Math 112 Lecture 1

9/26/16

Before class: "Take out pencil and paper and try to solve the following puzzle: (you can also discuss with others)

Can you place the numbers 1 through 6 on the 6 dots so that the sum along each of the three sides is the same? How many ways are there to do this?"

Start of class: introductions.

- Pair up, get to know each other
 - Name
 - Where from
 - Major, interests
 - Why taking this class
 - Fun fact.

Go through syllabus.

Questions?

Return to problem.

* anonymous on Piazza
 - collaboration
 - homework hopefully interesting
some ideas for to point out:

1. symmetry

\[\text{"symmetries of triangle"} \]

2. largest side sum

\[4 + 5 + 6 = 15 \]
\[\text{No, } 1 + 5 + 6 = 12 \]

(smallest: \(6 + 1 + 2 = 9 \))

3. algebra:

\[\begin{align*}
& a + d + b = S \\
& b + e + c = S \\
& c + f + a = S \\
\end{align*} \]

\[a + b + c + d + e + f = 1 + \ldots + 6 = 21 \]

see if students can come up with this

4 equations, 7 variables...

Note: goal of today is NOT to become experts at these particular problems. Instead, we want to get an idea of what it's like to approach a new mathematical problem.
\[2a + 2b + 2c + d + e + f = 3S \]
\[\Rightarrow a + b + c + 21 = 3S \]

We also know \(S \in \{9, 10, 11, 12\} \).

E.g. if \(S = 9 \):
\[a + b + c = 27 - 21 = 6 \]
\[\Rightarrow a, b, c \text{ are } 1, 2, 3 \]

(Q. Does the order matter?)

Answers:

\[\begin{array}{ccc}
1 & & 6 \\
5 & _ & 6 \\
3 & 4 & 2 \\
\hline
\end{array} \]

\[\begin{array}{ccc}
2 & & 1 \\
4 & _ & 3 \\
5 & 3 & 5 \\
\hline
\end{array} \]

\[\begin{array}{ccc}
4 & & 6 \\
4 & _ & 6 \\
5 & 2 & 3 \\
\hline
\end{array} \]

\[\begin{array}{ccc}
3 & & 1 \\
3 & _ & 1 \\
2 & 5 & 4 \\
\hline
\end{array} \]

24 solutions

Point out duality, why does it work?
potential topics: (can mention if they seem relevant)

* $1 + 2 + \ldots + n = \frac{n(n+1)}{2}$ (Gauss trick)

* bijections (problem 2)

 \[
 \begin{cases}
 \{ \text{solutions using } 1 - 6 \} \\
 \{ \text{solutions using } 7 - 12 \}
 \end{cases}
 \]

* primes (problem 3)

* divisibility (problem 5)

* symmetries of a triangle
Post-class:

- spent all the time on Problem 1.
- Some ideas of the students:
 - look at parity
 - balance large/small
 - rotate, flip (we talked about symmetries of the triangle)
Lecture 2: start with barber paradox? 9/28/16

Chapters 1 and 2 deal with some fundamentals. Need concepts, terminology, notation, etc.

Number systems:

natural numbers $\mathbb{N} = \{ 1, 2, 3, \ldots \}$

integers $\mathbb{Z} = \{ \ldots, -2, -1, 0, 1, 2, 3, \ldots \}$

"zahlen"

rational numbers $\mathbb{Q} = \{ \frac{a}{b} \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0 \}$

Set notation

"such that"

(Q for quotient)

real numbers \mathbb{R}: anything on this number line

-1 0 1

(rem: where is Q on the number line?)
some set notation:

1 ∈ \mathbb{N} \implies 1 \text{ is an element of } \mathbb{N}.

-1 \not\in \mathbb{N} \implies \text{not an element}

\pi \in \mathbb{R}, \quad \pi \notin \mathbb{Q}

VERY HARD! Not proved until 1700s.

Does anyone know any numbers not in \mathbb{Q}?

\sqrt{2} \in \mathbb{R}, \quad \sqrt{2} \notin \mathbb{Q}

much easier (but still needs work!)

subset:

\mathbb{N} \subseteq \mathbb{Z}, \quad \mathbb{Z} \subseteq \mathbb{Q}, \quad \mathbb{Q} \subseteq \mathbb{R}

A \subseteq B \text{ means:}

"If } x \in A \text{ then } x \in B"

"x \in A \implies x \in B"

Question: is \mathbb{N} \subseteq \mathbb{N}?

\varnothing \subseteq \mathbb{N}? \text{ Yes!}

\uparrow \text{empty set}
Constructing other sets.

Let A and B be sets.

union: \(A \cup B = \{ x \mid x \in A \text{ or } x \in B \} \)

intersection: \(A \cap B = \{ x \mid x \in A \text{ and } x \in B \} \)

properties:
- associativity
- commutativity
- identity

\((A \cup B) \cap C = (A \cap C) \cup (B \cap C)\)

"distributive property!"

what happens if you switch U/n 7

"boolean algebra"

Recall the Cartesian plane

((-2,2)

 (1,0)

 (0,0)

Cartesian product:

$$A \times B = \{ (a,b) \mid a \in A \text{ and } b \in B \}.$$

e.g. $\mathbb{R} \times \mathbb{R} =$ cartesian plane.

$$\mathbb{Z} \times \mathbb{Z} \subset \mathbb{R} \times \mathbb{R}.$$

What is it?

$$S = \{ (x,y) \mid y = x^2 \}.$$

Functions: $f : A \rightarrow B.$

"f is a function from A to $B."$

$$a \overset{f}{\rightarrow} \begin{array}{c} \text{mysterious device} \end{array} \begin{array}{c} \text{"f"} \end{array} \overset{f(a)}{\rightarrow} B.$$
e.g. \(f : \mathbb{R} \to \mathbb{R} \)
\(f(x) = x^2 \) is a function.

- Sequences of numbers are functions.

\[1, 1, 2, 3, 5 \ldots \]

Define \(f : \mathbb{N} \to \mathbb{R} \)
\[f(1) = 1 \quad f(2) = 1 \quad f(3) = 2 \quad \text{etc.} \]

- Addition is a function. How?

\[(5, 3) \xrightarrow{\text{mysterious device } f} 8 \]

\[f : \mathbb{N} \times \mathbb{N} \to \mathbb{N} \quad \text{these are technically different.} \]

\[f(5, 3) = 8 \]

\[f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \]

Addition is a binary operation on \(\mathbb{N} \)
on \(\mathbb{R} \)

"\(\mathbb{N} \) is closed under addition"
\[f : S \times S \rightarrow S \] called a binary operation on \(S \).

(last time: \(D_3 = \{ \text{symmetries of the triangle} \} \)
\[D_3 \times D_3 \rightarrow D_3 \]

bin op on \(\mathbb{R} \) that's not on \(\mathbb{N} \) ? (subtract)

... on \(\mathbb{Z} \)? (division)

... on \(\mathbb{Q} \)? (exponentiation)

or just define something silly like
\[f : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \]
\[f(x, y) = \sqrt{2} \]

Russell's paradox: In Chicago there are 2 types of people:

1. People who shave themselves
2. People who don't.

Russell is a barber in Chicago who shaves everyone, except those who shave themselves.

\(\Box \): Does Russell shave himself?
Warm-up problem:
Consider the following question (from a mock SAT):

"Let \(\ast \) be the op. defined by
\[
 a \ast b = (2ab - a - b)^2.
\]
Find
\[
 1 \ast (2 \ast 3).
\]

(a) What's the answer? \(2 \ast 3 = 7\), \(1 \ast 7 = 36\)

(b) Is \(\ast \) commutative, associative?

(c) Is \(\ast \) a function? If so, what are its domain and range?

Remark: no strict curriculum for this class.
Let me know if there's something you'd like me to cover! (also: annhilator)

\(\ast \) is a function

\[
(2, 3) \mapsto \boxed{7}
\]

\(\mathbb{R} \times \mathbb{R} \)
so we can write:

\[\star : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \]

Back to move familiar binary operations...

\[+ : \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} \]

\[+ : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N} \]

\[+ : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \]

\[+ : \mathbb{Q} \times \mathbb{Q} \rightarrow \mathbb{Q} \] ? \[\left(\frac{a}{b} + \frac{c}{d} \right) = \frac{ad + bc}{bd} \]

multiplication? subtraction? division?

"\(\mathbb{N} \) is not closed under subtraction"
"Subtraction is not a binary operation on \(\mathbb{N} \)"

Now we'll look at some of these ops on less familiar number systems. (worksheet)

Write axioms from textbook on board.
Lecture 4: (in \(\mathbb{Z}_{10} \))

Warmup problem: Can you solve for \(x \) in the following?

(a) \(3 + x = 5 \)
(b) \(5 + x = 3 \)
(c) \(3 \cdot x = 1 \)
(d) \(3 \cdot x = 2 \)

Which elements of \(\mathbb{Z}_{10} \) have additive inverses?

\[
\begin{array}{cccccccccc}
- & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
-x (\text{add. inv}) & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \\
\end{array}
\]

What about multiplicative inverses?

\[
\begin{array}{cccccccccc}
- & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
x^{-1} (\text{mult inv}) & 9 & 3 & 7 & 1 & \ldots \ & 3 & 7 & \ldots & 1 \\
\end{array}
\]

What is special about \(1, 3, 7, 9 \)?

Discuss A1-A4, M1-M4, D

Continue with worksheet from Friday
Warmup: Suppose S is a set with a binary operation $+$ which satisfies axioms $A1-A4$. Suppose $a, b, c \in S$ and $a + c = b + c$. Can you prove that $a = b$? Is there an axiom you didn't need in the proof?

If S and $+$ satisfy $A1-A4$, we say S is an "abelian group"

Theorem 2.1 (Cancellation Law for Addition)

If: $\{S, +, \text{ satisfy } A1-A4, a, b, c \in S, a + c = b + c\}$

Then: $a = b$.

Proof: Just remember what we did on Monday!
(Here's one way of presenting the proof. The book has another presentation.)

\[a + c = b + c \quad \text{(from hyp. of thm.)} \]

\[(a+c)+(-c) = (b+c)+(-c) \quad \text{(by A4, c has an additive inverse)} \]

\[a + (c+(-c)) = b + (c+(-c)) \quad \text{(by A2, assoc.)} \]

\[a + 0 = b + 0 \quad \text{(by A4)} \]

\[a = b \quad \text{(by A3)} \]

\[\square \]

Rem: we never used A1 (comm.) "end of proof"

If S with + satisfies A2–A4, we say S is a "group."

Next thing to show?

Recall: In \(\mathbb{Z} \), 0 had no mult. inv.

In \(\mathbb{Z}_{10} \), 0

Is this true in general?
How / when can we show the following?

"For all $a \in S$, $a \cdot 0 = 0$.”

Think: 0 is additive identity.

We need to relate it to multiplication somehow: We must use D!

(The how to come up with this proof??)

Theorem 2.2:

If $\{S, +, \cdot\}$ satisfy

$$\forall a \in S$$

Then $a \cdot 0 = 0$.

Proof:

$$a \cdot 0 = a \cdot (0 + 0) \quad (A3)$$

$$a \cdot 0 = a \cdot 0 + a \cdot 0 \quad (D)$$

$$0 + a \cdot 0 = a \cdot 0 + a \cdot 0 \quad (A3)$$

$$\therefore 0 = a \cdot 0 \quad (\text{Thm 2.1})$$

What goes in $[??]$? $A3, D$

A2–A4 (from thm 2.1)
Note: DO NOT MEMORIZE THESE THEOREMS OR PROOFS!

Theorem 2.6: 0 has no multiplicative inverse.

In a commutative ring,

Pf: Suppose for contradiction that it does. Call the inverse z.

Then $0 \cdot z = 1$. By Theorem 2.2,

$0 \cdot z = 0$. So $0 = 1$. But by Axiom M3, $0 \neq 1$. So we have a contradiction. \square
Definition: Let \(a, b \in \mathbb{Z} \). We say "\(a \) divides \(b \)" if there exists a \(k \in \mathbb{Z} \) such that \(a \cdot k = b \).

Terminology / notation:
- "\(a \) is a divisor of \(b \)"
- "\(b \) is divisible by \(a \)"
- \(a \mid b \)

Observe: The definition of "\(a \) divides \(b \)" does not actually use division. This allows us to make the same definition in number systems where we can't divide (e.g. \(\mathbb{Z}_{10} \)).

Warmup: Which of the following are true?

(a) \(4 \mid 12 \)
(b) \(4 \mid 13 \)
(c) \(4 \mid (-12) \)
(d) \((-4) \mid 12 \)
(e) \(1 \mid 1234 \)
(f) \(1 \mid 0 \)
(g) \(0 \mid 1 \)
(h) \(0 \mid 0 \).
Theorem: let $a, b, c \in \mathbb{Z}$. If $ab \mid c$ then $a \mid bc$.

Proof: Suppose $ab \mid c$. Then there is a $k \in \mathbb{Z}$ such that $ak = b$. Multiply both sides by c

Thus, $a(kc) = bc$

so we found an integer $l \in \mathbb{Z}$ s.t.

$a = bc$, namely $l = kc$.

Thus, $a \mid bc$.

(Want to find: an integer l s.t. $al = bc$.)

Interpretation: b cookies, a people

each person gets k.

Now if you increase the # of cookies by a factor of c, then everyone now gets $k \cdot c$ cookies!

(Note: this interpretation only works if $a, b > 0$.)
Theorem: Let $a, b \in \mathbb{Z}$

If $a \mid b$ and $b > 0$ then $a \leq b$.

Q: (w/o $b > 0$) Is this true?

Proof: (Note: the book gives a different proof.)

(Idea: "Dividing can only make things smaller." but what if $a \leq 0$?)

Let $a, b \in \mathbb{Z}$. Suppose $a \mid b$ and $b > 0$.

Case 1: $a \leq 0$

Since $a \leq 0$ and $b > 0$,
we have $b > a$. Done!

Case 2: $a > 0$.

Since $a \mid b$, there is an $k \in \mathbb{Z}$ s.t. $ak = b$.

Since \{ $a > 0$ \} \ and \ \{ $b > 0$ \} \ we know $k \geq 1$

("Let's get a, b into this inequality")
\[
\begin{align*}
\text{\textcolor{red}{k} \geq 1} & \quad \Rightarrow \quad a_k \geq a \\
a > 0 & \quad \Rightarrow \quad b \geq a. \quad \text{Done!}
\end{align*}
\]
Warm-up problem. In $\mathbb{Z}_{16} = \{0, 1, \ldots, 15\}$, can you find a, b such that $a^2 \mid b^2$ (in \mathbb{Z}_{16}) and $a \nmid b$ (in \mathbb{Z}_{16})? (Hint: recall that every number divides 0.)

Solution: $b = 4$. $b^2 = 0$.

$a = 8$. Multiples of 8 in \mathbb{Z}_{16} are $\{8, 0\}$.

so $8 \nmid 4$. But $8^2 \mid 4^2$.

(since $8^2 = 4^2 = 0$.)

This example shows that "If $a^2 \mid b^2$ then $a \mid b$" is false in \mathbb{Z}_{16}.

Meta-reasoning: we can conclude that we cannot prove "if $a^2 \mid b^2$ then $a \mid b$" with just A1–A4, M1–M3, D alone!
- Return to other parts of Friday's worksheet.

- proof of \(a \mid b, b > 0 \Rightarrow a \leq b \).

Next topic: Greatest common divisor.

Def: \(d \) is a common divisor of \(a \) and \(b \) if \(d \mid a \) and \(d \mid b \).

Def: "greatest common divisor of \(a \) and \(b \)" is the... greatest common divisor (GCD).

Notation: \((a, b) \) denotes the GCD of \(a \) and \(b \).

Warning: same notation as ordered pair!

Examples:
\[
(24, 36) = 12 \\
(15, 45) = 15 \\
(25, 33) = 1
\]

Def: If \((a, b) = 1 \) then we say "\(a \) and \(b \) are relatively prime"
Theorem: If $a > 0$, $b > 0$, and $a \mid b$, then $(a, b) = a$.

Proof: (how to prove a is the GCD?)

need to show 2 things.

1. a is a common divisor of a and b.
2. If d is a common divisor of a and b, then $d \leq a$.

To show 1: $a \mid a \checkmark$ $a \mid b$ given \checkmark

since $a \cdot 1 = a$.

To show 2: Suppose $d \mid a$ and $d \mid b$.

Then $d \mid a$ implies $d \leq a$ (by Theorem 3.6) \square
warm-up problem: let's try ordering the elements of \mathbb{Z}_{10} by

$$0 < 1 < 2 < 3 < 4 < \ldots < 8 < 9$$

Let $a, b, c \in \mathbb{Z}_{10}$

Which of the following are true?

1. If $a < b$ then $a + c < b + c$ (Axiom O3)
2. If $a < b$ and $c > 0$, then $ac < bc$. (Axiom O4)

Remark: "order axioms." See sec 2.2 for more info.

Theorem: There is no way to order \mathbb{Z}_{10} in a way which satisfies the order axioms.

Proof: See Section 2.2, page 58.

(Don't need to know this.)

Recall: In \mathbb{Z}, $a \mid b$ means there exists a $k \in \mathbb{Z}$ such that $ak = b$.

(think of it as "$\frac{b}{a}$ is an integer")
Let's try to prove something involving ordering.

(\text{in } \mathbb{Z})
If \(a \mid b \), what can we say about the relative order of \(a \) and \(b \)?

\textbf{Theorem 3.6:} Let \(a, b \in \mathbb{Z} \).
If \(a \mid b \) and \(b > 0 \), then \(a \leq b \).

\textbf{Note:} This statement is not true for \(\mathbb{Z}_{10} \)!

\text{doesn't even make sense}

So again, we'll need more than A1-A4, M1-M3, D.

Give proof from 10/7/16 lecture notes.
Warm-up problem: Find the common divisors of the following pairs of numbers

(a) 63, 64
(b) 1234, 1235
(c) 1000, 1002
(d) 999, 1001
(e) 2400, 2405
(f) 2395, 2405

(Practice Problem 3.5)

Definition: If \((a, b) = 1\), we say "\(a\) and \(b\) are relatively prime."

Theorem: If \(a\) and \(b\) are positive integers and \(a | b\), then \((a, b) = a\).

Pf: (Notes from Lecture 7)

Observe from warm-up:

\[(2400, 2405) = 5\]
\[(2395, 2405) = 5\]

\[2405 - 2400 = 5\]

\[(2400, 5) = 5\]

\[(2395, 10) = 5\]

\[2405 - 2395 = 10\]
Theorem: Let $a, b \in \mathbb{Z}$. Then

$$(a, b) = (a+b, b).$$

Proof: We will show that
d is a common divisor of a and b \iff d is a common divisor of $a+b$ and b

so we need to show 2 things.

1. If d is a common divisor of a, b
 then d is a common divisor of $a+b, b$

2. If d is a common divisor of $a+b, b$
 then d is a common divisor of a, b.

To show 1: Suppose d is a common divisor of a, b.
Then $d | a$ and $d | b$. \(\because\) (by Theorem 3.2)
Then $d | (a+b)$.
Thus, d is a common divisor of $a+b, b$.

To show 2: Suppose d is a common divisor of $a+b, b$.
Then $d | (a+b)$ and $d | b$. \(\because\) (by Theorem 3.3)
Then $d | [(a+b) - b]$ \(\therefore\)
so $d | a$
so d is a common divisor of a, b. \[\square\]

Theorem 3.7(2): Let $a, b, c \in \mathbb{Z}$.

Then $(a + cb, b) = (a, b)$.

Proof: (try it yourself! Make some changes to the proof we just did) (or just apply the theorem we proved many times. "induction") \[\square\]
Lecture 10

warm-up:

×2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

Write the numbers 1–30. Do the following

1. cross out 1
2. circle the smallest number that's not crossed out or circled (yet). Cross out all multiples of this number
3. repeat 2 over and over and over...

What do you get?

"Sieve of Eratosthenes"

What do you remember about primes?

- divisible by only 1 and itself
- Is 1 prime? No! (why?)
• every number can be factored into primes, uniquely!
• there are infinitely many primes.
• primes are very weird; we don't know many things about them!

Def: p is a prime number if $p > 1$ and the only positive divisors of p are 1 and p.

Def: n is a composite number if $n > 1$ and n is not prime.

(Remark: 1 is neither prime nor composite. It is called a "unit".)

Let's show something that's "obvious".

Theorem 3.9: Every composite number is divisible by some prime.
what might go wrong?

Maybe there's a composite number \(n \) which is divisible by only composite numbers?

But then these composite numbers might be divisible by some prime?

Proof of Theorem 3.9: Let \(n \) be a composite number.

Let \(S \) be the set of all positive divisors of \(n \) other than 1 and \(n \).

\(n \) is composite \(\Rightarrow S \) is not empty.
S is a nonempty set of positive integers \(\Rightarrow \) S has a smallest element k.

"well-ordering principle"

Note: k\(\in \mathbb{S} \Rightarrow k \geq 2 \).

Claim: k is prime.

Pf: Suppose for contradiction that k is composite. Then there's a d such that 1 < d < k and d \| k.

\(d \| k \) and \(k \mid n \Rightarrow d \mid n \)

\(d < n, d > 1, d \mid n \Rightarrow d \notin S \).

So d \in S
\(d < k \)

k is the smallest element of S \(\Rightarrow \) \(\neg \) contradiction.

\[\square \]
warm-up: Is the a well-ordering principle for \(\mathbb{Z}_{10} \)? For \(\mathbb{Q} \)?

(Recall: the well-ordering principle for \(\mathbb{Z} \) says that every nonempty subset of positive integers has a smallest element.)

Last time, we used the well-ordering principle for \(\mathbb{Z} \) to show that every composite number is divisible by some prime.

Theorem: (first half of thm 4.7)

Every positive integer \(a \geq 2 \) can be written as a product of prime numbers. \((a = p_1 \cdot p_2 \cdots p_k)\)

Example: \(360 \)

\[
\begin{array}{c}
360 \\
\downarrow \\
36 \quad 10 \\
\downarrow \\
6 \quad 6 \quad 5 \\
\downarrow \\
2 \quad 3 \quad 1 \quad 3 \\
\end{array}
\]

\(360 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5\)
(Note: we're not saying anything about being unique here!)

What's the idea? Let $a \geq 2$.

If a is prime, then done!

If a is composite:

can create this factor tree.

The numbers at the bottom give the prime factorization of a.

Like before, we want to show the tree does not go on forever. So let's use well-ordering principle. (Idea: Take the smallest a that doesn't work)

Proof of theorem:

Let $S = \{ k \in \mathbb{Z} \mid k \geq 2$ and k cannot be written as a product of primes $\}$.

We want to show S is empty.

Suppose for contradiction that it is not.
Then by the well-ordering principle, \(S \) has a smallest element \(a \).

Since prime numbers are not in \(S \), we know \(a \) is not prime.

Since \(a \geq 2 \), \(a \) is composite, so there exist \(b, c \in \mathbb{N} \) such that
\[
\begin{align*}
 a &= b \cdot c \\
 1 &< b < a \\
 1 &< c < a.
\end{align*}
\]

\[1 < b < a \text{ is smallest element of } S \implies b \notin S.\]

So \(b \) can be written as a product of primes.

So there exist primes \(p_1, \ldots, p_n \) such that \(b = p_1 \cdot p_2 \cdot \cdots \cdot p_n \).

Similarly, there exist primes \(q_1, \ldots, q_m \) such that \(c = q_1 \cdot q_2 \cdot \cdots \cdot q_n \).

Then \(a = b \cdot c = (p_1 \cdot \ldots \cdot p_n) \cdot (q_1 \cdot \ldots \cdot q_n) \).

So \(a \) can be written as a product of primes.

So \(a \notin S \). Contradiction! \(\square \)

Hence, \(S = \emptyset \).
Theorem 3.10: There are infinitely many primes.

(Euclid, one of the most famous proofs in math).

Idea: If there were only finitely many primes, we can construct a new one.

Proof: Suppose for contradiction that there is only a finite number of primes.
We can list them out: \(p_1 \cdot p_2 \cdots p_n \).

Let \(N = p_1 \cdot p_2 \cdots p_n + 1 \).

Is \(N \) prime? No, since the only primes are \(p_1 \cdots p_n \) and \(N \) is bigger than all of them.

So \(N \) is composite. By theorem 3.9, we know \(N \) is divisible by some prime.
So there is a \(k \in \{1, 2, \ldots, n\} \) such that \(p_k \mid N \).

But if we divide \(N \) by \(p_k \), the remainder is 1, so \(p_k \nmid N \). Contradiction! \(\square \)

Hence, there are infinitely many primes.
Warm-up: (a) Can you find a number n such that if you divide n by 2, 3, 4, the remainder is always 1?
(b) Same question but with 2, 3, 4, 5
(c) Same ... 2, 3, ..., 99, 100.

- Proof that there are infinitely many primes. (Wed's lec. notes)
 Warning: when you do proof by contradiction, none of the statements inside the proof are necessarily true.
 e.g. $p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1$ is not necessarily prime.
 e.g. $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 + 1 = 30031 = 59 \cdot 509$
 these are prime and larger than 13.
Next topic: Division (but staying in \(\mathbb{Z} \))

\[
199 \div 7 ?
\]

\[
\begin{array}{c|c}
28 & 199 \\
7 \sqrt{199} & \Rightarrow 199 = 7 \cdot 28 + 3 \\
14 & \text{quotient} \quad \text{remainder}.
\end{array}
\]

\[
\underline{a = b \cdot q + r}
\]

Important: \(3 < 7 ! \)

(in general, \(r < b \)).

Note: If the remainder is zero, then \(b \mid a \).

Theorem 4.1 (Division Algorithm)

(i) For any two positive integers \(a, b \), there exist integers \(q, r \) such that

\[
a = b \cdot q + r \quad \text{and} \quad 0 \leq r < b.
\]

(ii) The integers \(q, r \) are unique.

\[
199 = 7 \cdot 28 + 3
\]

what if we got this?

we can decrease 10 by "moving a 7 over."

\[
199 = 7 \cdot 27 + 10
\]
Idea is to consider all possible values of $a-bk$. The smallest nonnegative one should be r.

Proof: Let a, b be positive integers.

Let $S = \{a-bk \mid k \in \mathbb{Z} \text{ and } a-bk \geq 0\}$

Since $a \in S$, S is nonempty.

Since S is a nonempty subset of nonnegative integers, it has a smallest element. Let's call it r.

We know $r \geq 0$, and since $r \in S$, there is a $q \in \mathbb{Z}$ such that $r = a - bq$.

Now we just need to show $r < b$.

Suppose for contradiction that $r \geq b$. Then

\[
\begin{cases}
 r - b \geq 0 \\
 r - b = a - bq - b = a - b(q + 1)
\end{cases}
\]

$\implies r - b \in S$. But r is the smallest element of S. \implies
Thus $r < b$.
Warm-up:
(a) Find \((13, 10)\) using the Euclidean alg.
(b) Find a solution to \(13x + 10y = (13, 10)\).
(c) Find \((78, 30)\) using the Euclidean alg.
(d) Find a solution to \(78x + 30y = (78, 30)\).

Last time, we had the division alg.

\[a = bq + r \]

\[q = \text{quotient} \]

\[r = \text{remainder} \quad 0 \leq r < b \]

From last week’s homework, \((a, b) = (bq + r, b) = (b, r)\) \(\uparrow\)

Theorem 3.7(2).

\[13 \div 10 : 13 = 1 \cdot 10 + 3 \quad \text{so} \quad (13, 10) = (10, 3) \]

\[10 \div 3 : 10 = 3 \cdot 3 + 1 \quad \text{so} \quad (10, 3) = (3, 1) \]

\[3 \div 1 : 3 = 3 \cdot 1 + 0 \quad \text{so} \quad (3, 1) = (1, 0) = 1 \]

\[\text{So} \quad [(13, 10) = 1] \quad \text{this is the Euclidean alg.} \]
Now to solve $13x + 10y = 1$.

Method 1: just try things.

$10, 20, 30, 40$

$13, 26, 39, 52$

$40 - 39 = 1$

so $13 \cdot (-3) + 10 \cdot 4 = 1$

Method 2: extended Euclidean algorithm.

$13 = 1 \cdot 10 + 3$

$10 = 3 \cdot 3 + 1$

$3 = 3 \cdot 1 + 0$

$3 = 13 - 1 \cdot 10$

$1 = 10 - 3 \cdot 3$

$1 = 10 - 3 \cdot (13 - 1 \cdot 10)$

$= 10 - 3 \cdot 13 + 3 \cdot 10$

$= (-3) \cdot 13 + 4 \cdot 10$

$x \quad \uparrow \quad y$

\[\uparrow\]
same for \((78,30)\).

\[
\begin{align*}
78 &= 2 \cdot 30 + 18 \\
30 &= 1 \cdot 18 + 12 \\
18 &= 1 \cdot 12 + 6 \\
12 &= 2 \cdot 6 + 0
\end{align*}
\]

\[
\begin{align*}
18 &= 78 - 2 \cdot 30 \\
12 &= 30 - 1 \cdot 18 \\
6 &= 18 - 1 \cdot 12
\end{align*}
\]

\[
\begin{align*}
\text{So } (78,30) &= (30,18) = (18,12) \\
&= (12,6) = (6,0) = 6
\end{align*}
\]

\[
\begin{align*}
\text{So } 6 &= 18 - 1 \cdot 12 \\
&= 18 - 1 \cdot (30 - 1 \cdot 18) \\
&= 18 + (-1) \cdot 30 + 1 \cdot 18 \\
&= (-1) \cdot 30 + 2 \cdot 18 \\
&= (-1) \cdot 30 + 2 \cdot (78 - 2 \cdot 30) \\
&= (-1) \cdot 30 + 2 \cdot 78 + (-4) \cdot 30 \\
&= 2 \cdot 78 + (-5) \cdot 30
\end{align*}
\]

\[
\begin{align*}
\uparrow & \quad \uparrow \\
\times & \quad y
\end{align*}
\]
This lets us solve \(ax + by = (a, b) \).

What about \(ax + by = c \) where \(0 < c < (a, b) \)?

No! \(ax + by \) is a multiple of \((a, b) \).

So \(c \) must be also!

Theorem (Bezout's lemma, Exercise 4.8 in text).

Let \(a, b \) be positive integers. Then

(1) If \(0 < c < (a, b) \), there are no integer solutions to \(ax + by = c \).

(2) There is an integer solution to \(ax + by = (a, b) \).

Proof of (1): Suppose \(ax + by = c \), \(c > 0 \).

Since \((a, b) \mid a \) and \((a, b) \mid b \),

we know \((a, b) \mid (ax + by) \)

so \((a, b) \mid c \)

so \((a, b) \leq c \).

Outline of proof of (2): Fix \(a, b \).

Let \(S = \{ ax + by \mid x, y \in \mathbb{Z} \text{ and } ax + by > 0 \} \).
S is a nonempty subset of pos. integers, so it has a smallest element.

Do some work to show the smallest is (a, b). □

Application of Bezout's Lemma

Theorem 6.6: Let $m \geq 2$. Let $0 < a < m$.

Then a has an inverse in \mathbb{Z}_m if and only if $(a, m) = 1$.

Proof: we need to show 2 things.

1. If a has an inverse in \mathbb{Z}_m, then $(a, m) = 1$

2. If $(a, m) = 1$, then a has an inverse in \mathbb{Z}_m.

To show 1: Suppose $ax = 1$ in \mathbb{Z}_m.

Then in \mathbb{Z}, $ax = 1 + my$ for some $y \in \mathbb{Z}$.

So $a \cdot x - m \cdot y = 1$.

So $(a, m) = 1$ by Bezout
To show 2: Suppose \((a,m) = 1\)

Then there are \(x, y \in \mathbb{Z}\) such that

\[ax + my = 1\]

So \(ax = 1 + m \cdot (-y)\) \quad \text{in } \mathbb{Z}

So \(ax = 1\) \quad \text{in } \mathbb{Z}_m \quad \square
Warmup: Recall from grade school that you can sometimes reduce fractions into other fractions. For example
\[
\frac{10}{15} = \frac{2}{3}.
\]

When can a fraction \(\frac{a}{b} \) be reduced?

The GCD tells you how much you can reduce the top and bottom by.

Last time, we saw Bezout's lemma:

Let \(a, b \) be positive integers.

Then

1. If \(0 < c < (a, b) \), then there is no solution to \(ax + by = c \).

2. There is a solution to \(ax + by = 1 \).
Prove theorem: \((a, m) = 1 \iff a \text{ has mult. inv. mod } m\).

(notes from last lecture)

So we've been able to show something that you might have been wondering!

Bézout's lemma is also useful for other things.

Q: If \(a \mid bc\), does \(a \mid b\) or \(a \mid c\)?

True if \(a\) is prime! Let's prove something more general first.

If \(a \mid bc\) and \(\frac{bc}{a} \in \mathbb{Z}\), then \(a \mid c\)

"think:"

If \(\frac{bc}{a} \in \mathbb{Z}\) and \(\frac{bc}{a} \in \mathbb{Z}\), then \(\frac{c}{a} \in \mathbb{Z}\)

\(\frac{bc}{a}\) is an integer, but "b does not help with making this an integer"

The condition we want is \((a, b) = 1\).

\(\frac{b}{a}\) is in lowest form (reduced).
Theorem 4.3: If \(a \mid bc \) and \((a, b) = 1\), then \(a \mid c \).

Proof: (How can we use \((a, b) = 1\)? This is a tricky, but short proof.)

Since \((a, b) = 1\), there are \(x, y \in \mathbb{Z}\) such that

\[ax + by = 1 \]

so

\[(ax + by)c = c \]

\[a(cx) + bc(y) = c \]

so \(a \mid c\).

Key idea: Use Bézout!

Theorem 4.4: (Euclid's lemma):

If \(p \) is prime and \(p \mid ab \), then \(p \mid a \) or \(p \mid b \).
Proof: Let p be prime and $p|ab$.

Two cases.

1. $p|a$
2. $p|a$.

For 1: If $p|a$ then we are done!

For 2: If $p|a$ then $(p,a)=1$, so by Theorem 4.3, $p|b$. Done! □

Theorem 4.5: If $p|a_1 \cdots a_r$, $a_1 > \cdots > a_r$ then there is some j such that $p|a_j$.

(×) "How can we use the previous theorem to show this?"
Now we have all the tools we need to prove unique prime factorization.

\[360 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5. \]

Theorem 4.7 (The Fundamental Theorem of Arithmetic)

Let \(n \geq 2 \) be an integer. Then there is a unique way to write

\[n = p_1 \cdot p_2 \cdot \ldots \cdot p_k \]

where each \(p_j \) is prime

and \(P_k \leq \ldots \leq p_k \).

Pf. We already showed (several lectures ago) that we can write \(n \) as a product of primes. (Remember? We used well-ordering.)
To show it's unique:

Suppose \(N = p_1 \cdot p_2 \cdots \cdot p_k = g_1 \cdot g_2 \cdots \cdot g_l \)

Let's show they're actually the same. (Maybe need to reorder)

Idea: \(p_i \) appears somewhere in \(g_1, g_2, \ldots, g_l \).

Why? \(p_i \mid n \) so \(p_i \mid g_1, g_2, \ldots, g_l \).

So \(p_i \mid g_i \) for some \(i \).

\(p_i, g_i \) are prime so can cancel them out.

\[
\frac{P_1 \cdot P_2 \cdots \cdot P_k = g_1 \cdots \cdot g_{i-1} \cdot g_i \cdot g_{i+1} \cdots \cdot g_l}{\}
\]

Now repeat the same procedure.

\(p_2 \) appears somewhere in \(g_1, g_2, g_3, g_4, \ldots, g_l \).

Cancel them out again.

Eventually everything cancels, we end up with \(1 = 1 \).
Warmup

"If $\frac{bc}{a} \in \mathbb{Z}$ and $\frac{??}{??}$ then $\frac{c}{a} \in \mathbb{Z}$."

What could go here to make this true?

- Start with notes from last lecture, page 2.
- Question: Is F.T.A. still true if we call 1 a prime?

Applications of F.T.A. (unique prime factorization):

- Testing for divisibility / finding divisors.

Example: What are the divisors of 72?

$72 = 2 \cdot 2 \cdot 2 \cdot 3 \cdot 3.$

If $d | 72$ then there's a $k \in \mathbb{Z}$ such that $dk = 72$.

So when you combine the prime factorizations of d and k, you must get $2 \cdot 2 \cdot 2 \cdot 3 \cdot 3$.

2° 2¹ 2² 2³
3° 1 2 4 8
3¹ 3 6 12 24
3² 9 18 36 72
Now that we know how to find divisors of a number using prime factorization, we can use this to find GCD.

e.g. $360 = 2^3 \cdot 3^2 \cdot 5^1$

$1500 = 2^2 \cdot 3^1 \cdot 5^3$

We want to take the most "copies" of each prime we can.

$(360, 1500) = 2^2 \cdot 3^1 \cdot 5^1 = 60$.

- LCM

- $\sqrt{2}$ is irrational.
Warmup: Suppose p and g_1, g_2, \ldots, g_k are primes and $p \mid g_1 g_2 \cdots g_k$. What can we conclude?

- State FTA, give the proof (see previous lecture's notes)
- Applications (divisors/GCD/LCM)

Theorem: If $a^2 \mid b^2$ then $a \mid b$. (in \mathbb{Z})

Recall, this was not true in \mathbb{Z}_{16}!

Proof: Suppose $a = p_1^{a_1} p_2^{a_2} \cdots p_k^{a_k}$

$$b = p_1^{b_1} p_2^{b_2} \cdots p_k^{b_k}$$

$$a^2 = p_1^{2a_1} p_2^{2a_2} \cdots p_k^{2a_k}$$

$$b^2 = p_1^{2b_1} p_2^{2b_2} \cdots p_k^{2b_k}$$

$$a^2 \mid b^2 \Rightarrow \begin{cases} 2a_1 \leq 2b_1 \Rightarrow a_1 \leq b_1 \Rightarrow a \mid b. \\ \vdots \\ 2a_k \leq 2b_k \Rightarrow a_k \leq b_k \end{cases}$$
Warmup: Given a number \(n \), we can write its prime factorization as
\[n = p_1^{a_1} \cdot p_2^{a_2} \cdots p_k^{a_k} \]
where \(p_1, \ldots, p_k \) are distinct primes.
How can we tell from the prime factorization whether a number is a perfect square? Perfect cube?

- back to lecture 15.
- Theorem: \(\sqrt{2} \) is not rational.

Proof: Suppose for contradiction that \(\sqrt{2} \in \mathbb{Q} \).
Then there exist \(a, b \in \mathbb{Z} \) such that
\(b \neq 0 \), \(\sqrt{2} = \frac{a}{b} \), and \((a, b) = 1 \).
(fraction is in lowest terms).
Then \(2 = \frac{a^2}{b^2} \)

So \(2b^2 = a^2 \)

\(a^2, b^2 \) both have an even number of 2's in their prime factorizations.

But \(a^2 = 2b^2 \implies a^2 \text{ has } 1 \text{ more 2 than } b^2. \quad \implies \)

So \(\sqrt{2} \notin \mathbb{Q} \).
Reminder: project ideas.

Warm-up: Here are the divisors of 72 again:
\((-72 = 2^3 \cdot 3^2)\)

\[
\begin{array}{cccc}
2^0 & 2^1 & 2^2 & 2^3 \\
3^0 & 1 & 2 & 4 & 8 \\
3^1 & 3 & 6 & 12 & 24 \\
3^2 & 9 & 18 & 36 & 72 \\
\end{array}
\]

Can you find a quick way to sum up all 12 numbers? (Hint: use the distributive property.)

* Skip proof of \(a^2(b^2) \Rightarrow a \mid b\) (move to HW).
* Prove that \(\sqrt{2}\) is irrational (lecture 18).
* Introduce modular arithmetic.
Motivation: $\mathbb{Z}_{10} = \{0, 1, 2, \ldots, 9\}$

How does \mathbb{Z}_{10} arithmetic work?

3.7 is 21 in \mathbb{Z}

So $3.7 = 1$ in \mathbb{Z}_{10}.

"3.7 = 21" is not true in \mathbb{Z}_{10}, since 21 $\not\in \mathbb{Z}_{10}$.

In \mathbb{Z}_{10}, we cannot write "21 = 1," but we would like to.

So: new notation/terminology:

"21 \equiv 1 (mod 10)"

"21 is congruent to 1 modulo 10"

Definition: Let $m \geq 2$. Let $a, b \in \mathbb{Z}$.

We say "a is congruent to b modulo m" if $m \mid (a - b)$.

We write "$a \equiv b \ (\text{mod} \ m)$."
examples:

\[21 \equiv 1 \pmod{10}, \quad \text{since } 10 \mid (21-1). \]

\[l \equiv 2^1 \pmod{10}, \quad \text{reflexive property} \]

\[11 \equiv 2^1 \pmod{10} \]

\[5734 \equiv 100004 \pmod{10}. \]

\[3 \not\equiv 2^7 \pmod{10} \]

\[-1 \equiv __ \pmod{10} \]

> what numbers can go here?

... \(-11, -1, 9, 19, 29, ...\)

observe: Let \(m \geq 2 \). Then for any \(a \in \mathbb{Z} \), there is a unique \(b \in \mathbb{Z} \) s.t. \(0 \leq b \leq m-1 \) and \(a \equiv b \pmod{m} \).

(This is just the division algorithm!)

Now we can write things like

\[3.7 \equiv 2^1 \equiv 1 \pmod{10} \]

Or can we? What property do we need here?
Transitivity:

If \(\{ a \equiv b \pmod{m} \} \) \(\land \) \(b \equiv c \pmod{m} \) then \(a \equiv c \pmod{m} \).

Theorem 6.1: Let \(m \geq 2 \). Let \(a, b, c \in \mathbb{Z} \). Then

1. \(a \equiv a \pmod{m} \)
2. If \(a \equiv b \pmod{m} \) then \(b \equiv a \pmod{m} \).
3. If \(a \equiv b \pmod{m} \) and \(b \equiv c \pmod{m} \) then \(a \equiv c \pmod{m} \).

Proof:

1. \(m \mid (a-a) \) is true since any number divides 0.
2. If \(m \mid (a-b) \) then \(m \mid (b-a) \).
3. If \(m \mid (a-b) \) and \(m \mid (b-c) \) then \(m \mid [(a-b) + (b-c)] \) and hence \(m \mid a-c \). □
let \(m \geq 2 \), let \(a \in \mathbb{Z} \).

Suppose we want to find \(b \in \mathbb{Z} \) such that

1. \(a \equiv b \pmod{m} \)
2. \(b \geq 0 \)
3. \(b \) is as small as possible.

How do we find \(b \)?

Answer: division algorithm!

(By the way, what happens if we let \(m = 1 \)? Then everything is congruent to everything!)

Last time, we showed "congruence mod \(m \)", i.e.,

"\(a \equiv b \pmod{m} \)", behaves a lot like equality (symmetry, reflexivity, transitivity).

Yet another way to interpret "\(a \equiv b \pmod{m} \)":

this means \(a \) and \(b \) have the same remainder when you divide by \(m \).
But we need to be careful. Can we do the same operations on both sides?

Question: Let \(m \geq 2 \), let \(a, b, c \in \mathbb{Z} \). Suppose \(a \equiv b \pmod{m} \). Which of the following are true?

1. \(a + c \equiv b + c \pmod{m} \)
2. \(a - c \equiv b - c \pmod{m} \)
3. \(a \cdot c \equiv b \cdot c \pmod{m} \)
4. If \(c \geq 0 \) then \(a^c \equiv b^c \pmod{m} \)
5. If \(a, b \geq 0 \) then \(c^a \equiv c^b \pmod{m} \).

(Note: these operations are in \(\mathbb{Z} \), not \(\mathbb{Z}_m \).)

(5) is false! Example from your homework.

Actually, just try anything.

\[
\begin{align*}
0 & \equiv 10 \pmod{10} \\
2^0 & = 1 \quad 2^{10} = 1024 \\
\text{So} \quad 2^0 & \not\equiv 2^{10} \pmod{10}.
\end{align*}
\]
What about the others?

Use the definitions.

e.g. for (1), we need to show

\(m \) divides \((a+c)-(b+c)\).

But \((a+c)-(b+c) = a-b\)

and we know \(m \mid (a-b) \). So (1) is true.

(2) is similar.

(3) \(ac-bc = (a-b)c \).

Since \(m \mid (a-b) \), we know \(m \mid (a-b)c \).

So (3) is true.

(4) Let's come back to this later.

Theorem 6.2: let \(m \geq 2 \). Let \(a, b, c \in \mathbb{Z} \).

Suppose \(a \equiv b \pmod{m} \). Then

(1) \(a+c \equiv b+c \pmod{m} \)

(2) \(a-c \equiv b-c \pmod{m} \)

(3) \(ac \equiv b \cdot c \pmod{m} \).

Proof: we just gave it, above! \(\square \)

(Why doesn't this approach work for (5)?)
Can we show \(a \equiv b \pmod{m} \)?

\[\implies a^2 \equiv b^2 \pmod{m} \? \]

\[a^2 = a \cdot a. \]

We know \(a \cdot a \equiv a \cdot b \pmod{m} \).

\[b \cdot b \equiv b \cdot a \pmod{m}. \]

So yes, \(a^2 \equiv b^2 \pmod{m} \).

More general:

Theorem 6.3: Suppose \(a \equiv b \pmod{m} \)

\[c \equiv d \pmod{m}. \]

Then:

\[a + c \equiv b + d \pmod{m}. \]

\[ac \equiv bd \pmod{m}. \]

Proof: Same as above:

\[a + c \equiv b + c \pmod{m}. \]

\[b + d \equiv b + c \pmod{m}. \]

So \(a + c \equiv b + d \pmod{m} \).

Same argument for \(a \cdot c \equiv b \cdot d \). □

This proves also that \(a^c \equiv b^c \pmod{m} \).
These are really useful for simplifying.

For example, in mod 10:

\[2345 \cdot 6789 \equiv 5 \cdot 9 \equiv 45 \equiv 5 \pmod{10} \]

(i.e., last digit of 2345 \cdot 6789 is 5).

Recall: \[37 \cdot 8 + 59 \cdot (-5) = 1 \]
(extended Euclidean algorithm).

So \[1 \equiv 37 \cdot 8 + 59 \cdot (-5) \pmod{59} \]
\[\equiv 37 \cdot 8 + 0 \cdot (-5) \pmod{59} \]
\[\equiv 37 \cdot 8 \pmod{59} \]
and \[1 \equiv 37 \cdot 8 + 59 \cdot (-5) \pmod{37} \]
\[\equiv 0 \cdot 8 + 59 \cdot (-5) \pmod{37} \]
\[\equiv 59 \cdot (-5) \pmod{37} \]
\[\equiv 22 \cdot 32 \pmod{37} \]

This makes our lives easier!
(After we proved Theorems 6.2, 6.3).
So now you can solve some modular congruences. e.g.: Find all $x \in \mathbb{Z}$ such that:

$$3 \cdot x \equiv 5 \pmod{10}.$$

Solution:

$$7 \cdot 3 \cdot x \equiv 7 \cdot 5 \pmod{10}\quad \quad 21 \cdot x \equiv 35 \pmod{10}\quad \quad x \equiv 5 \pmod{10}.$$

So

$$x \in \{ \ldots, -15, -5, 5, 15, 25, \ldots \}.$$

But...

$$2 \cdot x \equiv 4 \pmod{10}.$$

Let's just try searching.

$$x \in \{ \ldots, -8, -3, 2, 7, 12, 17, \ldots \}.$$

Pattern?

$$x \equiv 2 \pmod{5}.$$

Why is this?

$$2 \cdot x \equiv 4 \pmod{10} \iff 2x = 4 + 10k \iff x = 2 + 5k \iff x \equiv 2 \pmod{5}.$$
Warm-up:

(a) Find all $x \in \mathbb{Z}$ such that $3x \equiv 5 \pmod{10}$.

(b) Find all $x \in \mathbb{Z}$ such that $2x \equiv 4 \pmod{10}$.

(You can start by trial and error.)

Answer: Page 6 of previous lecture notes.

Now let's move on to divisibility tests.

Note: $d, n > 0$

$d \mid n \iff n \equiv 0 \pmod{d}$

Let $n = \overbrace{X_mX_{m-1}\cdots X_1X_0}^{\text{digits, not multiplication!}}$

$= X_m \cdot 10^m + X_{m-1} \cdot 10^{m-1} + \cdots + X_1 \cdot 10 + X_0$.

E.g. 35627

$= 3 \cdot 10^4 + 5 \cdot 10^3 + 6 \cdot 10^2 + 2 \cdot 10^1 + 7 \cdot 10^0$
Divisibility by 2

Q: Is 3724 divisible by 2?
A: Using mod 2 calculations,

\[3724 = 3 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10^1 + 4 \]

we know \(10 \equiv 0 \pmod{2} \). So,

\[3724 \equiv 3 \cdot 0 + 7 \cdot 0 + 2 \cdot 0 + 4 \pmod{2} \]

\[\equiv 4 \pmod{2} \]

\[\equiv 0 \pmod{2} \]

So yes!

Q: Is 3724 divisible by 4?
A: (the answer we gave several weeks ago)

\[3724 = 3700 + 24 = 37 \cdot 100 + 24 \]

So yes.

A: (Using mod 4 calculations).

Note \(10^2 \equiv 0 \pmod{4} \).

So \[\{ \begin{array}{c} 10^3 \equiv 0 \pmod{4} \\ 10^4 \equiv 0 \pmod{4} \end{array} \]
\[3724 \equiv 3 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10^1 + 4 \quad \pmod{4} \]
\[\equiv 3 \cdot 0 + 7 \cdot 0 + 2 \cdot 10^1 + 4 \quad \pmod{4} \]
\[\equiv 2 \cdot 10 + 4 \quad \pmod{4} \]
\[\equiv 24 \quad \pmod{4} \]
\[\equiv 0 \quad \pmod{4} \]

So yes! (This is more argument as above)

What about 59187?

\[59187 \equiv 5 \cdot 10^3 + 9 \cdot 10^2 + 1 \cdot 10 + 8 \quad \pmod{4} \]
\[\equiv 18 \quad \pmod{4} \]
\[\equiv 2 \quad \pmod{4} \]

So no. The remainder is 2.

Can do the same with 8, 16, etc.

Can do the same with 5, 25, 125, etc.

Next: Have you learned other divisibility tests? 3? 9? 11?
Observe: 3 does not divide any power of 10, so same argument doesn't work.

But what can we do?

Q: What is the remainder when we divide 3724 by 3?

A: \[3724 = 3 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10 + 4 \]

Recall: want to relate 3724 to \(3 + 7 + 2 + 4\) somehow.

Observe: \(10 \equiv 1 \pmod{3}\).

So \[3724 \equiv 3 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10 + 4 \pmod{3} \]

\[\equiv 3 \cdot 1^3 + 7 \cdot 1^2 + 2 \cdot 1 + 4 \]

\[\equiv 3 + 7 + 2 + 4 \]

\[\equiv 16 \]

\[\equiv 1 \]

So the remainder is 1.

Key fact that let us simplify this way: \[10 \equiv 1 \pmod{3} \].
For what other m is it true that $10 \equiv 1 \pmod{m}$?

Answer: $m = 9$

Divisibility by 9:

$837 \div 9$?

$837 \equiv 8 \cdot 10^2 + 3 \cdot 10 + 7 \pmod{9}$

$\equiv 8 \cdot 1^2 + 3 \cdot 1 + 7$

$\equiv 8 + 3 + 7$

$\equiv 18$

$\equiv 0$

Divisibility by 11:

$1729 \div 11$?

$1729 = 1 \cdot 10^3 + 7 \cdot 10^2 + 2 \cdot 10^1 + 9 \pmod{11}$

$= 1 \cdot (-1)^3 + 7 \cdot (-1)^2 + 2 \cdot (-1) + 9$

$\equiv -1 + 7 - 2 + 9$

$\equiv 13$

$\equiv 2$

"Casting out nines"
"casting out nines"

Example: Suppose I did some calculations by hand and got:

\[7354 \times 2929 = 21549866 \]

Is there a way to detect mistakes? (First: \(7000 \times 3000 = 21000000\), so answer is in the right range).

Look at both sides mod 9. They need to be the same.

\[7354 \times 2929 \equiv 7 + 3 + 5 + 4 \pmod{9} \]
\[7354 \equiv 1 \pmod{9} \]
\[2929 \equiv 2 + 9 + 2 + 9 \equiv 4 \pmod{9} \]

So \(7354 \times 2929 \equiv 1 \cdot 4 \equiv 4 \pmod{9} \)

\[21549866 \equiv 2 + 1 + 5 + 4 + 9 + 8 + 6 + 6 \pmod{9} \]
\[\equiv 5 \pmod{9} \]

These are different!

So I definitely made a mistake!

Note: If they were the same, then it is still possible for me to have made a mistake.
Warm-up: What is the remainder when \(x = 234647 \) is divided by 2, 3, 7, 47, 57, 67, 87, 97, 107?
(Ans: 1, 2, 3, 2, 5, 7, 8, 7)

To get 6, note:
\[
\begin{align*}
\text{If } x &\equiv 1 \pmod{2}, \\
\text{and } x &\equiv 2 \pmod{3}.
\end{align*}
\]

The solutions are \(\ldots, -7, -1, 5, 11, 17, \ldots \)

Last time (Corson's proof for divisibility by 3 or 9).

First: divisibility by 4 example:

\[
1373 = 1300 + 73
\]

\[
\underbrace{1300}_{\text{divisible by 4}} + 73
\]

Now: divisibility by 9:

\[
1373 = 1000 + 300 + 70 + 3
\]

\[
= 1 \cdot 1000 + 3 \cdot 100 + 7 \cdot 10 + 3
\]

\[
= (1 \cdot 999 + 3 \cdot 99 + 7 \cdot 9) + 1 + 3 + 7 + 3
\]

\[
\underbrace{\text{divisible by 9}}_{\text{divisible by 9}}
\]
Don't need mod notation. The idea is clever but easy to understand. You can explain it to a friend!

The same proof, using some properties of congruences. First note: \(10 \equiv 1 \pmod{9}\)

So for all \(n \geq 0\), \(10^n \equiv 1^n \equiv 1 \pmod{9}\).

So \[1373 = 1 \cdot 10^3 + 3 \cdot 10^2 + 7 \cdot 10^1 + 3 \equiv 1 \cdot 1^3 + 3 \cdot 1^2 + 7 \cdot 1^1 + 3 \equiv 1 + 3 + 7 + 3\]

Divisibility by 11 test. Does anyone know? (see notes from prev. lecture).

* Casting out 9's (notes from prev lecture)*

ISBN: 10 digits \(X_1X_2 \ldots X_9X_{10}\)

\(\text{the digits}\).
The rule: \(x_{10} \) is given by
\[(*)\] \(x_{10} \equiv x_1 + 2x_2 + 3x_3 + \ldots + 9x_9 \pmod{11} \)
(if \(x_{10} = 10 \), then use the letter "X")

"check digit." Why? To detect transcription errors. What are some common errors?

- single digit error

 "75123" \(\rightarrow \) "75423"

- transposition error

 "75123" \(\rightarrow \) "15723"

Can the check digit catch these errors? (suppose the check digit is copied correctly)

What does this question even mean?

- single digit error:

 Suppose \(x_3 \) became \(k \).

 old sum: \(A = x_1 + 2x_2 + 3(x_3) + 4x_4 + \ldots + 9x_9 \)

 new sum: \(B = x_1 + 2x_2 + 3k + 4x_4 + \ldots + 9x_9 \)

 question: are \(A \) and \(B \) congruent \(\pmod{11} \)?
\[A - B = 3(x_3 - k) \]

Suppose \(A - B \equiv 0 \pmod{11} \)

Then \(3(x_3 - k) \equiv 0 \pmod{11} \)

\[3^{-1} \cdot 3(x_3 - k) = 3^{-1} \cdot 0 \]

\[x_3 - k \equiv 0 \]

So \(\boxed{x_3 = k} \) \(\leftarrow \) The only way to have \(A - B \equiv 0 \pmod{11} \)

(same argument works for all digits. Why?)

Because 11 is rel. prime w/ all numbers smaller than it

transposition?

Suppose \(x_j \) and \(x_k \) are switched

old sum: \(\ldots jx_j \ldots kx_k \ldots = A \)

new sum: \(\ldots jx_k \ldots kx_j \ldots = B \)

so

\[A - B = j(x_j - x_k) + k(x_k - x_j) \]

\[= (j - k)(x_j - x_k) \]

this is \(\equiv 0 \pmod{11} \) if and only if one of the two terms is \(\equiv 0 \pmod{11} \).
Lecture 23

DHYTBW: JHU FVB MPNBYL VBA OVD AV KLJYFWA AOPZ TLZZHNL?

Answer: Textbook: Wade Trappe. Lawrence Washington
Introduction to Cryptography with Coding Theory

<table>
<thead>
<tr>
<th>Plain Text</th>
<th>a b c d e f g h i j k l m n o p q r s t u v w x y z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher Text</td>
<td>H I J K L M N O P Q R S T U V W X Y Z A B C D E F G</td>
</tr>
</tbody>
</table>

(maybe it's better to reverse the two rows)

Q: How can we break this cipher?
 * letter frequency
 * first word is "warming" ←
 * ?

WWII: Germans "nothing to report"

Cryptography: sending messages securely e.g. in wars
 * wireless communication
usual setup:

\[\text{Alice} \rightarrow \text{Encrypt} \rightarrow \text{Bob} \]

\[\hspace{1cm} \text{Plaintext} \]

\[\text{Encryption key} \]

\[\text{Decrypt} \rightarrow \text{Bob} \]

\[\text{Decryption key} \]

\[\text{Eve} \]

\[\text{Ciphertext} \]

\[\text{Two encryption/decryption methods:} \]

1. symmetric key.
 - Alice and Bob both know the encryption key and decryption key.
 - No one else knows them.

2. public key.
 - Everyone knows the encryption key.
 - Only Bob knows the decryption key.

simplest technique: Caesar cipher (aka. "shift cipher").

- Assign each letter of alphabet to a number as follows: a→0, b→1, c→2, ..., y→24, z→25.
let $f(x) = x + 7 \pmod{26}$ be the encryption process.

<table>
<thead>
<tr>
<th>Plain Text</th>
<th>h e l l o</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 4 11 11 14</td>
</tr>
</tbody>
</table>

↓ apply f (encrypt)

<table>
<thead>
<tr>
<th>Cipher Text</th>
<th>o l s s v</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 11 18 18 21</td>
</tr>
</tbody>
</table>

How to decrypt?

$g(x) = x - 7 \pmod{26}$

(or $g(x) = x + 19 \pmod{26}$)

<table>
<thead>
<tr>
<th>Cipher Text</th>
<th>o l s s v</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>14 11 18 18 21</td>
</tr>
</tbody>
</table>

↓ apply g (decrypt)

<table>
<thead>
<tr>
<th>Plain Text</th>
<th>h e l l o</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7 4 11 11 14</td>
</tr>
</tbody>
</table>
Instead of $x+7$, you can take $x+k$
for any $k \in \{0, 1, 2, \ldots, 25\}$

$k=0$ is not a good idea...

Issue with Caesar shift: too easy to break.
(If you know your enemy is using Caesar shift, there are only 26 keys to try).

How to increase the number of possibilities?

Another cipher: Atbash.

<table>
<thead>
<tr>
<th>Plaintext</th>
<th>a b c d e f g h i j k l m n o p q r s t u v w x y z</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cipher</td>
<td>z y x w v u t s r q p o n m l k j i h g f e d c b a</td>
</tr>
</tbody>
</table>

Using $0, 1, \ldots, 25$ for the letters.

Plain 0 1 2 3 4 5 6 7 8 9 10 ...
Cipher 25 24 23 22 21 20 19 18 17 16 15 ...

What is the function now? $f(x) = 25 - x \pmod{26}$.
What is the inverse?

g(x) = 25 - x \pmod{26}.

Affine cipher: \(f(x) = \alpha x + \beta \)

(Note: Atbash is \(\alpha = -1, \beta = 25 \))

\(\text{e.g. } \alpha = 9, \beta = 2 \)

plain
affine
0 5 5 8 13 4

\[\downarrow \text{ apply } f \text{ (encrypt)} \]

cipher
C V V W P M

How to decrypt?

\[y = 9x + 2 \pmod{26}. \]

\[y - 2 = 9x \pmod{26}. \]

\[3(y - 2) = x \pmod{26}. \]
so decryption is \(g(x) = 3x - 6 \pmod{26} \).

(f and g are "inverse functions")

Can we choose any value for \(\alpha, \beta \)?

E.g. \(\alpha = 2, \beta = 0 \). \(f(x) = 2x \pmod{26} \).

This has no inverse! No way to decrypt.

So: we need \[\gcd(26, \alpha) = 1 \]

These are all bad for public key cryptography.
Warmup: Observe the following:
\[0^9 \equiv 0, \ 1^9 \equiv 1, \ 2^9 \equiv 2, \ldots, \ 13^9 \equiv 13, \ 14^9 \equiv 14 \pmod{15} \]

Consider the encryption function \(f(x) = x^3 \pmod{15} \).

What is the decryption function?
(Hint: use the observation above)

Recall:

\[
\begin{array}{cccc}
\text{Encrypt} & \text{Decryption} \\
\text{Alice} \rightarrow & & \rightarrow \text{Bob} \\
\text{plain text} & & & \text{cipher text} \\
\downarrow & & \uparrow & \\
\text{Encrypt} & & \text{Decrypt} & \\
& & \text{cipher text} & \\
& & \downarrow & \\
& & \text{plain text} & \\
& & \uparrow & \\
& & \text{Alice} & \\
& & \rightarrow & \\
& & \text{Bob} & \\
\end{array}
\]

Public key cryptography:

- Everyone knows the encryption key (This is called the "public key")
- Only Bob knows the decryption key ("private key")

BIG QUESTION: How is this even possible??
RSA algorithm

Rivest, Shamir, Adleman 1977

1. Bob chooses 2 distinct primes \(p \) and \(q \), and computes \(n=pq \)

2. Bob chooses \(e \) with \(\gcd(e, (p-1)(q-1)) = 1 \).

3. Bob finds \(d \) with \(de \equiv 1 \pmod{(p-1)(q-1)} \)
 (extended Euclidean algorithm)

4. Bob makes the two following numbers public: ① \(n \) ② \(e \)
 (\(p \), \(q \), \(d \) are kept secret)

5. The encryption function is
 \[f(m) = m^e \pmod{n} \]

6. The decryption function is
 \[g(c) = c^d \pmod{n} \]

Two questions

1. Why is that the decryption function?
2. Why is this secure?
Secure? Everyone knows n and e.
Only Bob knows p, q, d.

but is it possible to figure these out from n and e?
Yes! n factors into pq.
So since we know n, we can just factor it!

But here's the catch: all the known algorithms for factoring numbers are very slow!

<table>
<thead>
<tr>
<th>RSA</th>
<th># of digits</th>
<th>Year factored</th>
<th>200</th>
<th>2005</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>1991</td>
<td></td>
<td>200</td>
<td>2005</td>
</tr>
<tr>
<td>110</td>
<td>1992</td>
<td></td>
<td>210</td>
<td>2013</td>
</tr>
<tr>
<td>120</td>
<td>1993</td>
<td></td>
<td>220</td>
<td>2016</td>
</tr>
<tr>
<td>130</td>
<td>1996</td>
<td></td>
<td>230</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>1999</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>2004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>2003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>2009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>190</td>
<td>2010</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td>all not factored yet</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
The best known methods for factoring all use advanced number theory.

Maybe there is a fast algorithm for factoring, but we haven't found it yet. (Quantum computing, NSA?)

So, the RSA algorithm is secure...

for now...

But there's the other question: how/why does it work? What do we need to show?

\[g(f(m)) = m \pmod{n} \quad \text{for every } m. \]

\[g(f(m)) = g(m^e) = (m^e)^d = m^{de} \]

By step 3, we know \(de = 1 + k(p-1)(q-1) \) for some \(k \in \mathbb{Z} \).

So we need to show:

\[m^{1+k(p-1)(q-1)} \equiv m \pmod{pq} \quad \text{for every } m \quad \text{for every } k. \]
Theorem (RSA works!):

Let \(p \) and \(q \) be distinct primes.
Then for any \(m \) and for any \(k \), we have

\[
m + k(p-1)(q-1) \equiv m \pmod{pq}.
\]

To prove this, we'll need several things (that you have already seen a little on the HW). [Note the \(p-1 \) above]

1. Fermat's Little Theorem:

Let \(p \) be a prime. Let \(a \in \mathbb{Z} \).
Suppose \(p \nmid a \). Then:

\[
a^{p-1} \equiv 1 \pmod{p}.
\]

Let's look at an example.

\(p = 5, \ a = 3 \).
Let \(f(x) = 3 \cdot x \pmod{5} \).

\[
\begin{array}{cccc}
0 & \rightarrow & 0 & \rightarrow \\
1 & \rightarrow & 3 & \\
2 & \leftarrow & 1 & \\
3 & \leftarrow & 4 & \\
4 & \leftarrow & 2 & \\
\end{array}
\]

Observe: every number in \(\mathbb{Z}_5 \) appears exactly once, since there is an inverse \(g \).

So:

\[
(3 \cdot 1) \cdot (3 \cdot 2) \cdot (3 \cdot 3) \cdot (3 \cdot 4) \equiv 3 \cdot 1 \cdot 4 \cdot 2 \pmod{5}
\]

Multiply by the inverse of \(1 \cdot 2 \cdot 3 \cdot 4 \).

\[
3^4 = 1
\]

How does the proof work in general?

Since \(p \mid a \), we know \((a, p) = 1 \) so \(a \) has an inverse in \(\mathbb{Z}_p \). Call it \(b \). Then \(f(x) = a \cdot x \pmod{p} \) \(g(x) = b \cdot x \pmod{p} \). (If time permits: Wilson's theorem)
Warmup: Suppose we do RSA with \(n=55, e=27 \)
(a) What is the encryption function?
(b) What is the decryption function?
(c) What do we need to check to make sure the decryption function actually works?

Answer: \(p=5, q=11 \), \((p-1)(q-1)=40 \)
\[27 \cdot 3 \equiv 1 \pmod{40} \implies \text{let } d=3 \]
(a) \(f(x) = x^{27} \pmod{55} \)
(b) \(g(x) = x^3 \pmod{55} \)
(c) Need to check \(g(f(x)) \equiv x \pmod{55} \)

\[\forall x, x^{81} \equiv x \pmod{55} \]

needs to hold for all \(x \)

* Back to page 4 of previous lecture
Recall: \(p, q \) distinct primes, \(k \in \mathbb{Z} \)

we want to show:

for any \(a \), \(a^{1+k(p-1)(q-1)} \equiv a \pmod{pq} \).

Let's study \(a^{1+k(p-1)(q-1)} \pmod{p} \) and

\(\pmod{q} \) separately.

Let's look at \(\pmod{p} \). What can we say?

\textbf{Case 1: If } p \mid a: \text{ then we can apply}

\begin{align*}
\text{F.L.T.} & \quad \text{to get} \\
\quad a^{1+k(p-1)(q-1)} & = a \cdot a^{k(p-1)(q-1)} \\
& = a \cdot (a^{p-1})^{k(q-1)} \\
& \equiv a \cdot (1)^{k(q-1)} \pmod{p} \\
& = a
\end{align*}

\textbf{Case 2: If } p \nmid a: \text{ Now we can't use F.L.T.}

But \(p \mid a \Rightarrow a \equiv 0 \pmod{p} \)

\begin{align*}
\Rightarrow & \quad a^{1+k(p-1)(q-1)} \equiv 0 \pmod{p} \\
\Rightarrow & \quad a^{1+k(p-1)(q-1)} \equiv a \pmod{p}.
\end{align*}
so we've shown:

for all $a \in \mathbb{Z}$,

$$a^{1+k(p-1)(q-1)} \equiv a \pmod{p}.$$

Similarly: for all a,

$$a^{1+k(p-1)(q-1)} \equiv a \pmod{q}.$$

Can we conclude that for all a,

$$a^{1+k(p-1)(q-1)} \equiv a \pmod{pq}.$$

Yes! Why? You looked at similar/related questions on the homework.

Chinese remainder theorem:

Let $m, n \geq 1$ be relatively prime. Then the system:

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases}$$

has a unique solution $\bmod mn$. That is, for any a, b, there is a unique $c \in \{0, 1, \ldots, mn-1\}$ such that:

$$\begin{cases} x \equiv a \pmod{m} \\ x \equiv b \pmod{n} \end{cases} \iff x \equiv c \pmod{mn}.$$
Proof: Follow what you did on the HW.

(We need \((m,n)=1\) to be able to invert \(m \mod n\).)

The uniqueness part of the C.R.T. is what allows us to deduce \(a \equiv 1 + k(p-1)(q-1) \equiv a \pmod{pq}\).

Thus, we have proved that RSA works!
Warmup: Which of the following four implications are true?

\[X \equiv 1 \pmod{6} \iff \begin{cases} X \equiv 1 \pmod{2} \\ X \equiv 1 \pmod{3} \end{cases} \]

\[X \equiv 1 \pmod{12} \iff \begin{cases} X \equiv 1 \pmod{2} \\ X \equiv 1 \pmod{6} \end{cases} \]

The last one is false. Counterexample: \(x = 7 \).

\[\begin{cases} x \equiv 1 \pmod{2} \\ x \equiv 1 \pmod{6} \end{cases} \Rightarrow x \in \{ \ldots, -5, 1, 7, 13, \ldots \} \]

\[\Rightarrow x \equiv 1 \pmod{6} \]

\[\Rightarrow x \equiv 1 \text{ or } 7 \pmod{12} \]

- Continue with notes from previous lecture.
If there is still time: Euler's theorem.

\[\text{mod } 6: \quad (\text{Can we get something like F.L.T.?)} \]

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>x2</th>
<th>2</th>
<th>0</th>
<th>x5</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>no inverse</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

\[(5 \cdot 1) \cdot (5 \cdot 2) \cdot (5 \cdot 3) \cdot (5 \cdot 4) \cdot (5 \cdot 5) \equiv 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \pmod{6} \]

\[5! \cdot 5^5 \equiv 5!\]

But... \[5! \equiv 0 \pmod{6}\] ...

\[5 \cdot 4 \cdot 3 \cdot 2 \cdot 1\]

...these numbers share factors with 6.

Let's ignore them.

\[(5 \cdot 1) \cdot (5 \cdot 5) \equiv 1 \cdot 5 \pmod{6}\]

\[1 \cdot 5 \cdot 5^2 \equiv 1 \cdot 5 \]

\[5^2 \equiv 1 \pmod{6}\]

(Special case of Euler's theorem). In general:

Theorem: (Euler's theorem). Let \(\varphi(m) = \# \text{ of elements of } \{0, 1, \ldots, m-1\} \text{ rel prime to } m\).

Then: if \((a, m) = 1\), then \(a^{\varphi(m)} \equiv 1 \pmod{m}\).
Remark: F.L.T. is a special case of Euler's theorem.

since: \[\varphi(p) = p - 1 \] if \(p \) is prime.

Remark: Euler's thm is a special case of Lagrange's theorem, which is a theorem in group theory.

When applied to the "Rubik's cube group," Lagrange's theorem tells you this.

Theorem: Let \(X \) be a sequence of moves on a Rubik's cube. Then if you repeat \(X \) 43,252,003,274,489,856,000 times, starting with a solved Rubik's cube, you'll end up with a solved Rubik's cube. This number is \(2^{27} \cdot 3^3 \cdot 5^3 \cdot 7^2 \cdot 11 \), and is the number of possible states of a Rubik's cube.
The same theorem, stated slightly differently,

let X be a sequence of moves on a Rubik's cube. Then there is an integer $m \geq 1$ such that X repeated m times brings you back to a solved cube. Furthermore, the smallest m that works is a divisor of $2^{27} 3^{14} 5^{3} 7^{2} 11$.
Lecture 28 (27 = Rubik's cubes, commutators)

Warmup: Is it possible to add infinitely many positive numbers together to get a finite sum?

One possible answer:

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \ldots = 1
\]

In general consider \(S = a_1 + a_2 + a_3 + a_4 \ldots \)

(e.g. \(a_n = \frac{1}{2^n} \) above)

* If the sequence \((a_n) \) does not "go to zero" then \(S = \infty \).

\[
1 + 1 + 1 + 1 + \ldots = \infty \quad (a_n = 1)
\]

\[
1 + \frac{3}{4} + \frac{5}{8} + \frac{9}{16} + \ldots = \infty \quad (a_n = \frac{1}{2} + \frac{1}{2^n})
\]

* If the sequence \((a_n) \) does "go to zero" then ... ???

Remark/Warning: infinite sums do not always behave the way we might expect! This is why we need a precise definition of the sum of infinitely many numbers. That is covered in calculus/analysis.
For example:
\[
\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots = ? \quad a_n = \frac{1}{n}
\]
\[
\frac{1}{1} + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \ldots = ? \quad a_n = \frac{1}{n^2}
\]
\[
\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} + \ldots = ? \quad a_n = \frac{1}{\text{nth prime}}
\]

Let's consider the book stacking problem:

![Image of books on a table]

"Place \(N\) identical rectangular books on a table edge to maximize the overhang."

Q: (Physics) How to determine if a stack is stable?
A: Use math! Look at the center of mass!

Recall Jenga:

- In the following, the blocks on bottom layer have long side going front to back.
- Stable
- Unstable
center of mass
(of the block)

stable
unstable

back to stacking books. suppose the books have length 1
1 book: the overhang cannot be greater than \(\frac{1}{2} \) (or else the center of mass is too far out).

2 books: start from the top book.

\[\text{where to put the table edge?} \]
center of mass of the two books.

(use symmetry).

For \(n \) books, maximum overhang is

\[
\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \ldots + \frac{1}{2n}
\]

\[
= \frac{1}{2} \left[1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \ldots + \frac{1}{n} \right]
\]

The infinite sum is called the harmonic series.

Let \(H_n = 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} \).

Does this approach sum limit?
<table>
<thead>
<tr>
<th>n</th>
<th>H_n (to 2 dec places)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>1.83</td>
</tr>
<tr>
<td>4</td>
<td>2.08</td>
</tr>
<tr>
<td>5</td>
<td>2.28</td>
</tr>
<tr>
<td>10</td>
<td>2.93 ≥ 2.26</td>
</tr>
<tr>
<td>100</td>
<td>5.19 ≥ 2.30</td>
</tr>
<tr>
<td>1000</td>
<td>7.49 ≥ 2.30</td>
</tr>
<tr>
<td>10000</td>
<td>9.79 ≥ 2.30</td>
</tr>
<tr>
<td>100000</td>
<td>12.09 ≥ 2.30</td>
</tr>
</tbody>
</table>

any observations?

It seems to grow very slowly.

This suggests $H_n \to \infty$?

Theorem (Oresme, 14th century): $H_n \to \infty$.

i.e. $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots = \infty$.

Proof:

$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \cdots$

$\geq 1 + \frac{1}{2} + \left(\frac{1}{4} + \frac{1}{4}\right) + \left(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8}\right) + \cdots$

$= 1 + \frac{1}{2} + \frac{2}{4} + \frac{4}{8} + \frac{8}{16} + \cdots$

$= 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \cdots$

$= \infty$.

This also shows $H_2^k \geq 1 + \frac{k}{2}$.
using calculus, you can show

\[H_n \approx \ln n + 0.5772\ldots \]

"Euler-Mascheroni constant"

"Natural logarithm"

Note \(\log 10 \approx 2.30 \). This explains the

Step sizes we observed in the table.

Next sum:

\[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \ldots \]

Let \(S_n = \frac{1}{1^2} + \frac{1}{2^2} + \ldots + \frac{1}{n^2} \)

<table>
<thead>
<tr>
<th>(n)</th>
<th>(S_n) (to 4 dec places)</th>
<th>(\text{Does } S_n \rightarrow \infty ?)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1.3611</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1.4236</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1.4636</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1.5498</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>1.6350</td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>1.6439</td>
<td></td>
</tr>
<tr>
<td>10000</td>
<td>1.6448</td>
<td></td>
</tr>
</tbody>
</table>
Let's try same proof as for harmonic series.

\[\frac{1}{1^2} + \frac{1}{2^2} + \left(\frac{1}{3^2} + \frac{1}{4^2} \right) + \ldots \]

\[\geq \frac{1}{1^2} + \frac{1}{2^2} + \left(\frac{1}{4^2} + \frac{1}{4^2} \right) + \left(\frac{1}{8^2} + \frac{1}{8^2} + \frac{1}{8^2} + \frac{1}{8^2} \right) + \ldots \]

\[= \frac{1}{1^2} + \frac{1}{2^2} + \frac{2}{4^2} + \frac{4}{8^2} + \frac{8}{16^2} + \ldots \]

\[= 1 + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \ldots \]

uh-oh, this sum is finite.

Does that mean we can conclude

\[1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \quad \text{is finite? No!} \]

We only gave a lower bound.

Theorem: \[1 + \frac{1}{2^2} + \frac{1}{3^2} + \ldots \quad \text{is finite.} \quad \text{(and } \leq 2) \]

Proof: \[\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \ldots \]

\[\leq \frac{1}{1^2} + \left(\frac{1}{2^2} + \frac{1}{4^2} \right) + \left(\frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} + \frac{1}{4^2} \right) + \ldots \]

(keep powers of 2 again)
\[
\begin{align*}
&= 1 + \frac{2}{2^2} + \frac{4}{4^2} + \frac{8}{8^2} + \cdots \\
&= 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \\
&\leq 2.
\end{align*}
\]

Theorem (Euler, 1700s):

\[
1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}.
\]

Wow! To prove this, use lots of advanced calculus.
Warmup (Hilbert's Hotel):

(a) You run a hotel. You have rooms labeled 1, 2, 3, 4, 5. They are currently occupied. One more person shows up. What do you do?

(b) What if you have rooms labeled 1, 2, 3, ... (one for each natural number)?

What if infinitely many people (one person for each natural number) show up?

First move person in room \(n \) to room \(2n \)

Now you have enough empty rooms!
Definition: A set is countably infinite (or countable) if we can label all the elements \(1, 2, 3, 4, \ldots\).

What are examples of countable sets?

- natural numbers: \((\mathbb{N})\)
 - elements: \(1, 2, 3, 4, 5, \ldots\)
 - labels: \(1, 2, 3, 4, 5, \ldots\)

- nonnegative integers \((\mathbb{Z}_{\geq 0})\)
 - elements: \(0, 1, 2, 3, 4, \ldots\)
 - labels: \(1, 2, 3, 4, 5, \ldots\)

- integers \((\mathbb{Z})\)
 - elements: \(\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\)
 - labels: \(\ldots, 7, 5, 3, 1, 2, 4, 6, \ldots\)
 (bounce back and forth)

- rationals? \((\mathbb{Q})\)

What do you think?

Edit: another definition. A set is countably infinite if we can fit its elements into Hilbert's Hotel!
Let's consider just the positive rationals first. How can we write them all down?

1 2 3 4 5 6 7 ...
\frac{1}{2} \frac{2}{2} \frac{3}{2} \frac{4}{2} \frac{5}{2} \frac{6}{2} \frac{7}{2} ...
\frac{1}{3} \frac{2}{3} \frac{3}{3} \frac{4}{3} \frac{5}{3} \frac{6}{3} \frac{7}{3} ...
\frac{1}{4} \frac{2}{4} \frac{3}{4} \frac{4}{4} \frac{5}{4} \frac{6}{4} \frac{7}{4} ...

We can't label the first row first, followed by second row, etc. So what can we do to make sure we visit every number?

![Diagram showing a grid with numbers and arrows indicating a diagonal path through the grid.]

etc. This works!
So we can label as follows:

\[\begin{align*}
1 & \rightarrow 2 \\
2 & \rightarrow 3 \\
3 & \rightarrow \ldots \\
4 & \rightarrow 5 \\
5 & \rightarrow 6 \\
6 & \rightarrow 7 \\
7 & \rightarrow 8 \\
8 & \rightarrow 9 \\
9 & \rightarrow \frac{3}{2} \\
10 & \rightarrow \frac{2}{3} \\
\frac{2}{3} & \rightarrow \frac{1}{3}
\end{align*} \]

(skip the numbers that are crossed out)

So: the positive rationals are countable!

In fact, so are the rationals!

Q: Is every infinite set countable?
What's another infinite set?
The reals (\(\mathbb{R} \)).

Remark: What is an infinite decimal?

\[0.\, x_1 x_2 x_3 x_4 \ldots = \frac{x_1}{10} + \frac{x_2}{10^2} + \frac{x_3}{10^3} + \frac{x_4}{10^4} + \ldots \]

this is an infinite sum! (like on Monday)

we need calculus to properly define the real numbers!
Remark: \(0.999\ldots = \frac{9}{10} + \frac{9}{10^2} + \frac{9}{10^3} + \ldots = \frac{1}{use\ calculus.} \)

(same picture as)

Monday

Theorem: \(\mathbb{R} \) is not countable

Proof: Let's show the set of real numbers between 0 and 1 is not countable.

Suppose for contradiction that it is. Then let's list them out.

labels

1. \(0.\overline{x_{11}}x_{12}x_{13}x_{14}\ldots \)
2. \(0.x_{21}x_{22}x_{23}x_{24}\ldots \)
3. \(0.\overline{x_{31}}x_{32}x_{33}x_{34}\ldots \)

\(\vdots \)

e.g. 1. \(0.6180339\ldots \)
2. \(0.1415926\ldots \)
3. \(0.5000000\ldots \)

consider \(y = 0.454\ldots \)

"Cantor's diagonalization argument"

[maybe should have a longer list to illustrate this]

[see pg 9]
How did I come up with \(y \)?

The first decimal place does not agree with the first number \((0.\overline{4})\).

\(y = 0.\overline{4} \)

The second digit of \(y \) does not agree with the second number...

etc...

So \(y \) is not on the list. But \(y \) is a real number between 0 and 1! Contradiction.

The reals are not countable!

"There are more real numbers than natural numbers"

If infinitely many people showed up to Hilbert's hotel, could they fit?

* If there was one person for every natural number, yes!
 - integer ... yes!
 - rational ... yes!
* If ... real ... NO!
Rem: \(\mathbb{R} \) is "larger" than \(\mathbb{N} \). Are there sets larger than \(\mathbb{R} \)? Yes!

In fact for any set \(S \), we can find a set larger than \(S \). (Can use Cantor's diagonalization argument.)

Rem: Is there a set \(S \) whose size is strictly between \(\mathbb{N} \) and \(\mathbb{R} \)?

Theorem (Gödel 1940) From the standard set theory axioms (a.k.a. ZFC), it is impossible to prove that no such set \(S \) exists.

Theorem (Paul Cohen 1963) From ZFC axioms, it is impossible to prove that such a set \(S \) exists.

What?? Thanks for taking this class! 😊
Application: There is an irrational number.

Proof: \(\mathbb{Q} \) is countable
\(\mathbb{R} \) is uncountable.

Application 2: There is a transcendental number.

Definition: A number is **algebraic** if it is the root of some polynomial with integer coefficients.

- e.g. \(\frac{5}{3} \) is algebraic. It's a root of \(3x - 5 = 0 \)
- e.g. \(\sqrt{2} \) is algebraic. It's a root of \(x^2 - 2 = 0 \)
- e.g. \(3\sqrt{2} \) is algebraic. It's a root of \(x^3 - 2 = 0 \)
- e.g. \(\sin \frac{\pi}{5} \) is algebraic. It's a root of \(16x^4 - 20x^2 + 5 = 0 \)

Definition: A number is **transcendental** if it is not algebraic.
Theorem. There is a transcendental number.

Proof (sketch)
There are only countably many polynomials with integer coefficients
⇒ there are only countably many algebraic numbers.

But \(\mathbb{R} \) is uncountable.

Note: for \(\mathbb{R} \) is not countable proof, maybe this will be clearer.

Let \(S = \{ x \in (0, 1) \mid \text{the decimal expansion of } x \text{ has only 1's and 2's} \} \)

\[\ldots \]

\begin{align*}
\text{e.g.} & & 1 & & 0.122121211 \[\text{1}] \\
2 & & 0.2122122112 \\
3 & & 0.1112121222 \\
\end{align*}

etc., change 1's to 2's and vice versa.