Prospects in Applied Mathematics
University of Chicago
October 19 & 20, 2014

The Interplay Between Computation and Estimation

John Lafferty
Department of Statistics &
Department of Computer Science
University of Chicago
“Morally,” it should be possible to do more work/computation and get an improvement in a statistical estimation problem.

Or get a worse solution by investing less computation.
“Morally,” it should be possible to do more work/computation and get an improvement in a statistical estimation problem.

Or get a worse solution by investing less computation.

How can we trade off statistical efficiency for computational efficiency in a principled, controlled way?
How Many Beans in the Jar?
Outline

- The general problem of tradeoffs
- Some previous work
- Quantized estimation: Motivation from star gazing
- Quantized estimation: Minimax theory
- Sparsified estimation
- Discussion
Collaborators

Yuancheng Zhu

Dinah Shender
Edward Nelson
1. The general problem of tradeoffs

“Morally,” it should be possible to do more work/computation and get an improvement in a statistical estimation problem.

Or get a worse solution by investing less computation.

How can we trade off statistical efficiency for computational efficiency in a principled, controlled way?
Maximize expected return on portfolio, subject to constraint on the variance (risk):

\[
\min -\mathbf{p}^T \mathbf{x} + \lambda \mathbf{x}^T \Sigma \mathbf{x}
\]

\text{s.t.} \quad 1^T \mathbf{x} = 1

x \geq 0
In numerical optimization, it’s understood (in part) how to trade off computation for speed of convergence

- First order methods: linear cost, linear convergence
- Quasi-Newton methods: quadratic cost, superlinear convergence
- Newton’s method: cubic cost, quadratic convergence

Are similar tradeoffs possible in statistical estimation/learning?
A formal framework

Computational analysis

\[T_n = \inf_A \sup_{I_n \in \mathcal{P}} T(A, I_n) \]
A formal framework

Computational analysis

\[T_n = \inf_A \sup_{I_n \in \mathcal{P}} T(A, I_n) \]

Statistical analysis

\[R_n = \inf_{\hat{f}_n \in \mathcal{H}} \sup_{f \in \mathcal{F}} R(\hat{f}_n, f) \]
A formal framework

Computational analysis

\[T_n = \inf_{A} \sup_{I_n \in P} T(A, I_n) \]

Statistical analysis

\[R_n = \inf_{\hat{f}_n \in \mathcal{H}} \sup_{f \in \mathcal{F}} R(\hat{f}_n, f) \]

Computation-constrained minimax:

\[R_n(T_n) = \inf_{\hat{f}_n, T(\hat{f}_n) \leq T_n} \sup_{f \in \mathcal{F}} R(\hat{f}_n, f) \]
A formal framework

Computational analysis

\[T_n = \inf_A \sup_{l_n \in \mathcal{P}} T(A, l_n) \]

Statistical analysis

\[R_n = \inf_{\hat{f}_n \in \mathcal{H}} \sup_{f \in \mathcal{F}} R(\hat{f}_n, f) \]

Computation-constrained minimax:

\[R_n(T_n) = \inf_{\hat{f}_n \in \mathcal{H}, T(\hat{f}_n) \leq T_n} \sup_{f \in \mathcal{F}} R(\hat{f}_n, f) \]

↑

estimators using \(T_n \) units of computation
Constrained minimax

Risk $R(T)$ vs. Computation T
2. Previous work in different areas

- Brief survey of some steps in this direction
- Little detail, biased selection
Nash Equilibria

Nash equilibrium does not take computation into account

Example (Halpern and Pass, 2008):

- You are given an \(n \)-bit number, and are asked if it is prime.
- You can either give an answer, or say nothing.
- If you guess and are correct, you get $10. If you are wrong, you lose $10. If you say nothing, you get $1
Nash Equilibria

Nash equilibrium does not take computation into account

Example (Halpern and Pass, 2008):

- You are given an n-bit number, and are asked if it is prime.
- You can either give an answer, or say nothing.
- If you guess and are correct, you get $10. If you are wrong, you lose $10. If you say nothing, you get $1

Nash equilibrium: Give the correct answer.

If n large, not worth it?
Hierarchical Testing Designs

- Formalization of “Twenty Questions”
- Find true pattern Y from large set of possibilities \mathcal{Y}.
- Consider hierarchical (“course-to-fine”) family of tests
 - Zero type I error
 - Candidate tests $A \subset \mathcal{Y}$ form nested partitions
 - Tests evaluated according to power (type II error) and computational cost
Detecting geometric objects

- Detect line segments in two dimensional image data with Gaussian noise
- Compare multiscale geometric analysis to likelihood ratio test
Upper bounds for normal means
(Chandrasekaran and Jordan, 2012)

Risk is fixed at some level ϵ. Methods have different sample complexities and runtimes.
Preference Learning

Hazan, Kale and Shalev-Shwartz, COLT 2012.

\[\mathcal{X} = [d] \times [d], \mathcal{Y} = \{0, 1\}. \text{ Given } (i, j) \in \mathcal{X} \text{ predict if } i \text{ is preferable to } j. \]

Hypothesis class \(\mathcal{H} \) all permutations \(\mathfrak{S}_d \).

<table>
<thead>
<tr>
<th>Method</th>
<th>Comput.</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERM</td>
<td>(d!)</td>
<td>(O(d))</td>
</tr>
<tr>
<td>HKS</td>
<td>(d^4 \log^3 d)</td>
<td>(O(d \log^3 d))</td>
</tr>
<tr>
<td>ERM((\mathcal{H}^{(n)}))</td>
<td>(d^2)</td>
<td>(O(d^2))</td>
</tr>
</tbody>
</table>

\[\text{Computation} \Rightarrow \text{Samples} \]
Known tradeoffs for sparse PCA (d’Aspremont et al. 2008, Amini and Wainwright, 2009)

<table>
<thead>
<tr>
<th>Method</th>
<th>Computation</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>$\binom{p}{k}$</td>
<td>$k \log(p-k)$</td>
</tr>
<tr>
<td>SDP relax</td>
<td>$np^2 + p^4 \log p$</td>
<td>$k \log(p-k)$</td>
</tr>
<tr>
<td>Thresh.</td>
<td>$np + p \log p$</td>
<td>$k^2 \log(p-k)$</td>
</tr>
</tbody>
</table>

SDP assumes existence of rank-1 solution. Berthet and Rigollet (2013) show $O(p^2 \log p)$ lower bound for polynomial time procedures.
Known tradeoffs for sparse PCA (d’Aspremont et al. 2008, Amini and Wainwright, 2009)

<table>
<thead>
<tr>
<th>Method</th>
<th>Computation</th>
<th>Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal</td>
<td>$\binom{p}{k}$</td>
<td>$k \log(p - k)$</td>
</tr>
<tr>
<td>SDP relax</td>
<td>$np^2 + p^4 \log p$</td>
<td>$k \log(p - k)$</td>
</tr>
<tr>
<td>Thresh.</td>
<td>$np + p \log p$</td>
<td>$k^2 \log(p - k)$</td>
</tr>
</tbody>
</table>

SDP assumes existence of rank-1 solution. Berthet and Rigollet (2013) show $O(k^2 \log p)$ lower bound for polynomial time procedures.
3. Quantized estimation: Motivation from Kepler

95 megapixel camera, (42 CCDs at 2200×1024 pixels) CCDs are read out every six seconds, and co-added on board for 30 minutes. The raw pixels are more data than can be stored and sent back to Earth.
One reading for a single star
Sample lightcurve for one star (among 150,000)
Task: Detrend, threshold, score

Figure 2. Kepler-29 lightcurves. Upper panel: the quarter-normalized, calibrated Kepler photometry (PA); lower panel: the detrended, normalized flux. The transit times of each planet are indicated by dots at the bottom of each panel.

From Fabrycky et al., 2012.
Motivation for quantized estimation

- On the telescope, all the captured data cannot be transmitted to earth. Data are aggregated on board, subsampled and then transmitted.
- Received light curves are \(\approx 1 \) terabyte. When we process them in our Amazon AWS system, storing and moving the data in Amazon S3 is limiting cost in the computation.
Suppose we represent the estimator with B bits. In an optimal representation, how much do we lose in terms of minimax risk?

We answer this by revisiting nonparametric minimax theory from perspective of rate-distortion theory.
Normal means model

Normal means is the archetypal nonparametric problem. Captures essentials of nonparametric estimation.

Observe $X_i \sim N(\theta_i, \sigma_n^2)$, for $i = 1, 2, \ldots, n$.

Goal: Estimate means θ_i to minimize the risk $R(\hat{\theta}, \theta) = \mathbb{E}\|\hat{\theta} - \theta\|^2$.
Normal means model

Normal means is the archetypal nonparametric problem. Captures essentials of nonparametric estimation.

Observe $X_i \sim N(\theta_i, \sigma_n^2)$, for $i = 1, 2, \ldots, n$.

Goal: Estimate means θ_i to minimize the risk $R(\hat{\theta}, \theta) = \mathbb{E}\|\hat{\theta} - \theta\|^2$.

Pinsker’s Theorem. Let $\sigma_n = \sigma/\sqrt{n} \equiv \varepsilon$. Over the L_2 ball $\Theta_n(c)$ of radius c, the asymptotic minimax risk is

$$R(\sigma, c) = \liminf_{n \to \infty} \inf_{\hat{\theta}} \sup_{\theta \in \Theta_n(c)} R(\hat{\theta}, \theta) = \frac{\sigma^2 c^2}{\sigma^2 + c^2}$$
Quantized normal means

We wish to limit the number of bits in our estimator:

\[X_1, X_2, \ldots, X_n \mapsto \tilde{\theta}_1, \tilde{\theta}_2 \ldots, \tilde{\theta}_n \]

Classical rate-distortion setting:

minimize number of bits subject to \(\mathbb{E}(X - \tilde{X})^2 \leq D \)

In our estimation setting:

minimize number of bits subject to \(\inf_{\tilde{\theta}} \mathbb{E}(\tilde{\theta}(X) - \theta)^2 \leq R \)

We are quantizing with respect to the risk, or estimation error — the distortion in our estimation of an unknown constant
Rate distortion vs. quantized estimation

\[X^n \rightarrow \text{Encoder} \varphi_n \xrightarrow{\varphi_n(X^n) \in C(B)} \text{Decoder} \psi_n \rightarrow \tilde{X}^n = \psi_n(\varphi_n(X^n)) \]
Rate distortion vs. quantized estimation

\[X^n \rightarrow \text{Encoder} \
\varphi_n \
\xrightarrow{\varphi_n(X^n) \in C(B)} \
\text{Decoder} \
\psi_n \
\xrightarrow{} \ \hat{X}^n = \psi_n(\varphi_n(X^n)) \]

\[\theta^n \rightarrow X^n \rightarrow \text{Encoder} \
\varphi_n \
\xrightarrow{\varphi_n(X^n) \in C(B)} \
\text{Decoder} \
\psi_n \
\xrightarrow{} \ \hat{\theta}^n = \psi_n(\varphi_n(X^n)) \]
Quantized minimax formulation

Quantized minimax risk

\[R(\sigma, c, B) = \lim_{n \to \infty} \inf_{\tilde{\theta}^n \in \mathcal{Q}_n(B)} \sup_{\theta^n \in \Theta_n(c)} R_n(\tilde{\theta}^n, \theta^n). \]
Quantized minimax formulation

Quantized minimax risk

\[R(\sigma, c, B) = \lim_{n \to \infty} \inf_{\tilde{\theta}^n \in \mathcal{Q}_n(B)} \sup_{\theta^n \in \Theta_n(c)} R_n(\tilde{\theta}^n, \theta^n). \]

\[\uparrow \]

estimators using \(B \) bits

How does this risk depend on \(B \)?
Characterizing the tradeoff

Theorem. The asymptotic quantized minimax risk satisfies

\[
R(\sigma, c, B) \geq \frac{\sigma^2 c^2}{\sigma^2 + c^2} + \frac{c^4}{\sigma^2 + c^2} 2^{-2B}
\]

Moreover, this minimax lower bound is achievable by a random coding algorithm, which is adaptive to \(\|\theta\|\).
Quantization-risk tradeoffs: Pareto curve

\[R(B) = \frac{\sigma^2 c^2}{\sigma^2 + c^2} + \frac{c^4 2^{-2B}}{\sigma^2 + c^2} \]
Random Coding Scheme

Step 1. *Generating codebooks.*

- Generate codebook $\mathcal{B} = \{1/\sqrt{n}, 2/\sqrt{n}, \ldots, [c^2 \sqrt{n}]/\sqrt{n}\}$.
- Generate codebook \mathcal{X} of 2^{nB} i.i.d. random vectors from uniform distribution on \mathbb{S}^{n-1}.
Random Coding Scheme

Step 1. *Generating codebooks.*
- Generate codebook $\mathcal{B} = \{1/\sqrt{n}, 2/\sqrt{n}, \ldots, [c^2 \sqrt{n}]/\sqrt{n}\}$.
- Generate codebook \mathcal{X} of 2^{nB} i.i.d. random vectors from uniform distribution on \mathbb{S}^{n-1}.

Step 2. *Encoding.*
- Encode $\tilde{b}^2 = \frac{1}{n} \|X\|^2 - \sigma^2$ by
 $$\tilde{b}^2 = \arg\min\{|b^2 - \tilde{b}^2| : b^2 \in \mathcal{B}\}.$$
- Encode X^n by
 $$\tilde{X}^n = \arg\max\{\langle X^n, x^n \rangle : x^n \in \mathcal{X}\}.$$
Random Coding Scheme

Step 1. **Generating codebooks.**
- Generate codebook $\mathcal{B} = \{1/\sqrt{n}, 2/\sqrt{n}, \ldots, [c^2\sqrt{n}]/\sqrt{n}\}$.
- Generate codebook \mathcal{X} of 2^{nB} i.i.d. random vectors from uniform distribution on S^{n-1}.

Step 2. **Encoding.**
- Encode $\tilde{b}^2 = \frac{1}{n} \|X\|^2 - \sigma^2$ by
 $$\tilde{b}^2 = \arg\min\{|b^2 - \tilde{b}^2| : b^2 \in \mathcal{B}\}.$$
- Encode X^n by
 $$\tilde{X}^n = \arg\max\{\langle X^n, x^n \rangle : x^n \in \mathcal{X}\}.$$

Step 3. **Decoding.** Estimate θ by
 $$\tilde{\theta}^n = \sqrt{\frac{n\tilde{b}^4(1 - 2^{-2B})}{\tilde{b}^2 + \sigma^2}} \cdot \tilde{X}^n.$$
Optimality

Theorem. For a sequence of vectors θ^n satisfying $\|\theta^n\|^2 = b^2 \leq c^2$ we have

$$
\mathbb{P} \left(\|\theta^n - \tilde{\theta}^n\|^2 > \frac{\sigma^2 b^2}{\sigma^2 + b^2} + \frac{b^4 2^{-2B}}{\sigma^2 + b^2} + C \sqrt{\log \frac{n}{\sigma^2 + b^2}} \right) \rightarrow 0
$$

Thus, the quantized Pinsker bound is achievable.
Connecting Shannon and Kolmogorov

Donoho’s 1997 Wald Lectures show beautiful interplay between rate distortion, Kolmogorov’s metric entropy, and minimax theory.

<table>
<thead>
<tr>
<th>Shannon</th>
<th>Kolmogorov</th>
</tr>
</thead>
<tbody>
<tr>
<td>library</td>
<td>X stochastic</td>
</tr>
<tr>
<td>representers</td>
<td>codebook (C)</td>
</tr>
<tr>
<td>fidelity</td>
<td>(\mathbb{E} \min_{X' \in C} | X - X' |^2)</td>
</tr>
<tr>
<td>complexity</td>
<td>(\log</td>
</tr>
</tbody>
</table>

\[
H_\epsilon(\mathcal{F}) = \sup \left\{ R(\epsilon^2, X) : \mathbb{P}(X \in \mathcal{F}) = 1 \right\} (1 + o(1))
\]
White noise model

Classical model for nonparametric regression:

$$dY(t) = f(t)dt + \varepsilon dW(t)$$

where f lies in the Sobolev space

$$\tilde{W}_m(c) = \left\{ f \in L_2[0, 1] : \{\theta_j\} \in \Theta(m, c) \right\}$$

where $\theta_j = \langle f, \varphi_j \rangle$ for the trigonometric basis, and $\Theta(m, c)$ is the ellipsoid

$$\Theta(m, c) = \left\{ \theta : \sum_{j=1}^{\infty} j^{2m} \theta_j^2 \leq \frac{c^2}{\pi^{2m}} \right\}$$
White noise model

Classical model for nonparametric regression:

\[dY(t) = f(t)\,dt + \varepsilon\,dW(t) \]

where \(f \) lies in the Sobolev space

\[\widetilde{W}_m(c) = \{ f \in L_2[0,1] : \{\theta_j\} \in \Theta(m, c) \} \]

where \(\theta_j = \langle f, \varphi_j \rangle \) for the trigonometric basis, and \(\Theta(m, c) \) is the ellipsoid

\[\Theta(m, c) = \left\{ \theta : \sum_{j=1}^{\infty} j^{2m} \theta_j^2 \leq \frac{c^2}{\pi^{2m}} \right\} \]

We observe data

\[Y_j = \int_0^1 \varphi_j(t)\,dY(t) = \theta_j + \varepsilon\xi_j \]

where \(\xi_j \sim N(0, 1) \).
Minimax risk for Sobolev ellipsoids

Minimax risk at noise level ε:

$$R_\varepsilon(m, c) = \inf_{\hat{\theta}} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2$$

Pinsker minimax bound:

$$R(m, c) = \lim_{\varepsilon \to 0} \inf_{\varepsilon^{\frac{-4m}{2m+1}}} R_\varepsilon(m, c) \geq \left(\frac{c}{\pi m} \right)^{\frac{2}{2m+1}} (2m+1)^{\frac{1}{2m+1}} \left(\frac{m}{m+1} \right)^{\frac{2m}{2m+1}}$$
Minimax risk for Sobolev ellipsoids

Minimax risk at noise level \(\varepsilon \):

\[
R_{\varepsilon}(m, c) = \inf_{\hat{\theta}} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2
\]

Pinsker minimax bound:

\[
R(m, c) = \liminf_{\varepsilon \to 0} \varepsilon^{\frac{-4m}{2m+1}} \frac{c^2}{\pi m} \frac{(2m+1)^{1/2m+1}}{m+1} \left(\frac{m}{m+1} \right)^{\frac{2m}{2m+1}}
\]

\[\text{Pinsker constant } P_m(c)\]
Minimax risk at noise level ε and quantization level B_ε:

$$R_\varepsilon(m, c, B) = \inf_{\hat{\theta} \in \mathcal{M}(B)} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2$$
Minimax risk at noise level ε and quantization level B_ε:

$$R_\varepsilon(m, c, B) = \inf_{\hat{\theta} \in \mathcal{M}(B)} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2$$

↑

estimators using B bits
Quantized Minimax risk for Sobolev ellipsoids

Minimax risk at noise level ε and quantization level B_ε:

$$R_\varepsilon(m, c, B) = \inf_{\hat{\theta} \in \mathcal{M}(B)} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2$$

estimators using B bits

Quantized minimax bound:

$$R(m, c, B) = \liminf_{\varepsilon \to 0} r(B_\varepsilon) R_\varepsilon(m, c, B_\varepsilon) \geq Q_m(c, B)$$
Minimax risk at noise level ε and quantization level B_ε:

$$R_\varepsilon(m, c, B) = \inf_{\hat{\theta} \in \mathcal{M}(B)} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2$$

estimators using B bits

Quantized minimax bound:

$$R(m, c, B) = \lim_{\varepsilon \to 0} \inf R_\varepsilon(m, c, B_\varepsilon) \geq Q_m(c, B)$$

rate of convergence
Quantized Minimax risk for Sobolev ellipsoids

Minimax risk at noise level ε and quantization level B_ε:

$$R_\varepsilon(m, c, B) = \inf_{\hat{\theta} \in \mathcal{M}(B)} \sup_{\theta \in \Theta(m, c)} \mathbb{E} \| \hat{\theta} - \theta \|^2$$

↑

estimators using B bits

Quantized minimax bound:

$$R(m, c, B) = \lim_{\varepsilon \to 0} \inf \ r(B_\varepsilon) R_\varepsilon(m, c, B_\varepsilon) \geq Q_m(c, B)$$

↑

rate of convergence Pinsker-Zhu constant
Regime Change

Four regimes of quantization:

1. Lots of bits
2. Just enough to preserve rate
3. Too few, suffer rate loss
4. Constant
Quantized minimax estimation

Theorem.

1. If \(B_{\varepsilon} \frac{2}{2m+1} \to \infty \),

\[
\liminf_{\varepsilon \to 0} \varepsilon^{-\frac{4m}{2m+1}} R_{\varepsilon}(c, B) \geq P_m(c)
\]
Quantized minimax estimation

Theorem.

1. If \(B_{\varepsilon}^{\frac{2}{2m+1}} \rightarrow \infty \),

\[
\liminf_{\varepsilon \to 0} \varepsilon^{-\frac{4m}{2m+1}} R_\varepsilon(c, B) \geq P_m(c)
\]

2. If \(B_{\varepsilon}^{\frac{2}{2m+1}} \rightarrow b \),

\[
\liminf_{\varepsilon \to 0} \varepsilon^{-\frac{4m}{2m+1}} R_\varepsilon(c, B) \geq Q_m(c, b)
\]

where \(Q_m(c, b) \) is the solution of a cubic equation in \(b \).
Quantized minimax estimation

Theorem (continued)

3. If \(B \in 2^{m+1} \rightarrow 0 \) and \(B \rightarrow \infty \)

\[
\lim_{\varepsilon \rightarrow 0} B^{2m} R_{\varepsilon}(c, B) \geq \frac{c^2}{\pi^{2m}} m^{2m}
\]
Quantized minimax estimation

Theorem (continued)

3. If $B_{\varepsilon}^{\frac{2}{2m+1}} \to 0$ and $B \to \infty$

$$\lim_{\varepsilon \to 0} \inf B^{2m} R_{\varepsilon}(c, B) \geq \frac{c^2}{\pi^{2m}} m^{2m}$$

4. If B is constant then

$$\lim_{\varepsilon \to 0} \inf R_{\varepsilon}(c, B) \geq \frac{c^2}{\pi^{2m}} \left(\exp \left(\frac{B}{m} \right) \ell! \right)^{2m/\ell}$$

where ℓ is the integer satisfying

$$\frac{\ell^\ell}{\ell!} < \exp \left(\frac{B}{m} \right) \leq \frac{(\ell + 1)^{(\ell+1)}}{(\ell + 1)!}$$
Summary of quantized minimax estimation

- Computation-risk tradeoffs for communication/storage constraints can be sharply characterized.
- Current coding schemes are exponential time.
- Promising future work: Coding/compression using sparse regression (Barron and Joseph, 2012; Venkataramanan et al., 2013).
Sparsified linear regression

We have been studying fine-grained tradeoffs (upper bounds) in the setting of large scale linear regression

Dinah Shender
Covariance-thresholded ridge regression

Ridge regression: \(\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|^2 + \lambda \| \beta \|^2 \)

\[
\begin{pmatrix}
\hat{\Sigma} \\
\end{pmatrix} + \lambda I \\
\begin{pmatrix}
\hat{\beta}_{\lambda} \\
\end{pmatrix} = \frac{1}{n} X^T Y
\]
Covariance-thresholded ridge regression

Ridge regression: \(\hat{\beta} = \arg \min_{\beta} \| Y - X\beta \|^2 + \lambda \| \beta \|^2 \)

Our estimator:

\[
\begin{pmatrix}
(\hat{\Sigma} + \lambda I) \\
T_t (\hat{\Sigma}) + \lambda I
\end{pmatrix} = \begin{pmatrix}
\frac{1}{n} X^T \\
\frac{1}{n} X^T
\end{pmatrix}
\]
Computation-risk tradeoffs for linear regression

Standard ridge estimator solves

\[
\left(\frac{1}{n} X^T X + \lambda_n I \right) \hat{\beta}_\lambda = \frac{1}{n} X^T Y
\]

Sparsify sample covariance to get estimator

\[
\left(T_t[\hat{\Sigma}] + \lambda_n I \right) \hat{\beta}_{t,\lambda} = \frac{1}{n} X^T Y
\]

where \(T_t[\hat{\Sigma}] \) is hard-thresholded sample covariance:

\[
T_t([s_{ij}]) = [s_{ij} \mathbf{1}(|s_{ij}| > t)]
\]

Solving SDD systems (Spielman et al.; Miller et al.; Kelner et al., 2009–2013)

\[
\tilde{O}(m \log p \log \varepsilon^{-1})
\]
Risk decomposition

Define

\[
\tilde{\beta}_{t,\lambda} = \mathbb{E}[\hat{\beta}_{t,\lambda} | X] = (T_t(\hat{\Sigma}) + \lambda I)^{-1}\hat{\Sigma}\beta^*
\]

\[
\beta_\lambda = \mathbb{E}\hat{\beta}_\lambda = (\Sigma + \lambda I)^{-1}\Sigma\beta^*
\]

Then we can decompose the risk as

\[
\|\tilde{\beta}_{t,\lambda} - \beta^*\|^2_\Sigma \leq 3 \left(\|\beta_{t,\lambda} - \tilde{\beta}_{t,\lambda}\|^2_\Sigma + \|\tilde{\beta}_{t,\lambda} - \beta_\lambda\|^2_\Sigma + \|\beta_\lambda - \beta^*\|^2_\Sigma \right)
\]

\(\text{variance}\) \(\text{random design and thresholding}\) \(\text{bias}^2\)
Risk decomposition

Define

\[\tilde{\beta}_{t,\lambda} = \mathbb{E}[\hat{\beta}_{t,\lambda} | X] = (T_t(\hat{\Sigma}) + \lambda I)^{-1}\hat{\Sigma}\beta^* \]

\[\beta_\lambda = \mathbb{E}\hat{\beta}_\lambda = (\Sigma + \lambda I)^{-1}\Sigma\beta^* \]

Then we can decompose the risk as

\[\|\tilde{\beta}_{t,\lambda} - \beta^*\|^2_\Sigma \leq 3\left(\|\hat{\beta}_{t,\lambda} - \tilde{\beta}_{t,\lambda}\|^2_\Sigma + \|\tilde{\beta}_{t,\lambda} - \beta_\lambda\|^2_\Sigma + \|\beta_\lambda - \beta^*\|^2_\Sigma \right) \]

\[O_P\left(\frac{\sigma^2}{n} \right) \quad O(\lambda^2\|\beta^*\|^2) \]
Bounding the excess risk

The term $\| \tilde{\beta}_{t, \lambda} - \beta_{\lambda} \|_{\Sigma}^2$ is the excess risk due to sparsification—which allows faster optimization.

It is controlled by $\| T_t(\hat{\Sigma}) - \Sigma \|$ and $\| \hat{\Sigma} - \Sigma \|$.

We work over class of covariance matrices with rows in sparse ℓ_q balls, $q < 1$, as studied by Bickel and Levina.
Suppose $\lambda = O(n^{-1/2})$. Then the excess risk of $\hat{\beta}_{t,\lambda}$ satisfies

$$\|\hat{\beta}_{t,\lambda} - \beta^*\|_2^2 = O_P \left((t^{2(1-q)} + \frac{t^{-2q}}{n} + \lambda^2) \|\beta^*\|^2 + \frac{\sigma^2}{n} \right)$$

Assuming $T_t(\hat{\Sigma}) + \lambda I$ is diagonally dominant, the estimator can be computed in time

$$T(m_{n,t}, p) = \tilde{O}(m_{n,t} \log p \log n)$$

where $m_{n,t}$ is the number of nonzero entries in the thresholded covariance matrix $T_t(\hat{\Sigma})$.
Computation-risk tradeoffs for linear regression

- Combined with the computational bounds for SDD systems, this gives us an explicit, fine-grained risk/computation tradeoff.
- Dinah has also studied variants of locality-sensitive hashing for efficient, approximate kernel regression.
Current work: Sparsified designs

\[
Y = \underbrace{\begin{bmatrix}
\beta \\
\vdots \\
\beta
\end{bmatrix}}_{p \times 1} + \underbrace{\begin{bmatrix}
\varepsilon \\
\varepsilon \\
\varepsilon
\end{bmatrix}}_{n \times 1}
\]

original data matrix \(X\)
Current work: Sparsified designs

\[\mathbf{Y} = \mathbf{X} \mathbf{\beta} + \mathbf{\varepsilon} \]

\(\mathbf{Y} \) \(n \times 1 \)
\(\mathbf{X} \) \(n \times p \)
\(\mathbf{\beta} \) \(p \times 1 \)
\(\mathbf{\varepsilon} \) \(n \times 1 \)

\(\mathbf{X} \) is the sparsified data matrix.
Motivation:

- Sparsified problem can be solved in time $O(\text{nnz}(X) + \rho^3)$ using “subspace embedding” algorithms (Clarkson and Woodruff, 2012; Nelson and Nguyen, 2012)

- Connection to “drop-out” method in Deep Learning (Hinton et al., 2012, Wager et al., 2013)
Illustrated two facets of the interplay between estimation and computation:

- Storage-risk tradeoffs in nonparametric estimation
- Time-risk tradeoffs in sparsified linear regression

Motivated by modern concerns of massive data analysis.

Theoretical frameworks bringing together computational, statistical, and information theoretic perspectives.
Thank you!

arXiv:1409.6833 (NIPS 2014)
jmlr.org/proceedings/papers/v28/shender13.html (ICML 2013)