Prelim I: Cyclotomic spectra; Tate diagram; Fixed points Prelim II, Witt vectors Defining Witt structures on THH using cartoons Comparing THH with Witt 000000 0000000 0000000 000000

THH and Witt vectors (THH talk 5)

Foling Zou

University of Chicago

April 30, 2020

Folin	g Zo	bu
Witt	and	тнн

UChicago

臣

1 Prelim I: Cyclotomic spectra; Tate diagram; Fixed points

- 2 Prelim II, Witt vectors
- 3 Defining Witt structures on THH using cartoons
- 4 Comparing THH with Witt vectors
- 5 Summary

UChicago

Foling Zou Witt and THH

Prelim I: Cyclotomic spectra; Tate diagram; Fixed point	Defining Witt structures on THH using cartoons	Comparing THH with Witt

Previously

- For a ring *R* or *E*₁-ring spectrum *R*, one (Bökstedt–Hsiang–Madsen) defines an *S*¹-spectrum THH(*R*).
- THH(R) has a cyclotomic structure, which allows one to define TC(R).

・ロト ・伺 ト ・ ヨト ・ ヨ

olin	g Zo	u	
Vitt	and	тнн	

TC in a nutshell

• (Blumberg–Mandell) $TC(X; p) = hofib(F - id : TR(X; p) \rightarrow TR(X; p))$, where

$$\begin{array}{ll} \mathrm{TR}(R;\rho) & = \lim(\cdots \stackrel{R}{\to} (\mathrm{THH}(R))^{C_{p^{n+1}}} \stackrel{R}{\to} (\mathrm{THH}(R))^{C_{p^n}} \stackrel{R}{\to} \cdots) \\ & \downarrow^{F} \\ \mathrm{TR}(R;\rho) & = \lim(\cdots \stackrel{R}{\to} (\mathrm{THH}(R))^{C_{p^n}} \stackrel{R}{\to} (\mathrm{THH}(R))^{C_{p^{n-1}}} \stackrel{R}{\to} \cdots) \end{array}$$

$$\operatorname{TC}(R; p) = \operatorname{hoeq} \begin{pmatrix} \operatorname{TC}^{-}(R) \longrightarrow \operatorname{TP}(R)^{\wedge} \\ \operatorname{can}, \phi_{p} : & \| & \| \\ & (\operatorname{THH}(R))^{\operatorname{hS}^{1}} & (\operatorname{THH}(R))^{\operatorname{tS}^{1}} \end{pmatrix}$$

p-cyclotomic spectra

Definition (sometimes by S^1 , we mean $\mathscr{F}_{p^{\infty}} = \{C_p, \cdots, C_{p^n}, \cdots\}$)

- In the Blumberg–Mandell (classical) sense:
 - X: S¹-spectrum;
 - + an S^1 -map $X \to \Phi^{C_p}(X)$ which is an equivalence on fixed points for the subgroups $C_{p^n} \subset S^1$.

(日) (四) (三) (三)

UChicago

- In the Nikolaus–Sholze (∞-category) sense:
 - X: spectrum with S¹-action;
 - + an S^1 -map $\varphi: X \to X^{\mathrm{t}C_p}$.

Motivation

Let $\mathscr{L}X = \operatorname{Map}(S^1, X)$ for a space X. Then $\mathscr{L}X$ has an S^1 -action and $(\mathscr{L}X)^{C_p} \cong \mathscr{L}X$. In fact, $\Sigma_{S^1}^{\infty}(\mathscr{L}X)_+$ is a cyclotomic spectra.

Example

THH(R) is a cyclotomic spectrum.

Folin	g Zo	u
Witt	and	тнн

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Prelim II, Witt vectors	Defining Witt structures on THH using cartoons	Comparing THH with Witt
00000			

Tate square

For a G-spectrum X, there is a comparison of fiber sequences:

$$\begin{array}{cccc} X_{\mathrm{h}G} & \longrightarrow & X^{G} & \longrightarrow & (\widetilde{EG} \wedge X)^{G} \\ \\ \| & & \downarrow & & \downarrow \\ & & & \downarrow & \\ X_{\mathrm{h}G} & \xrightarrow{N} & X^{\mathrm{h}G} & \longrightarrow & X^{\mathrm{t}G} \end{array}$$

Taking $G = C_{p^n}$, we get a pullback diagram:

イロト イヨト イヨト イヨト

클 ∽ ९ (UChicago

Foling	Zc	u
Witt a	nd	тнн

Definition

- In the Blumberg–Mandell (classical) sense:
 - X: S¹-spectrum;
 - + an S^1 -map $X \to \Phi^{C_p}(X)$ which is an equivalence on fixed points for the subgroups $C_{p^n} \subset S^1$.
- In the Nikolaus–Sholze (∞-category) sense:
 - X: spectrum with S¹-action;
 - + an S^1 -map $\varphi: X \to X^{\mathrm{t}C_p}$.

$$\begin{array}{cccc} X^{C_{p^n}} & \longrightarrow \left(\Phi^{C_{\rho}}(X)\right)^{C_{p^{n-1}}} & & X^{C_{p^n}} & \longrightarrow & X^{C_{p^{n-1}}} \\ & & \downarrow & & \downarrow \\ & & \downarrow & & \downarrow \\ X^{hC_{p^n}} & \longrightarrow & X^{tC_{p^n}} & & X^{hC_{p^n}} & \longrightarrow & (X^{tC_{\rho}})^{hC_{p^{n-1}}} \end{array}$$

Tate orbit lemma: $X^{tC_{p^n}} \simeq (X^{tC_p})^{hC_{p^{n-1}}}$ if X is bounded below. Idea to comparing the two definitions:

- If we have a BM X, we can define φ to be $X \to \Phi^{C_p} X \to X^{tC_p}$.
- If we have a NS X, we can define X^{C_pn} inductively as a pullback and build an S¹-spectrum from these fixed points. (Ref: Krause–Nikolaus, Prop 9.2)

Remark: "Tate stairs" (all squares are pullbacks)

▲ロ▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 めんの

Folin	g Zo	u
Witt	and	тнн

Remark: "Tate stairs" (all squares are pullbacks)

▲ロ▶▲圖▶▲圖▶▲圖▶ = ● のQの

UChicago

Foling Zou Witt and THH

Remark: "Tate stairs" (all squares are pullbacks)

Definition

~

$$X^{C_{p^n}} \simeq X^{\mathrm{h}C_{p^n}} \times_{(X^{\mathrm{t}C_p})^{\mathrm{h}C_{p^{n-1}}}} X^{\mathrm{h}C_{p^{n-1}}} \times_{(X^{\mathrm{t}C_p})^{\mathrm{h}C_{p^{n-2}}}} \times \cdots \times_{X^{\mathrm{t}C_p}} X$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

ling Zou
itt and THH

Theorem [Hesselholt–Madsen]

For a connective commutative ring spectrum R, there are isomorphisms of rings

$$\pi_0(\mathrm{THH}(R))^{\mathcal{C}_{p^n}} \cong W_{< p^n >}(\pi_0 R).$$

Moreover, this isomorphisms are compatible with F, R, V (to be defined).

Remark: If R is an E_1 -ring spectrum, we still have isomorphisms of abelian groups.

Corollary

For any (associative) ring A,

$$\mathrm{TC}_{-1}(A; p) \cong W(A)_F.$$

(Fact: TC is (-2)-connected.)

Compare with

$$\mathrm{TC}_*(\mathbb{F}_p) \cong \mathbb{Z}_p[\epsilon]/\epsilon^2, \ |\epsilon| = -1.$$

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Defining Witt structures on THH using cartoons	Comparing THH with With
000000		

Summary

Goal

 $\pi_0(\mathrm{THH}(R))^{C_{p^n}} \cong W_{< p^n >}(\pi_0 R).$

Analogy

Rings	Ring Spectra
$R_0 = \pi_0(R)$	R
$W_{\langle 1 angle}(R_0)$	THH(R)
$W_{\langle p^n angle}(R_0)$	$\operatorname{THH}(R)^{C_{p^n}}$

- Remark: $W_{\langle 1 \rangle}(R_0) \cong HH_0(R_0)$.
- Goal one: define a "Witt vector structure" (R, F, V, w, τ) on RHS.
- Goal two: compare RHS to LHS.

E

・ロト ・四ト ・ヨト ・ヨト

Witt vector: Big, *S*-truncated, *p*-typical

- Invented for: studying cyclic extension of fields in number theory.
- Appears in: *p*-adic Hodge theory; chromatic homotopy theory.
- Input and output: (W is right adjoint to the forgetful functor.)

W: CommRing $\rightarrow \Lambda$ -Ring (\rightarrow CommRing);

 $W_{\langle p^{\infty} \rangle}$: CommRing $\rightarrow \delta$ -Ring (\rightarrow CommRing);

- W commutes with split coequizers. So it suffices to construct them on free rings.
- Big: coordinates indexed by \mathbb{N} (NOT including 0).
- S-truncated: coordinates indexed only by $S \subset \mathbb{N}$.
- *p*-typical: $S = \langle p^{\infty} \rangle = \{1, p, p^2, \cdots \}.$
- *n*-truncated *p*-typical: $S = \langle p^n \rangle = \{1, p, \cdots, p^n\}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○○○

Coordinates: Witt, ghost, generating functions

p-typical Witt vectors

$$\prod_{k=0}^{n} R = W_{\langle p^n \rangle}(R) \xrightarrow{w} \prod_{k=0}^{n} R.$$

$$w_0 = x_0;$$

$$w_1 = x_0^p + px_1;$$

$$w_2 = x_0^{p^2} + px_1^p + p^2x_2; \cdots$$

- The LHS gives the Witt coordinates (x_0, x_1, \dots) . It is NOT a ring map.
 - The RHS gives the ghost coordinates (w_0, w_1, \cdots) . It is a ring map.
 - If R is torsion free, w is injective.
 - Image of w can be identified by Dwork's lemma.
- Remark (Krause–Nikolaus): The formulas can be recovered by -dlog if we identify

$$(x_0, x_1, \cdots) \leftrightarrow \prod_{k=0}^{\infty} (1 - x_k t^{p^k}); \quad (w_0, w_1, \cdots) \leftrightarrow \sum_{k=0}^{\infty} w_k t^{p^k - 1}.$$

Structures on *p*-typical Witt vectors

Reduction:
$$R(w_{0}, w_{1}, \dots, w_{n}) = (w_{0}, w_{1}, \dots, w_{n-1})$$
$$R(x_{0}, x_{1}, \dots, x_{n}) = (x_{0}, x_{1}, \dots, x_{n-1})$$
Frobenius:
$$F(w_{0}, w_{1}, \dots, w_{n}) = (w_{1}, w_{2}, \dots, w_{n})$$
Verschiebung:
$$V(w_{0}, w_{1}, \dots, w_{n}) = (0, pw_{0}, pw_{1}, \dots, pw_{n})$$
$$V(x_{0}, x_{1}, \dots, x_{n}) = (0, x_{0}, x_{1}, \dots, x_{n})$$
Teichmüler:
$$\tau : R \rightarrow W_{\langle p^{n} \rangle}(R), \quad \tau(r) = (r, r^{p}, r^{p^{2}}, \dots)$$
$$\tau_{p^{n}} : R \rightarrow W_{\langle p^{n} \rangle}(R), \quad \tau(r) = (r, r^{p}, r^{p^{2}}, \dots, r^{p^{n}})$$

• (Ref:9.8) RF = FR, RV = VR, FV = p ($FV = \sum_{\sigma \in C_p} \sigma$).

• (Ref:9.11)
$$R\tau_{p^n} = \tau_{p^{n-1}}, \ F\tau_{p^n} = \tau_{p^{n-1}} \circ (-)^p.$$

(Ref:B5)
$$(x_0, x_1, \cdots) = \sum_{k=0}^{\infty} V^k \tau(x_k).$$

3

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Prelim II, Witt vectors	Defining Witt structures on THH using cartoons	Comparing THH with Witt
	0000		

Summary

Goal

 $\pi_0(\mathrm{THH}(R))^{C_{p^n}} \cong W_{< p^n >}(\pi_0 R).$

Analogy

Rings	Ring Spectra
$R_0 = \pi_0(R)$	R
$W_{\langle 1 angle}(R_0)$	THH(R)
$W_{\langle p^n angle}(R_0)$	$\operatorname{THH}(R)^{C_{p^n}}$

- Remark: $W_{\langle 1 \rangle}(R_0) \cong HH_0(R_0).$
- Goal one: define a "Witt vector structure" (R, F, V, w, τ) on RHS.
- Goal two: compare RHS to LHS.

E

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

First goal

Want to define

- $R: \mathrm{THH}(R)^{C_{p^n}} \to \mathrm{THH}(R)^{C_{p^{n-1}}};$
- $F: \mathrm{THH}(R)^{C_{p^n}} \to \mathrm{THH}(R)^{C_{p^{n-1}}};$
- $V: \mathrm{THH}(R)^{C_{p^n}} \to \mathrm{THH}(R)^{C_{p^{n+1}}};$
- $\tau: R \to \mathrm{THH}(R)^{C_{p^n}}; \star$
- Ghost coordinate $w : \text{THH}(R)^{C_{p^n}} \to \prod_{k=0}^n \text{THH}(R);$
- Witt coordinates $\prod_{k=0}^{n} R \to \operatorname{THH}(R)^{C_{p^n}}$.
- Warning on names:

WittEquivariant homotopyIn briefRfrom Frobenius $\varphi_p : X \to X^{tC_p}$ the upper leg in "Tate"Frestriction $X^{C_p} \to X$ \star Vtransfer $X \to X^{C_p}$ \star (FV = p)($FV = \sum_{\sigma \in C_p} \sigma$)Note: \star =only on the 0-space. \star = definition.

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Defining Witt structures on THH using cartoons	Comparing THH with Witt
	0000000	

Reduction

Reduction is the upper leg in the Tate square.

In the picture (pullback), just forget the last line. (This is analogous to the algebra case.)

イロト イヨト イヨト イヨト

F	Foling Zou			
۱	Witt and THH			

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Defining Witt structures on THH using cartoons	Comparing THH with Witt
	000000	

Frobenius

UChicago

Remark: The arrows are induced by $X^{hC_p} \rightarrow X$, inclusion of fixed points.

olin	g Zo	u	
Vitt	and	тнн	

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Defining Witt structures on THH using cartoons	Comparing THH with Witt
	0000000	

Verschiebung

Remark: The arrows are induced by $X \to X_{hC_p} \xrightarrow{N} X^{hC_p}$, the transfer map. V is well defined because $X \to X^{hC_p} \xrightarrow{can} X^{tC_p}$ is 0.

Foling Zo	u
Witt and	тнн

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Prelim II, Witt vectors	Defining Witt structures on THH using cartoons	Comparing THH with Witt
		0000000	

Ghost $w^{(n)}: X^{C_{p^n}} \to \prod_{k=0}^n X$

Definition

$$w_k^{(n)} = F^k R^{n-k}.$$

in	g Zo	u	
t	and	тнн	

Teichmüler: ideally, $R \to \text{THH}(R) \xrightarrow{?} \text{THH}(R)^{C_{p^n}}$.

• Frobenius lift ϕ_p for a *p*-cyclotomic spectra *X*.

Folin	g Zo	u
Witt	and	тнн

 Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
 Prelim II, Witt vectors
 Defining Witt structures on THH using cartoons
 Comparing THH with Witt

 000000
 00000000
 00000000
 0000000

Teichmüler: ideally, $R o \operatorname{THH}(R) \stackrel{?}{ o} \operatorname{THH}(R)^{C_{p^n}}$.

- Frobenius lift ϕ_p for a *p*-cyclotomic spectra *X*.
- Good case: If a cyclotomic spectra X admits a Frobenius lift ϕ_p ,

Then there are canonical lifts Φ_{p^n} as displayed (Ref:9.9).

(日)

olin	g Zo	u
∕itt	and	тнн

 Prelim I: Cyclotomic spectra; Tate diagram; Fixed points
 Prelim II, Witt vectors
 Defining Witt structures on THH using cartoons
 Comparing THH with Witt

 000000
 00000000
 00000000
 0000000

Teichmüler: ideally, $R \to \text{THH}(R) \xrightarrow{?} \text{THH}(R)^{C_{p^n}}$.

- Frobenius lift ϕ_p for a *p*-cyclotomic spectra *X*.
- Good case: If a cyclotomic spectra X admits a Frobenius lift ϕ_p ,

Then there are canonical lifts Φ_{p^n} as displayed (Ref:9.9). Proof: Tate diagram + induction.

(日)

Teichmüler: ideally, $R \to \text{THH}(R) \xrightarrow{?} \text{THH}(R)^{C_{p^n}}$.

- Frobenius lift ϕ_p for a *p*-cyclotomic spectra *X*.
- Good case: If a cyclotomic spectra X admits a Frobenius lift ϕ_p ,

Then there are canonical lifts Φ_{p^n} as displayed (Ref:9.9).

X = THH(R) may not admit Frobenius lift;
 But X = THH(S[G]) always do. In fact, THH(S[G]) ≃ Σ[∞]₊ ℒBG and φ_p is given by

$$\mathscr{L}BG \stackrel{"(-)^{p_{"}}}{
ightarrow} (\mathscr{L}BG)^{\mathrm{h}\mathcal{C}_{p}}
ightarrow (\mathscr{L}BG)^{\mathrm{t}\mathcal{C}_{p}}.$$

• We have Φ_{p^n} : THH($\mathbb{S}[\Omega^{\infty} R]$) \rightarrow (THH($\mathbb{S}[\Omega^{\infty} R]$))^{C_{p^n}}.

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points	Defining Witt structures on THH using cartoons	Comparing THH with Witt
	00000000	

Teichmüler, cont.

Adjunction

$$\mathbb{S} = \Sigma^{\infty}_{+} : E_1(\text{Space}) \leftrightarrow E_1(\text{Sp}) : \Omega^{\infty}$$

• Ideally,

$$R \to \mathrm{THH}(R) \stackrel{?}{\to} \mathrm{THH}(R)^{C_{p^n}}$$

• In fact,

$$\mathbb{S}[\Omega^{\infty}R] \to \mathrm{THH}(\mathbb{S}[\Omega^{\infty}R]) \stackrel{\Phi_{p^n}}{\to} (\mathrm{THH}(\mathbb{S}[\Omega^{\infty}R]))^{C_{p^n}}$$

Э

・ロト ・御 ト ・ ヨト ・ ヨト

Teichmüler, cont.

Adjunction

$$\mathbb{S} = \Sigma^{\infty}_{+} : E_1(\text{Space}) \leftrightarrow E_1(\text{Sp}) : \Omega^{\infty}$$

Ideally,

$$R \to \mathrm{THH}(R) \xrightarrow{?} \mathrm{THH}(R)^{C_{p^n}}$$

• In fact,

 $\mathbb{S}[\Omega^{\infty}R] \to \mathrm{THH}(\mathbb{S}[\Omega^{\infty}R]) \stackrel{\Phi_{p^n}}{\to} (\mathrm{THH}(\mathbb{S}[\Omega^{\infty}R]))^{C_{p^n}} \stackrel{\epsilon}{\to} \mathrm{THH}(R)^{C_{p^n}}$

• Counit, E_1 -map $\epsilon : \mathbb{S}[\Omega^{\infty}R] \to R$

Adjoint to get

$$\tau_{p^n}: \Omega^{\infty} R \to \Omega^{\infty}(\mathrm{THH}(R)^{C_{p^n}})$$

■ Remark: τ₁ is the expected map (R → THH(R)). Proof: play with the triangle identity of the adjunction.

Witt coordinate

Definition

$$\mathcal{H}^{(n)}:\prod_{k=0}^{n}\Omega^{\infty}R \to \Omega^{\infty}(\mathrm{THH}(R)^{C_{p^{n}}});$$

 $(\alpha_{k})\mapsto \sum_{k=0}^{n}V_{p^{k}}\tau_{p^{n-k}}(\alpha_{k}).$

<ロト <回ト < 回ト < ヨト

E ∽Q(UChicago

• Here, \sum is addition on the 0-space of a spectrum.

- $I^{(n)}$ is only defined on the 0-space because τ is.
- $I^{(0)} = \tau_1$ is the canonical map $R \to \text{THH}(R)$.

Folin	g Zo	u	
Witt	and	тнн	

$$I^{(n)}:\prod_{k=0}^{n}\Omega^{\infty}R \to \Omega^{\infty}(\mathrm{THH}(R)^{C_{p^{n}}}).$$

- Want to show: the middle is an isomorphism.
- Step one: Reduce the general case to the torsion free case.
- If $\pi_0(R)$ is torsion free, we know q is surjective and w is injective in the algebra line. Step two: show the same thing for the topology line assuming torsion free. (Then the middle terms are isomorphic.)

Lemma (Ref:9.12)

The following sequence is exact: $\pi_0(\text{THH}(R)) \xrightarrow{V^{n+1}} \pi_0(\text{THH}(R)^{C_{p^{n+1}}}) \xrightarrow{R} \pi_0(\text{THH}(R)^{C_{p^n}}) \longrightarrow 0$ Moreover, it is left exact if $\pi_0 R$ is p-torsion free.

- Why do we want this? For induction.
- How to see whether it should be R or F? In algebra, $W_{\langle 1 \rangle} \xrightarrow{V^{n+1}} W_{\langle p^{n+1} \rangle} \xrightarrow{R} W_{\langle p^n \rangle} \to 0.$ Using ghost coordinates,

$$V_{p^{n+1}}(r) = (0, \cdots, 0, p^{n+1}r);$$

$$R_p(r_0, \cdots, r_{n+1}) = (r_0, \cdots, r_{n-1});$$

$$F_p(r_0, \cdots, r_{n+1}) = (r_1, \cdots, r_n).$$

< ロ > < 部 > < き > < き > 。

Lemma (Ref:9.12)

The following sequence is exact: $\pi_0(\text{THH}(R)) \xrightarrow{V^{n+1}} \pi_0(\text{THH}(R)^{C_{p^{n+1}}}) \xrightarrow{R} \pi_0(\text{THH}(R)^{C_{p^n}}) \longrightarrow 0$ Moreover, it is left exact if $\pi_0 R$ is p-torsion free.

In topology, the Tate diagram gives fiber sequence of *R*:

$$\begin{array}{ccc} \operatorname{THH}(R)_{\mathrm{h}C_{p^{n+1}}} & \longrightarrow & \operatorname{THH}(R)^{C_{p^{n+1}}} & \stackrel{R}{\longrightarrow} & \operatorname{THH}(R)^{C_{p^{n}}} \\ & & \downarrow & & \downarrow \\ & & & \downarrow & & \downarrow \\ \operatorname{THH}(R)_{\mathrm{h}C_{p^{n+1}}} & \stackrel{N}{\longrightarrow} & \operatorname{THH}(R)^{\mathrm{h}C_{p^{n+1}}} & \longrightarrow & \operatorname{THH}(R)^{\mathrm{t}C_{p^{n+1}}} \end{array}$$

And $\pi_0 \text{THH}(R) \to \pi_0(\text{THH}(R)_{h_{C_{p^{n+1}}}}) \to \pi_0(\text{THH}(R)^{C_{p^{n+1}}})$ is the transfer map, so it is related to V.

$$I^{(n)}:\prod_{k=0}^{n}\Omega^{\infty}R \to \Omega^{\infty}(\mathrm{THH}(R)^{C_{p^{n}}}).$$

- Want to show: the middle is an isomorphism.
- Step one: Reduce the general case to the torsion free case.
- If $\pi_0(R)$ is torsion free, we know q is surjective and w is injective in the algebra line. Step two: show the same thing for the topology line assuming torsion free. (Then the middle terms are isomorphic.)

Step two: Show $\pi_0 I^{(n)}$ is surjective and $\pi_0 w^{(n)}$ is injective in the torsion free case.

Witt	$\prod_{k=0}^n \pi_0 R$
	$\downarrow_{\pi_0 I^{(n)}}$
abstract	$\pi_0(\mathrm{THH}(R)^{C_{p^n}})$
	$\downarrow_{\pi_0 w^{(n)}}$
ghost	$\prod_{k=0}^{n}(\pi_{0}\mathrm{THH}(R))$

topology

Foling Zou Witt and THH ・ロ・・雪・・雪・・雪・・日・

Step two: Show $\pi_0 I^{(n)}$ is surjective and $\pi_0 w^{(n)}$ is injective in the torsion free case.

 $\pi_0(R) \ \downarrow^{I^{(0)}= au_1} \ \pi_0(\operatorname{THH}(R)) \ \downarrow^{w^{(0)}=\operatorname{id}} \ \pi_0(\operatorname{THH}(R))$

イロト イヨト イヨト イヨト

UChicago

base case

Foling Zou			
Witt	and	тнн	

Step two: Show $\pi_0 I^{(n)}$ is surjective and $\pi_0 w^{(n)}$ is injective in the torsion free case.

$$\begin{array}{cccc} \text{Witt} & \pi_0 R & \xrightarrow{?} & \prod_{k=0}^{n+1} \pi_0 R & \xrightarrow{?} & \prod_{k=0}^n \pi_0 R \\ \text{canonical} & & & \downarrow_{\pi_0 I^{(n+1)}} & & \downarrow_{\pi_0 I^{(n)}} \\ \text{abstract} & & \pi_0(\text{THH}(R)) & \xrightarrow{V} & \pi_0(\text{THH}(R)^{C_{p^n}+1}) & \xrightarrow{R} & \pi_0(\text{THH}(R)^{C_{p^n}}) \\ & & ?? \downarrow & & \downarrow_{\pi_0 w^{(n+1)}} & & \downarrow_{\pi_0 w^{(n)}} \\ \text{ghost} & & & \pi_0(\text{THH}(R)) & \longrightarrow \prod_{k=0}^{n+1} (\pi_0 \text{THH}(R)) & \rightarrow \prod_{k=0}^n (\pi_0 \text{THH}(R)) \\ & & & \text{inductive case} & \text{inductive hypothesis} \end{array}$$

• The canonical map
$$R \to \text{THH}(R)$$
 is also just $\tau_1 = I^{(0)}$;
• ? is i_{n+1} and $p_{0,\dots,n}$ because by definition $V_{p^{n+1}}\tau_1 = I^{(n+1)} \circ i_{n+1}$.
• ?? is p^{n+1} because $w_{n+1}V_{p^{n+1}} = F_{p^{n+1}}V_{p^{n+1}} = p^{n+1}$.

Step two: Show $\pi_0 I^{(n)}$ is surjective and $\pi_0 w^{(n)}$ is injective in the torsion free case.

- All rows are exact (The second row is the Lemma).
- By the snake lemma, p^{n+1} and $w^{(n)}$ being injective implies $w^{(n+1)}$ being injective.
- Similarly for I⁽ⁿ⁺¹⁾, expect that a prior π₀I may not be a group homomorphism. They are group homomorphism because wI is and w is injective.

Prelim I: Cyclotomic spectra; Tate diagram; Fixed point	Defining Witt structures on THH using cartoons	Comparing THH with Witt

Summary

Goal

 $\pi_0(\mathrm{THH}(R))^{C_{p^n}} \cong W_{< p^n >}(\pi_0 R).$

Analogy

Rings	Ring Spectra
$R_0 = \pi_0(R)$	R
$W_{\langle 1 angle}(R_0)$	THH(R)
$W_{\langle p^n angle}(R_0)$	$\operatorname{THH}(R)^{C_{p^n}}$

- Remark: $W_{\langle 1 \rangle}(R_0) \cong HH_0(R_0).$
- Goal one: define a "Witt vector structure" (R, F, V, w, τ) on RHS.
- Goal two: compare RHS to LHS.

E

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト …

First goal

Want to define

- $R: \operatorname{THH}(R)^{C_{p^n}} \to \operatorname{THH}(R)^{C_{p^{n-1}}};$
- $F: \mathrm{THH}(R)^{C_{p^n}} \to \mathrm{THH}(R)^{C_{p^{n-1}}};$
- $V: \mathrm{THH}(R)^{C_{p^n}} \to \mathrm{THH}(R)^{C_{p^{n+1}}};$
- $\tau: R \to \mathrm{THH}(R)^{C_{p^n}}; \star$
- Ghost coordinate $w : \operatorname{THH}(R)^{C_{p^n}} \to \prod_{k=0}^n \operatorname{THH}(R);$
- Witt coordinates $\prod_{k=0}^{n} R \to \operatorname{THH}(R)^{C_{p^n}}$.
- Warning on names:

WittEquivariant homotopyIn briefRfrom Frobenius $\varphi_p : X \to X^{tC_p}$ the upper leg in "Tate"Frestriction $X^{C_p} \to X$ \star Vtransfer $X \to X^{C_p}$ \star (FV = p)($FV = \sum_{\sigma \in C_p} \sigma$)Note: \star =only on the 0-space. \star = definition.

Foling Zou Witt and THH

$$I^{(n)}:\prod_{k=0}^{n}\Omega^{\infty}R \to \Omega^{\infty}(\mathrm{THH}(R)^{C_{p^{n}}}).$$

- Want to show: the middle is an isomorphism.
- Step one: Reduce the general case to the torsion free case.
- If $\pi_0(R)$ is torsion free, we know q is surjective and w is injective in the algebra line. Step two: show the same thing for the topology line assuming torsion free. (Then the middle terms are isomorphic.)

<ロト <問ト < 回ト < 回ト :

Prelim I: Cyclotomic spectra; Tate diagram; Fixed points Prelim II, Witt vectors Defining Witt structures on THH using cartoons Comparing THH with Witt 000000 0000000 000000 000000

The end

Thank you!

Folin	g Zo	bu
Witt	and	тнн