we can find some
ε-ball around c contained in U , and then [a, c + ε/2] is an interval,
contradicting maximality of c. Thus, c 6∈ (A ∩ U) ∪ (A ∩ V ) = A,
contradicting that A is an interval.

10. (20 points) Let (X, d) be a compact metric space, and let f : X → R be
a continuous function. Prove that f attains some maximum value on X,
i.e., there exists some x ∈ X such that if y ∈ X, f(y) ≤ f(x).

Proof. Since X is compact and f is continuous, f(X) is compact, and
hence closed and bounded. Since R has the least upper bound property,
f(X) a least upper bound `, and since f(X) is closed ` ∈ f(X). Thus, for
some x ∈ X, f(x) = ` ≥ f(y) for all y ∈ Y .

11. Let (X, d) be a metric spaces, and let A,B ⊂ X. We define the distance
between A and B as d(A,B) = inf{d(a,b) | a ∈ A,b ∈ B}. We say the
distance is realized if there exist a ∈ A, b ∈ B such that d(A,B) = d(a,b).
For each of the following, give a proof or a counterexample.

(a) (10 points) If A and B are closed, must d(A,B) be realized?

(b) (10 points) If A is closed and B is compact, must d(A,B) be realized?
In both these cases, d(A,B) need not be realized. Consider Q in the
usual metric, and let A = {x | x2 < 2} and B = {2}. A is closed, B
is compact, and d(A,B) = 2−

√
2 is not realized.

For an example with X complete, let X = B(N, R). Let en denote
the function which is 1 on n and 0 elsewhere. Let A = {(1+1/n)en |
n ∈ N} and B = {0}. All the points of A are isolated, so A is closed,
and d(A,B) = 1 is not realized.

(c) (10 points) If A and B are compact, must d(A,B) be realized?
Let ` = d(A,B). Then for all n ∈ N, we can find an ∈ A, bn ∈ B
such that d(an,bn) < ` + 1/n. Since A is compact, (an) has some
convergent subsequence (ain). Since B is compact, (bin) has some
convergent subsequence (bjn). Let a = lim ajn , b = lim bjn . Then
for any n ∈ N, we have d(a,b) ≤ d(a, an) + d(an,bn) + d(b,bn).
Therefore, d(a,b) ≤ `. By the definition of `, we must have that a
and b realize the distance.
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