Riemann mapping theorem

\[\Omega \text{ proper simply conn } \implies \exists \text{ conformal } f : \Omega \to \mathbb{D}. \]

Need some technical lemmas.

Lem 1: Let \(\Omega \) open set. Let \(F \) be a

fam. of holomorphic \(f : \Omega \to \mathbb{C} \).

Suppose \(F \) is uniformly bounded on every

compact subset of \(\Omega \). Then

1. \(F \) is equicontinuous.

 Proof: Let \(\epsilon > 0 \) be fixed.

 \(\forall 3 \delta > 0 \exists \delta \text{ s.t. } \delta > \delta \Rightarrow (|f(x) - f(y)| < \varepsilon) \)

 so equicontinuous.

 \(\forall x \exists \delta \text{ s.t. } \forall y \in F \exists \delta \Rightarrow (|x - y| < \delta) \)
Not equicts:

\[W \]

Given \(\epsilon \), can't find \(\delta \).

2) \(F \) is normal, i.e.,

every seq of fns \(f_1, f_2, \ldots \in F \) has subseq that w/ unifly.

O ECS of \(\Omega \).

pf:

To show: unif bdt O ECS \(\implies \) equicts.

Need holomorphic. (Note: sin example doesn't work)

Use CLF to reduce to studying easier functions.
$K \subset \Omega$, distance at least η.

Suppose given $\varepsilon > 0$. How to choose ε?

$$f(z) = \frac{1}{2\pi i} \oint_{\partial \mathcal{C}_{r}} \frac{f(s)}{s-z} \, ds$$

$r < \eta$

$r < \eta/2$)

so that $r \in K_2 \subset \Omega$

$$f(w) = \frac{1}{2\pi i} \oint_{\partial \mathcal{C}_r} \frac{f(s)}{s-w} \, ds$$

$$|f(z) - f(w)| \leq \frac{1}{2\pi} \int_{\partial \mathcal{C}_{z,r}} |f(s)| \left| \frac{1}{s-z} - \frac{1}{s-w} \right|$$

$$= \frac{1}{2\pi} \int_{\partial \mathcal{C}_{z,r}} |f(s)| \frac{|z-w|}{|s-z||s-w|} \, ds$$
So \(|f(z)| \leq B \) since \(r < \frac{1}{2} \).

\[|z-w| = r \]

\[|z-w| > \frac{1}{2} \]

Need a bound on this.

Say \[|z-w| < r/2 \].

Then \[|z-w| > r/2 \].

So \[|f(z) - f(w)| \]

\[\leq \frac{1}{2\pi} B \cdot \frac{|z-w|}{r \cdot r/2} \cdot 2\pi r \]

Does not depend on \(f \).

So we've proved equi-iccy on \(K \)!
Now to show: equicts OECs \implies normal.

$f_1, f_2, \ldots \in F$.

Idea: if $w_1 \in G$, then $\exists \epsilon > 0$ such that $f_i(w_1), f_2(w_1), \ldots$ has a subseq.

Say g_1, g_2, \ldots

Now $w_2 \in G$:

$g_1(w_2), g_2(w_2), \ldots$ has a subseq.

Say h_1, h_2, \ldots

So plug in $z = w_1$ or $z = w_2$ \implies seq. $\&$ converges!
so let \(w_1, w_2 \ldots \) be a dense countable subset of \(\Omega \).

from \(f_1, f_2 \ldots \)

\[
\begin{array}{cccc}
 f_{1,1} & f_{2,1} & f_{3,1} & f_{4,1} \\
 f_{1,2} & f_{2,2} & f_{3,2} & f_{4,2} \\
 f_{1,3} & f_{2,3} & f_{3,3} & f_{4,3} \\
\end{array}
\]

\(\text{cugs at } w_1 \), \(\text{cugs at } w_2 \) (and \(w_1 \)), \(\text{cugs at } w_3 \) (and \(w_1, w_2 \))

\[\text{take diagonal } g_n = f_{n,n} \text{.} \]

This cugs at all \(\xi \in w_1, w_2, \ldots \).

let \(K \subseteq \Omega \) compact.

Need to show \(g_n \) is uniformly Cauchy on \(K \).
idea, for any \(z \in k \), want \(w_j \) close to \(z \). Then

\[
q_n(z) - q_m(z) = q_n(z) - q_n(w_j) + q_n(w_j) - q_m(w_j) + q_m(w_j) - q_m(z)
\]

use equiuty. Suppose given \(\exists \epsilon > c \). \(\exists \delta \) s.t.

\[
\forall h, \quad |z - w| < \delta \quad \Rightarrow \quad |q_k(z) - q_k(w)| < \epsilon
\]

so good with those 2 terms. For middle terms, we want to only consider finitely many \(w_j \).
we'll eventually cover K.

Rem: true that I didn't go into complete detail, but best if you work it out on your own.

Lemma 2: $\Omega \subset \mathbb{C}$

g_n vugs unity $\Omega ECSO \Omega

f_n injective.

$\Rightarrow f$ is inj. or const.

Pf: SFC. $f(\omega_1) = f(\omega_2)$.

$$g_n(\omega) = f_n(z) - f_n(\omega)$$

$$g_n^*(z) = f(z) - f(\omega)$$
study \(g_n \) near \(\omega \), \(\Rightarrow \) No zero

\[g(z) = g_n(z) + (g(z) - g_n(z)) \]

\(g \) is not a con

by assumption \(g \neq 0 \). so

\(g \) has isolated zero at \(\omega \).

no other zeros here. (incl bdary).

so \(|g(z)| > c > 0 \) on bdary.

so for large enough \(n \)

\(|g_n(z)| > \frac{c}{2} \)

\(|g(z) - g_n(z)| < \frac{c}{2} \)

apply Rouche on one of these \(g_n \). Done!
Back to Riemann mapping.

\[\Omega \neq \mathbb{C} \text{ simply connected} \]

\[b/c \Omega \neq \mathbb{C} \quad (\exists \ a \neq \Omega) \]

So now suppose \(\Omega \subset \mathbb{D}, \ 0 \in \Omega \).
Can we find a conformal \(f: \Omega \to \mathbb{D} \)?

s.t. \(f(0) = 0 \)

Note if \(f(0) = \Omega = \mathbb{D} \), then one way is

\[|f'(0)| = 1 \quad (i.e. \text{ maximize } |f'(0)|) \]

So \(F = \{ f: \Omega \to \mathbb{D} : f \text{ injective} \} \)
\[S = \sup_{f \in F} |f'(0)| \quad \leftarrow \text{Is the sup attained? Yes!} \]

We know.

\[\exists f_1, f_2, \ldots \quad \text{s.t.} \quad |f_n'(0)| \to S. \]

So \[\exists \text{unifly wgt. } O_ECSO \subseteq \text{subseq} \quad \text{this seq cgy to some } f. \]

\[f(0) = 0. \quad f \text{ is nonconst } (\text{why?}) \]

\[f \text{ is injective.} \]

So \[f \in F. \]

Claim: \[f \text{ is conformal!} \]

why?
(There is a mistake on this page: g is not a D -> D map.)

\[f : \Omega \rightarrow D. \]

Suppose \(f \) misses \(\alpha \).

\[
\begin{array}{cccc}
\Omega & \xrightarrow{f} & D & \xrightarrow{\psi_\alpha} & D & \xrightarrow{g} & D & \xrightarrow{\psi_g(\alpha)} & D \\
\end{array}
\]

\[
\begin{array}{cccc}
\Omega & \xrightarrow{f} & D & \xrightarrow{g} & D & \xrightarrow{\psi_g(\alpha)} & D \\
0 & \xrightarrow{\alpha} & 0 & \xrightarrow{g(\alpha)} & 0 \\
\end{array}
\]

\[
\Phi \circ g \circ \Phi_d
\]

\[
F = \psi_g(\alpha) \circ g \circ \psi_\alpha \circ f
\]

injective. \(\Omega \rightarrow D. \)

\[
\Phi(0) = 0,
\]

\[
\Phi : D \rightarrow D, \quad \Phi \text{ not injective} \quad \text{so} \quad |\Phi'(0)| < 1
\]