Problem 1

Definition: Let $a, b \in \mathbb{Z}$. We write $a \mid b$ (and say “a divides b”) if there exists a $k \in \mathbb{Z}$ such that $a \cdot k = b$.

Which of the following are true? (Use the definition above!)

(a) $4 \mid 12$
(b) $4 \mid 13$
(c) $4 \mid (-12)$
(d) $(-4) \mid 12$
(e) $(-4) \mid (-12)$
(f) $1234 \mid 1$
(g) $1 \mid 1234$
(h) $1 \mid 0$
(i) $0 \mid 1$
(j) $0 \mid 0$

Problem 2

What are all the divisors of 24? What are all the divisors of 37? What are all the divisors of 0?

Problem 3

Let $a, b, c \in \mathbb{Z}$. Which of the following are true?

(a) If $a \mid b$, then $a \mid bc$.
(b) If $a \mid bc$, then $a \mid b$.
(c) If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.
(d) If $a \mid b$ and $a \mid (b + c)$, then $a \mid c$.
(e) If $a \mid b$ and $b \mid c$, then $a \mid c$.
(f) If $a \mid b$ and $a \mid c$, then $b \mid c$.
(g) If $a^2 \mid b^2$, then $a \mid b$.
(h) If $a \mid b$, then $a^2 \mid b^2$.