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Previously

For a ring R or E1-ring spectrum R, one (Bökstedt–Hsiang–Madsen)
defines an S1-spectrum THH(R).

THH(R) has a cyclotomic structure, which allows one to define TC(R).

TC(R; p)

K(R; p) THH(R)
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TC in a nutshell

(Blumberg–Mandell) TC(X ; p) = hofib(F − id : TR(X ; p)→ TR(X ; p)),
where

TR(R; p) = lim(· · · R→ (THH(R))
C
pn+1 R→ (THH(R))Cpn

R→ · · · )

TR(R; p) = lim(· · · R→ (THH(R))Cpn
R→ (THH(R))

C
pn−1 R→ · · · )

F

(Nikolaus–Sholze)

TC(R; p) = hoeq

can, φp :

TC−(R) TP(R)∧

(THH(R))hS
1

(THH(R))tS
1
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p-cyclotomic spectra

Definition (sometimes by S1, we mean Fp∞ = {Cp, · · · ,Cpn , · · · })

In the Blumberg–Mandell (classical) sense:

X : S1-spectrum;
+ an S1-map X → ΦCp (X ) which is an equivalence on fixed points for the
subgroups Cpn ⊂ S1.

In the Nikolaus–Sholze (∞-category) sense:

X : spectrum with S1-action;
+ an S1-map ϕ : X → X tCp .

Motivation

Let LX = Map(S1,X ) for a space X . Then LX has an S1-action and
(LX )Cp ∼= LX . In fact, Σ∞S1 (LX )+ is a cyclotomic spectra.

Example

THH(R) is a cyclotomic spectrum.

Foling Zou UChicago

Witt and THH



Prelim I: Cyclotomic spectra; Tate diagram; Fixed points Prelim II, Witt vectors Defining Witt structures on THH using cartoons Comparing THH with Witt vectors Summary

Tate square

For a G -spectrum X , there is a comparison of fiber sequences:

XhG XG (ẼG ∧ X )G

XhG XhG X tGN

Taking G = Cpn , we get a pullback diagram:

XCpn (ΦCp (X ))
C
pn−1

XhCpn X tCpn
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Definition

In the Blumberg–Mandell (classical) sense:

X : S1-spectrum;
+ an S1-map X → ΦCp (X ) which is an equivalence on fixed points for the
subgroups Cpn ⊂ S1.

In the Nikolaus–Sholze (∞-category) sense:

X : spectrum with S1-action;
+ an S1-map ϕ : X → X tCp .

XCpn (ΦCp (X ))
C
pn−1

XhCpn X tCpn

XCpn X
C
pn−1

XhCpn (X tCp )
hC

pn−1

Tate orbit lemma: X tCpn ' (X tCp )
hC

pn−1 if X is bounded below.
Idea to comparing the two definitions:

If we have a BM X , we can define ϕ to be X → ΦCpX → X tCp .

If we have a NS X , we can define XCpn inductively as a pullback and build
an S1-spectrum from these fixed points. (Ref: Krause–Nikolaus, Prop 9.2)
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Remark: “Tate stairs” (all squares are pullbacks)

XCpn X
C
pn−1

XhCpn (X tCp )
hC

pn−1can

X
C
pn−2

X
hC

pn−1 (X tCp )
hC

pn−2can

ϕp

· · ·X

X
hC

pn−2 · · ·X tCp
can

ϕp

ϕp

R

Definition

XCpn ' XhCpn ×
(XtCp )

hC
pn−1 X

hC
pn−1 ×

(XtCp )
hC

pn−2 × · · · ×XtCp X
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Theorem [Hesselholt–Madsen]

For a connective commutative ring spectrum R, there are isomorphisms of rings

π0(THH(R))Cpn ∼= W<pn>(π0R).

Moreover, this isomorphisms are compatible with F ,R,V (to be defined).

Remark: If R is an E1-ring spectrum, we still have isomorphisms of abelian
groups.

Corollary

For any (associative) ring A,

TC−1(A; p) ∼= W (A)F .

(Fact: TC is (-2)-connected.)

Compare with
TC∗(Fp) ∼= Zp[ε]/ε2, |ε| = −1.
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Summary

Goal

π0(THH(R))Cpn ∼= W<pn>(π0R).

Analogy

Rings Ring Spectra

R0 = π0(R) R

W〈1〉(R0) THH(R)

W〈pn〉(R0) THH(R)Cpn

Remark: W〈1〉(R0) ∼= HH0(R0).

Goal one: define a “Witt vector structure” (R,F ,V ,w , τ) on RHS.

Goal two: compare RHS to LHS.
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Witt vector: Big, S-truncated, p-typical

Invented for: studying cyclic extension of fields in number theory.

Appears in: p-adic Hodge theory; chromatic homotopy theory.

Input and output: (W is right adjoint to the forgetful functor.)

W : CommRing → Λ−Ring (→ CommRing);

W〈p∞〉 : CommRing → δ−Ring (→ CommRing);

W commutes with split coequlizers. So it suffices to construct them on free rings.

Big: coordinates indexed by N (NOT including 0).

S-truncated: coordinates indexed only by S ⊂ N.

p-typical: S = 〈p∞〉 = {1, p, p2, · · · }.
n-truncated p-typical: S = 〈pn〉 = {1, p, · · · , pn}.
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Coordinates: Witt, ghost, generating functions

p-typical Witt vectors

n∏
k=0

R = W〈pn〉(R)
w−→

n∏
k=0

R.

w0 = x0;

w1 = xp0 + px1;

w2 = xp
2

0 + pxp1 + p2x2; · · ·

The LHS gives the Witt coordinates (x0, x1, · · · ). It is NOT a ring map.
The RHS gives the ghost coordinates (w0,w1, · · · ). It is a ring map.
If R is torsion free, w is injective.
Image of w can be identified by Dwork’s lemma.

Remark (Krause–Nikolaus): The formulas can be recovered by −dlog if we
identify

(x0, x1, · · · )↔
∞∏
k=0

(1− xk t
pk ); (w0,w1, · · · )↔

∞∑
k=0

wk t
pk−1.
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Structures on p-typical Witt vectors

Reduction: R(w0,w1, · · · ,wn) = (w0,w1, · · · ,wn−1)

R(x0, x1, · · · , xn) = (x0, x1, · · · , xn−1)

Frobenius: F (w0,w1, · · · ,wn) = (w1,w2, · · · ,wn)

Verschiebung: V (w0,w1, · · · ,wn) = (0, pw0, pw1, · · · , pwn)

V (x0, x1, · · · , xn) = (0, x0, x1, · · · , xn)

Teichmüler: τ : R →W〈p∞〉(R), τ(r) = (r , rp , rp
2
, · · · )

τpn : R →W〈pn〉(R), τ(r) = (r , rp , rp
2
, · · · , rpn )

(Ref:9.8) RF = FR, RV = VR, FV = p (FV =
∑
σ∈Cp

σ).

(Ref:9.11) Rτpn = τpn−1 , Fτpn = τpn−1 ◦ (−)p.

(Ref:B5) (x0, x1, · · · ) =
∑∞

k=0 V
kτ(xk).
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First goal

Want to define
R : THH(R)Cpn → THH(R)

C
pn−1 ;

F : THH(R)Cpn → THH(R)
C
pn−1 ;

V : THH(R)Cpn → THH(R)
C
pn+1 ;

τ : R → THH(R)Cpn ; ?

Ghost coordinate w : THH(R)Cpn →
∏n

k=0 THH(R);

Witt coordinates
∏n

k=0 R → THH(R)Cpn .?

Warning on names:

Witt Equivariant homotopy In brief

R from Frobenius ϕp : X → X tCp the upper leg in “Tate”

F restriction XCp → X ?

V transfer X → XCp ?(
FV = p

) (
FV =

∑
σ∈Cp

σ
)

Note: ?=only on the 0-space. ? = definition.
Foling Zou UChicago
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Reduction

Reduction is the upper leg in the Tate square.

In the picture (pullback), just forget the last line. (This is analogous to the
algebra case.)
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Frobenius

Remark: The arrows are induced by XhCp → X , inclusion of fixed points.
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Verschiebung

Remark: The arrows are induced by X → XhCp

N→ XhCp , the transfer map.

V is well defined because X → XhCp can→ X tCp is 0.
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Ghost w (n) : XCpn →
∏n

k=0 X

Definition

w
(n)
k = F kRn−k .
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Teichmüler: ideally, R → THH(R)
?→ THH(R)Cpn .

Frobenius lift φp for a p-cyclotomic spectra X .

Good case: If a cyclotomic spectra X admits a Frobenius lift φp,

XhCpX

X tCp

ϕp

φp

can

XCp

Φp

XhCpnX

XCpn

Φpn

(φp)n

XhCp

XXCp

X tCp

X

φp

=

ϕp

Then there are canonical lifts Φpn as displayed (Ref:9.9).
Proof: Tate diagram + induction.

X = THH(R) may not admit Frobenius lift;
But X = THH(S[G ]) always do. In fact, THH(S[G ]) ' Σ∞+ LBG and ϕp

is given by

LBG
”(−)p”→ (LBG)hCp → (LBG)tCp .

We have Φpn : THH(S[Ω∞R])→ (THH(S[Ω∞R]))Cpn .
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Teichmüler: ideally, R → THH(R)
?→ THH(R)Cpn .

Frobenius lift φp for a p-cyclotomic spectra X .

Good case: If a cyclotomic spectra X admits a Frobenius lift φp,

XhCpX

X tCp

ϕp

φp

can

XCp

Φp

XhCpnX

XCpn

Φpn

(φp)n

XhCp

XXCp

X tCp

X

φp

=

ϕp

Then there are canonical lifts Φpn as displayed (Ref:9.9).
Proof: Tate diagram + induction.

X = THH(R) may not admit Frobenius lift;
But X = THH(S[G ]) always do. In fact, THH(S[G ]) ' Σ∞+ LBG and ϕp

is given by

LBG
”(−)p”→ (LBG)hCp → (LBG)tCp .

We have Φpn : THH(S[Ω∞R])→ (THH(S[Ω∞R]))Cpn .

Foling Zou UChicago

Witt and THH



Prelim I: Cyclotomic spectra; Tate diagram; Fixed points Prelim II, Witt vectors Defining Witt structures on THH using cartoons Comparing THH with Witt vectors Summary
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Teichmüler, cont.

Adjunction
S = Σ∞+ : E1(Space)↔ E1(Sp) : Ω∞

Ideally,

R → THH(R)
?→ THH(R)Cpn

In fact,

S[Ω∞R]→ THH(S[Ω∞R])
Φpn→ (THH(S[Ω∞R]))Cpn

ε→ THH(R)Cpn

Counit, E1-map ε : S[Ω∞R]→ R

Adjoint to get
τpn : Ω∞R → Ω∞(THH(R)Cpn )

Remark: τ1 is the expected map (R → THH(R)).
Proof: play with the triangle identity of the adjunction.
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Witt coordinate

Definition

I (n) :
n∏

k=0

Ω∞R → Ω∞(THH(R)Cpn );

(αk) 7→
n∑

k=0

Vpk τpn−k (αk).

Here,
∑

is addition on the 0-space of a spectrum.

I (n) is only defined on the 0-space because τ is.

I (0) = τ1 is the canonical map R → THH(R).
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I (n) :
n∏

k=0

Ω∞R → Ω∞(THH(R)Cpn ).

Comparision and new goal

algebra

topology

∏n
k=0 π0R W〈pn〉(π0R)

∏n
k=0 π0R

π0(
∏n

k=0 R) π0(THH(R)Cpn ) π0(
∏n

k=0 THH(R))

Witt coordinate abstract ghost coordinate

q w〈pn〉

π0I
(n) π0w

(n)

Want to show: the middle is an isomorphism.

Step one: Reduce the general case to the torsion free case.

If π0(R) is torsion free, we know q is surjective and w is injective in the
algebra line. Step two: show the same thing for the topology line
assuming torsion free. (Then the middle terms are isomorphic.)
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Lemma (Ref:9.12)

The following sequence is exact:

π0(THH(R)Cpn )π0(THH(R)) π0(THH(R)
C
pn+1 ) 0

V n+1 R

Moreover, it is left exact if π0R is p-torsion free.

Why do we want this? For induction.

How to see whether it should be R or F? In algebra,

W〈1〉
V n+1

−→ W〈pn+1〉
R−→W〈pn〉 → 0.

Using ghost coordinates,

Vpn+1 (r) = (0, · · · , 0, pn+1r);

Rp(r0, · · · , rn+1) = (r0, · · · , rn−1);

Fp(r0, · · · , rn+1) = (r1, · · · , rn).
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Lemma (Ref:9.12)

The following sequence is exact:

π0(THH(R)Cpn )π0(THH(R)) π0(THH(R)
C
pn+1 ) 0

V n+1 R

Moreover, it is left exact if π0R is p-torsion free.

In topology, the Tate diagram gives fiber sequence of R:

THH(R)hC
pn+1 THH(R)

C
pn+1 THH(R)Cpn

THH(R)hC
pn+1 THH(R)

hC
pn+1 THH(R)

tC
pn+1

R

N

And π0THH(R)→ π0(THH(R)hC
pn+1 )→ π0(THH(R)

C
pn+1 ) is the transfer

map, so it is related to V .
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Step two: Show π0I
(n) is surjective and π0w

(n) is injective in the torsion
free case.

∏n
k=0 π0R

π0(THH(R)Cpn )

∏n
k=0(π0THH(R))

π0I
(n)

π0w
(n)

topology

Witt

abstract

ghost

base case

π0(R)

π0(THH(R))

π0(THH(R))

I (0)=τ1

w (0)=id

inductive case inductive hypothesis

π0R

π0(THH(R))

π0(THH(R))

∏n+1
k=0 π0R

π0(THH(R)
C
pn+1 )

∏n+1
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π0I
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π0w
(n+1)

? ?

V R

The canonical map R → THH(R) is also just τ1 = I (0);

? is in+1 and p0,··· ,n because by definition Vpn+1τ1 = I (n+1) ◦ in+1.

?? is pn+1 because wn+1Vpn+1 = Fpn+1Vpn+1 = pn+1.
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Step two: Show π0I
(n) is surjective and π0w

(n) is injective in the torsion
free case.

∏n
k=0 π0R

π0(THH(R)Cpn )

∏n
k=0(π0THH(R))

Witt

abstract

ghost

inductive case inductive hypothesis

π0R

π0(THH(R))

π0(THH(R))

∏n+1
k=0 π0R

π0(THH(R)
C
pn+1 )

∏n+1
k=0(π0THH(R))

canonical

pn+1

π0I
(n)

π0w
(n)

π0I
(n+1)

π0w
(n+1)

in+1 p0,··· ,n

V R

All rows are exact (The second row is the Lemma).

By the snake lemma, pn+1 and w (n) being injective implies w (n+1) being
injective.

Similarly for I (n+1), expect that a prior π0I may not be a group
homomorphism. They are group homomorphism because wI is and w is
injective.
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Summary

Goal

π0(THH(R))Cpn ∼= W<pn>(π0R).

Analogy

Rings Ring Spectra

R0 = π0(R) R

W〈1〉(R0) THH(R)

W〈pn〉(R0) THH(R)Cpn

Remark: W〈1〉(R0) ∼= HH0(R0).

Goal one: define a “Witt vector structure” (R,F ,V ,w , τ) on RHS.

Goal two: compare RHS to LHS.
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First goal

Want to define
R : THH(R)Cpn → THH(R)

C
pn−1 ;

F : THH(R)Cpn → THH(R)
C
pn−1 ;

V : THH(R)Cpn → THH(R)
C
pn+1 ;

τ : R → THH(R)Cpn ; ?

Ghost coordinate w : THH(R)Cpn →
∏n

k=0 THH(R);

Witt coordinates
∏n

k=0 R → THH(R)Cpn .?

Warning on names:

Witt Equivariant homotopy In brief

R from Frobenius ϕp : X → X tCp the upper leg in “Tate”

F restriction XCp → X ?

V transfer X → XCp ?(
FV = p

) (
FV =

∑
σ∈Cp

σ
)

Note: ?=only on the 0-space. ? = definition.
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I (n) :
n∏

k=0

Ω∞R → Ω∞(THH(R)Cpn ).

Comparision and new goal

algebra

topology

∏n
k=0 π0R W〈pn〉(π0R)

∏n
k=0 π0R

π0(
∏n

k=0 R) π0(THH(R)Cpn ) π0(
∏n

k=0 THH(R))

Witt coordinate abstract ghost coordinate

q w〈pn〉

π0I
(n) π0w

(n)

Want to show: the middle is an isomorphism.

Step one: Reduce the general case to the torsion free case.

If π0(R) is torsion free, we know q is surjective and w is injective in the
algebra line. Step two: show the same thing for the topology line
assuming torsion free. (Then the middle terms are isomorphic.)
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The end

Thank you!
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