1. Compute some cyclotomic polynomials! We got up \(\Phi_6(x) \) in lecture. Do some more. Do you notice any patterns? What is \(\Phi_p(x) \) for a prime \(p \)?

2. Pick a couple small primes \(p \) (small two-digits, say). For each, find a primitive root mod \(p \). Take powers to generate all of \(\mathbb{F}_p^\times \) and record the squares. Then determine whether the congruence

\[x^2 \equiv 389 \pmod{p} \]

has a solution.

3. Investigate roots of unity and orders of elements in \(\mathbb{F}_p \) for various primes \(p \), as we did in lecture a bit.

Start by picking smallish prime \(p \), writing down the nonzero elements in \(\mathbb{F}_p \) and taking powers to determine their orders. (This next part will make much more sense after the lecture.) We know that \(x^{p-1} - 1 \) splits completely into linear factors over \(\mathbb{F}_p \). Group the factors into the roots of various orders and compare those groups with the reduction mod \(p \) of the corresponding cyclotomic polynomial.