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Previously

m For a ring R or Ei-ring spectrum R, one (Bdkstedt—-Hsiang-Madsen)
defines an S'-spectrum THH(R).

m THH(R) has a cyclotomic structure, which allows one to define TC(R).

TC(R; p)

— l

K(R; p) — THH(R
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TC in a nutshell

m (Blumberg-Mandell) TC(X; p) = hofib(F — id : TR(X; p) — TR(X; p)),

where
TR(R; p) = lim(- - < (THH(R))%"** 5 (THH(R))%" 5 --)
TR(R; p) = lim(--- % (THH(R))%" 5 (THH(R)) % & ...

m (Nikolaus—Sholze)

TC™(R) ———— TP(R)"
TC(R; p) = hoeq | can, ¢ : H H

(THH(R))"S" (THH(R))*"

Foling Zou UChicago

Witt and THH



Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
@00000

p-cyclotomic spectra

Definition (sometimes by S*, we mean

m In the Blumberg—Mandell (classical) sense:
o X: Sl-spectrum;
o + an S'-map X — ®%(X) which is an equivalence on fixed points for the
subgroups Cpn C St
m In the Nikolaus—Sholze (co-category) sense:

e X: spectrum with S!-action;
o +an Sl-map ¢ : X — XtC.

Let X = Map(S*', X) for a space X. Then .ZX has an S'-action and
(Z£X)% = ZX. In fact, L3 (£ X)+ is a cyclotomic spectra.

THH(R) is a cyclotomic spectrum.
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
[o] lelele]e]

Tate square

For a G-spectrum X, there is a comparison of fiber sequences:

Xng — X6 —— (EG A X)©

! |

XhG N XhG XtG

Taking G = Cpn, we get a pullback diagram:

X Con (¢CP(X))CPn—1

| |

Xthn Xthn
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points

[e]e] lele]e}

m In the Blumberg—Mandell (classical) sense:

o X: Sl-spectrum;
o + an S'-map X — ®%(X) which is an equivalence on fixed points for the
subgroups Cpn C St

m In the Nikolaus—Sholze (co-category) sense:

e X: spectrum with Sl-action;
o +an Sl-map ¢ : X — XtC.

Cpn Coe
X —— (% (X)) Xf —_— Xl !
| | n .
XhCPn XtCPn thp — (Xtcp)h Pt
Tate orbit lemma: X%" ~ (X*%)"“%"~1 if X is bounded below.
Idea to comparing the two definitions:
m If we have a BM X, we can define ¢ to be X — ¢%X — X',

m If we have a NS X, we can define X" inductively as a pullback and build
an S'-spectrum from these fixed points. (Ref: Krause—Nikolaus, Prop 9.2)
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
[e]e]e] le]e]

Remark: “Tate stairs” (all squares are pullbacks)

chn [N XCP”’I

XhCpn <20y (Xth)thn_1
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
[e]e]e] le]e]

Remark: “Tate stairs” (all squares are pullbacks)

Cpn Con—1 Con—2
X&p X"p X"p

thp,,,1 can (Xtcp)thn_z

Lo

XhCpn <20y (Xth)thn_1
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
[e]e]e] le]e]

Remark: “Tate stairs” (all squares are pullbacks)

R
X G I\ chnfl chn72 — ... X

! l«ﬂp

XDCon—2 =y X

I+

Xth,,,l <n (Xth )thn—Z

Lo

XhCpn <20 (Xtcp)thn_l

Con -, ywhCon hC .y
X" 2 X nC,, g XP ><(Xtcp)hcp,772 X s Xy X
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points

0000e0

Theorem [Hesselholt-Madsen]

For a connective commutative ring spectrum R, there are isomorphisms of rings

mo(THH(R))™" & Wepns (moR).
Moreover, this isomorphisms are compatible with F, R, V' (to be defined).

Remark: If R is an Ej-ring spectrum, we still have isomorphisms of abelian
groups.

Corollary

For any (associative) ring A,
ch;[(A; p) = W(A)[:
(Fact: TC is (-2)-connected.)

Compare with
TC.(Fp) 2 Zy[e] /€, |e] = —1.
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Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
00000e

Summary

7o(THH(R)) " 22 W pns (moR).

m Analogy

Rings Ring Spectra

Ro =mo(R) | R

W1y (Ro) | THH(R)

Wiy (Ro) | THH(R)"

m Remark: W<1>(Ro) = HHo(Ro).
m Goal one: define a “Witt vector structure” (R, F,V,w,7) on RHS.
m Goal two: compare RHS to LHS.
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Prelim 11, Witt vectors
@000

Witt vector: Big, S-truncated, p-typical

m Invented for: studying cyclic extension of fields in number theory.

m Appears in: p-adic Hodge theory; chromatic homotopy theory.

m Input and output: (W is right adjoint to the forgetful functor.)

W: CommRing — A—-Ring (— CommRing);
Wipcy : CommRing — J—Ring (— CommRing);

m W commutes with split coequlizers. So it suffices to construct them on free rings.
m Big: coordinates indexed by N (NOT including 0).

m S-truncated: coordinates indexed only by S C N.

m p-typical: § = (p>=) = {1,p,p%---}.

m n-truncated p-typical: S = (p") ={1,p,---,p"}.
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Prelim 11, Witt vectors
[e] lele)

Coordinates: Witt, ghost, generating functions

p-typical Witt vectors

n n wo = X0;
]._.[R: W(P">(R)LHR wy = xg—l—pxl;
k=0 k=0 )
wo = x§ +pxl + piag;c

o The LHS gives the Witt coordinates (xg, x1,---). It is NOT a ring map.
e The RHS gives the ghost coordinates (wp, wy,---). It is a ring map.

e If R is torsion free, w is injective.
o Image of w can be identified by Dwork's lemma.

m Remark (Krause-Nikolaus): The formulas can be recovered by —dlog if we
identify

ko oo

k K

Ooxa, ) & [T —xt?)i (wo,wa, =) & D wet?
k=0 k=0
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Prelim 11, Witt vectors
[e]e] le)

Structures on p-typical Witt vectors

Reduction: R(wo, wi, -+ ,wp) = (wo, Wi, -+, Wp_1)
R(x0,x1, -+ ,xn) = (X0, X1, "+ ; Xn—1)
Frobenius: F(wo,wi, -+ ,wp) = (wi,wa, -+, wp)

Verschiebung: V(wo, wi, -+, wa) = (0, pwo, pwi,- -+ , pWn)
V(x0, 1, ;xn) = (0, x0, X1, "+ , Xn)
Teichmiiler:  7: R — W,0y(R), 7(r) = (r,r?, o -)
Tpn R — W(Pn>(R), 7(r) = (r, rP, r"27 e ,rpn)
m (Ref:9.8) RF=FR, RV =VR, FV =p (FV = decp o).

m (Ref:9.11) R7pr = Tpn—1, Frpn = Tpo—1 0 (=)".
m (Ref:B5) (xo,x1, ) = S5y VF7(x).
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Prelim 11, Witt vectors
[e]e]e] )

Summary

7o(THH(R)) " 22 W pns (moR).

m Analogy

Rings Ring Spectra

Ro =mo(R) | R

W1y (Ro) | THH(R)

Wiy (Ro) | THH(R)"

m Remark: W<1>(Ro) = HHo(Ro).
m Goal one: define a “Witt vector structure” (R, F,V,w,7) on RHS.
m Goal two: compare RHS to LHS.
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Defining Witt structures on THH using cartoons
00000000

First goal

m Want to define
o R:THH(R)%" — THH(R)%"*;
o F:THH(R)%" — THH(R)%"*;
V . THH(R)S%" — THH(R)%";
7 R — THH(R)%"; »
o Ghost coordinate w : THH(R)%" — [[7_, THH(R);
o Witt coordinates [Tf_o R — THH(R)%" .x

m Warning on names:

Witt Equivariant homotopy In brief
R from Frobenius pp : X — X%  the upper leg in “Tate”
F restriction X% — X *
v transfer X — X *
(FV=p) (FV=%,cc,7)

Note: x=only on the 0-space. x = definition.
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Defining Witt structures on THH using cartoons
0@000000

Reduction

Reduction is the upper leg in the Tate square.

XCpn ® ch”*l XCP"’Z oo X
| e
Xth,,,g — '”Xth
L
xthH OOy g
Pp
h e <20 ()\t(r)hCynJ V\k‘f‘7

In the picture (pullback), just forget the last line. (This is analogous to the
algebra case.)
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Defining Witt structures on THH using cartoons
[e]e] lelele]ele)

Frobenius

X Gor R X o1 X Con—2 wes X
l ﬁ l@p
XPCn—2 s xtG
Jﬁ \L‘/’P
XBCon-1 (chp)thnfz W‘(H7
AT
XPCon 0y (Xth)thnfl M7

Remark: The arrows are induced by X®% — X, inclusion of fixed points.

Foling Zou
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Defining Witt structures on THH using cartoons
[e]e]e] lelelele)

Verschiebung

XCpn R XCpn—l XCpn—z o X
| & |~
Xth,,72 i> . Xth
lee
X B (G g,
& =
XhCpn 0y (Xth)thn—l 1/\k(‘7

Remark: The arrows are induced by X — Xic, N X% | the transfer map.

can

V is well defined because X — X% =¥ Xt% s 0.
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Defining Witt structures on THH using cartoons
[e]e]e]e] lelele)

X G — B 3Gt X
l@v
co Xt
Xth,,,l can (Xth)thn72 x W‘[’H7
T%
XPCon 20 (Xth)thn—l y\k"n7

WIEn) _ FkRn_k.
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Defining Witt structures on THH using cartoons
[e]e]e]e]e] lele)

C ?
Teichmiiler: ideally, R — THH(R) - THH(R)%".

m Frobenius lift ¢, for a p-cyclotomic spectra X.
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Defining Witt structures on THH using cartoons
[e]e]e]e]e] lele)

C ?
Teichmiiler: ideally, R — THH(R) - THH(R)%".

m Frobenius lift ¢, for a p-cyclotomic spectra X.

m Good case: If a cyclotomic spectra X admits a Frobenius lift ¢,,

X
Y
qj’i/// l XCPn
7 #p S T
X -===—--- > Xhé p// l
p lcan X W Xthn
Xth

Then there are canonical lifts ®,» as displayed (Ref:9.9).
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Defining Witt structures on THH using cartoons
[e]e]e]e]e] lele)

C ?
Teichmiiler: ideally, R — THH(R) - THH(R)%".

m Frobenius lift ¢, for a p-cyclotomic spectra X.

m Good case: If a cyclotomic spectra X admits a Frobenius lift ¢,,

X
Y —
qj‘i/// l XCPn _
7 #p S T
X - + X6 | X
@p lcan X W Xthn prp
Xth Xth N Xth

Then there are canonical lifts ®,» as displayed (Ref:9.9).
Proof: Tate diagram + induction.
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Defining Witt structures on THH using cartoons
[e]e]e]e]e] lele)

C ?
Teichmiiler: ideally, R — THH(R) - THH(R)%".

m Frobenius lift ¢, for a p-cyclotomic spectra X.

m Good case: If a cyclotomic spectra X admits a Frobenius lift ¢,,

X
Y
qj‘i/// l XCPn
7 #p S T
X -===—--- > Xhé p// l
p lcan X W Xthn
Xth

Then there are canonical lifts ®,» as displayed (Ref:9.9).

m X = THH(R) may not admit Frobenius lift;
But X = THH(S[G]) always do. In fact, THH(S[G]) ~ X°.ZBG and ¢,
is given by
286 " (2BG)% s (7BG)".

m We have &, : THH(S[Q™R]) — (THH(S[Q*R]))%".
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Defining Witt structures on THH using cartoons
00000080

Teichmiler, cont.

m Adjunction
S =X : Ei(Space) +» Ei(Sp) : Q~°

o Ideally,
R — THH(R) - THH(R)%"
e In fact,

S[Q®R] — THH(S[Q®R]) % (THH(S[Q™ R]))%"
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Defining Witt structures on THH using cartoons
00000080

Teichmiler, cont.

m Adjunction
S =X : Ei(Space) +» Ei(Sp) : Q~°

o Ideally,
R — THH(R) - THH(R)%"
e In fact,
b on
S[Q*R] — THH(S[Q™R]) & (THH(S[Q™R]))%" < THH(R)S"
e Counit, E;-map € : S[Q°R] — R
= Adjoint to get
Tt QR — Q°(THH(R)%")

m Remark: 71 is the expected map (R — THH(R)).
Proof: play with the triangle identity of the adjunction.
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Defining Witt structures on THH using cartoons
0000000e

Witt coordinate

17 T][Q™R — Q= (THH(R)%");
k=0

(ak) = Z Vkapn_k(Oék).
k=0

m Here, Y is addition on the O-space of a spectrum.
m /(" is only defined on the O-space because 7 is.
m /@ = 7, is the canonical map R — THH(R).
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Comparing THH with Witt
@00000

1 T[ QR — Q®(THH(R)%").
k=0

Comparision and new goal

Witt coordinate " abstract " ghost coordinate
n mwol\" Tow\” n
topology  mo([T;_o R) = mo(THH(R)%")*= mo([T;_o THH(R))

W(p")
algebra [Tizo mR — Wpny (moR) ———— [T4_o MR
m Want to show: the middle is an isomorphism.
m Step one: Reduce the general case to the torsion free case.

m If mo(R) is torsion free, we know g is surjective and w is injective in the
algebra line. Step two: show the same thing for the topology line
assuming torsion free. (Then the middle terms are isomorphic.)
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Comparing THH with Witt
(o] lelelele)

Lemma (Ref:9.12)
The following sequence is exact:

n+1
mo(THH(R)) L5 ro(THH(R) %) -5 mo(THH(R)%") — 0
Moreover, it is left exact if moR is p-torsion free.

m Why do we want this? For induction.
m How to see whether it should be R or F? In algebra,
n+1
W<1> V—) W<pn+1> i) W<pn> — 0.
Using ghost coordinates,

Vp”+1(r) = (07 e a07pn+1r);
Rp(rof o arn+l) - (I’o, e 7rn71);

Fp(rO"'. arn+l) = (r17'.. ’rn)~
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Comparing THH with Witt
[e]e] lelele)

Lemma (Ref:9.12)

The following sequence is exact:

n+1
mo(THH(R)) Y~ mo(THH(R) %" ) — mo(THH(R)%") — 0
Moreover, it is left exact if moR is p-torsion free.

m In topology, the Tate diagram gives fiber sequence of R:

THH(R)ic,,,;, — THH(R)%"** —F— THH(R)%"

! ! !

THH(R)nc,,, —— THH(R)"%"** —— THH(R)"%"**

n+1

And meTHH(R) — TFO(THH(R)hCP,,H) — mo(THH(R)%") is the transfer
map, so it is related to V.
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Comparing THH with Witt
[e]e]e] lele)

1 T[ QR — Q®(THH(R)%").
k=0

Comparision and new goal

Witt coordinate " abstract " ghost coordinate
n mwol\" Tow\” n
topology  mo([T;_o R) = mo(THH(R)%")*= mo([T;_o THH(R))

W(p")
algebra [Tizo mR — Wpny (moR) ———— [T4_o MR
m Want to show: the middle is an isomorphism.
m Step one: Reduce the general case to the torsion free case.

m If mo(R) is torsion free, we know g is surjective and w is injective in the
algebra line. Step two: show the same thing for the topology line
assuming torsion free. (Then the middle terms are isomorphic.)
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Comparing THH with Witt
[e]e]e]e] o)

Step two: Show 7o/(") is surjective and mow(" is injective in the torsion
free case.

Witt [T;_omR
o
abstract mo(THH(R)")
| mowt
ghost [1;_o(mTHH(R))
topology

Foling Zou UChicago

Witt and THH



Comparing THH with Witt
[e]e]e]e] o)

Step two: Show 7o/(") is surjective and mow(" is injective in the torsion
free case.

mo(R) [TiomR
l[(o) =7 \Lﬂ-o 4(n)
mo(THH(R)) wo(THH(R)Cp" )
lw(o):id Lrowt»
mo(THH(R)) [T —o(moTHH(R))
base case
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Comparing THH with Witt
[e]e]e]e] o)

Step two: Show 7o/(") is surjective and mow(" is injective in the torsion
free case.

? ? n
Witt TR ————— [[iL; mR ————— [l ™R

canonlcall lwol("“ lwol(")
abstract  7o(THH(R)) — mo(THH(R)%"**) =+ mo(THH(R)S")
??l Lmowtr+n lﬂow(n)
ghost mo(THH(R)) — [[14(meTHH(R)) — [T;_o(moTHH(R))

inductive case inductive hypothesis

n+1

m The canonical map R — THH(R) is also just 71 = /¥);
m 7 is ipy1 and po,...,» because by definition V171 = 1) 6y,

m 7?7 is p"™* because Wny1 Vi1 = Fpoii Vonin = p"™t
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Comparing THH with Witt
00000e

Step two: Show 7o/(") is surjective and mow(" is injective in the torsion
free case.

in PO, ,n
Witt MR ——" s T moR — 2" [Th_g moR

canomcali l—nol(”*l) lwol('”
abstract  mo(THH(R)) — mo(THH(R)%"*') —+ mo(THH(R)%")
pn+1l iﬂ.ow(rwl) lWoW(")
ghost mo(THH(R)) — [ 14 (moTHH(R)) — [Ti_o(moTHH(R))
inductive case inductive hypothesis
m All rows are exact (The second row is the Lemma).
m By the snake lemma, p™*! and wl” bemg injective implies wrh) being
Injective.
m Similarly for 1Y) expect that a prior mo! may not be a group
homomorphism. They are group homomorphism because w/ is and w is

injective. (I
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Summary

7o(THH(R)) " 22 W pns (moR).

m Analogy

Rings Ring Spectra

Ro =mo(R) | R

W1y (Ro) | THH(R)

Wiy (Ro) | THH(R)"

m Remark: W<1>(Ro) = HHo(Ro).
m Goal one: define a “Witt vector structure” (R, F,V,w,7) on RHS.
m Goal two: compare RHS to LHS.
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First goal

m Want to define
o R:THH(R)%" — THH(R)%"*;
o F:THH(R)%" — THH(R)%"*;
V . THH(R)S%" — THH(R)%";
7 R — THH(R)%"; »
o Ghost coordinate w : THH(R)%" — [[7_, THH(R);
o Witt coordinates [Tf_o R — THH(R)%" .x

m Warning on names:

Witt Equivariant homotopy In brief
R from Frobenius pp : X — X%  the upper leg in “Tate”
F restriction X% — X *
v transfer X — X *
(FV=p) (FV=%,cc,7)

Note: x=only on the 0-space. x = definition.
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1 T[ QR — Q®(THH(R)%").
k=0

Comparision and new goal

Witt coordinate " abstract " ghost coordinate
n mwol\" Tow\” n
topology  mo([T;_o R) = mo(THH(R)%")*= mo([T;_o THH(R))

W(p")
algebra [Tizo mR — Wpny (moR) ———— [T4_o MR
m Want to show: the middle is an isomorphism.
m Step one: Reduce the general case to the torsion free case.

m If mo(R) is torsion free, we know g is surjective and w is injective in the
algebra line. Step two: show the same thing for the topology line
assuming torsion free. (Then the middle terms are isomorphic.)
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Thank you!

Witt and THH
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