1. I briefly mentioned solving linear equations in the system \(\mathbb{Z}/m\mathbb{Z} \). Experiment with this. Try solving
\[
19X = 7
\]
in \(\mathbb{Z}/31\mathbb{Z} \) for example. There are several ways to approach this. One is to try to use multiplicative inverses much as you do in algebra. Do that. Then consider the equation
\[
12X = 9
\]
in \(\mathbb{Z}/51\mathbb{Z} \). The inverse trick doesn’t work here! Try to solve it anyway. What do you notice about the solution set?

2. I’ll just reiterate problem 4 from the previous problem set. If you didn’t get a chance to dig much into that, this is the perfect place to explore.

3. In exploring quadratic congruences like \(X^2 = a \) in \(\mathbb{Z}/p\mathbb{Z} \) you may have noticed that the solutions tend to come in pairs just like in the real numbers. Plus/minus pairs. This is related to a familiar feature of polynomials: they don’t have any more roots than the degree. Is this generally true over \(\mathbb{Z}/m\mathbb{Z} \)? That is, suppose you have a polynomial
\[
f(X) = a_dX^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0
\]
where \(a_i \in \mathbb{Z}/m\mathbb{Z} \) for all \(i \) and \(a_d \neq \overline{0} \), so \(f(X) \) has degree \(d \). Is it true that \(f \) has at most \(d \) roots in \(\mathbb{Z}/m\mathbb{Z} \)? As usual, experiment with this. Write down some polynomials. Think about examples you’ve seen before, maybe. Also, consider special cases - like what happens if \(m \) is prime? Does the situation improve in that case?

4. Here’s a fun one. Let \(\varphi(m) \) denote the number of units in \(\mathbb{Z}/m\mathbb{Z} \). Looking at the remainders description of classes and the relatively prime characterization of units, \(\varphi(m) \) can also be realized as the number of positive integers not exceeding \(m \) and relatively prime to \(m \).

It’s easy to compute \(\varphi(m) \) for small \(m \) just by writing the table out and counting units. That unfeasible for large \(m \). We’ll have a tool that will help give a formula for \(m \) soon (The Chinese Remainder Theorem), but it turns out there’s a clever workaround using probability of all things.

What’s the probability that a class in \(\mathbb{Z}/m\mathbb{Z} \) is a unit? Clearly it’s
\[
\frac{\varphi(m)}{m}
\]
Now let’s compute this probability a different way. The class \(\overline{a} \) is a unit if and only if \(a \) fails to be divisible by each prime dividing \(m \). This is a bunch of independent conditions on the class \(\overline{a} \), and they’re independent because of the Fundamental Theorem of Arithmetic! Now use tools of probability to try to find another formula for this probability and ultimately a formula for \(\varphi(m) \).