Math 325 - Algebra 1
Lectures by Victor Ginzburg Notes by Zev Chonoles

December 9, 2013

Lecture 1	1	Lecture 14	51
Lecture 2	8	Lecture 15	55
Lecture 3	15	Lecture 16	62
Lecture 4	19	Lecture 17	65
Lecture 5	25	Lecture 18	71
Lecture 6	27	Lecture 19	72
Lecture 7	29	Lecture 20	75
Lecture 8	31	Lecture 21	79
Lecture 9	34	Lecture 22	82
Lecture 10	39	Lecture 23	86
Lecture 11	42	Lecture 24	88
Lecture 12	46	Lecture 25	91
Lecture 13	49	Lecture 26	94

Introduction

Math 325 is one of the nine courses offered for first-year mathematics graduate students at the University of Chicago. It is the first of three courses in the year-long algebra sequence.
These notes were live-TeXed, though I edited for typos and added diagrams requiring the TikZ package separately. I used the editor TeXstudio.

I am responsible for all faults in this document, mathematical or otherwise; any merits of the material here should be credited to the lecturer, not to me.
Please email any corrections or suggestions to chonoles@math.uchicago.edu.

Acknowledgments

Thank you to all of my fellow students who sent me suggestions and corrections, and who lent me their own notes from days I was absent. My notes are much improved due to your help.

I would like to especially thank Jonathan Wang for supplementing my notes from class with his own observations and explanations in numerous places, as well as for catching many of my typos and misunderstandings.

Lecture 1

1. Notation and Definitions. In these lectures we will use the following standard notation.
2. \mathbb{Z} denotes the ring of integers.
3. $\mathbb{Q}, \mathbb{R}, \mathbb{C}$, denote the fields of rational, real, and complex numbers, respectively.
4. Given a ring A, we write $\mathrm{M}_{n}(A)$ for the ring of $n \times n$-matrices with entries in A, resp. $\mathrm{GL}_{n}(A)$, for the group of invertible elements of the ring $\mathrm{M}_{n}(A)$. Let $A a$, resp. $a A$, denote the left, resp. right, ideal generated by an element $a \in A$. If A is commutative, then $A a=a A$ and we'll often use the notation (a) for this ideal.
5. We write $Z(A)$ for the center of a ring A, i.e. we define $Z(A):=\{z \in A \mid a z=z a, \forall a \in A\}$. Note that $Z(A)$ is a subring of A.
6. k always stands for a (nonzero) field. Given k-vector spaces V, W, let $\operatorname{Hom}_{k}(V, W)$ denote the vector space of linear maps $V \rightarrow W$.
7. $k\left[x_{1}, \ldots, x_{n}\right]$, resp. $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$, denotes a polynomial algebra, resp. a free associative algebra, in indeterminates x_{1}, \ldots, x_{n}. Let $k(t)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in k[t], g \neq 0\right\}$ denote the field of rational functions in a variable t.
8. Given a set X, we write $k\{X\}$ for the k-algebra of k-valued functions on X, with the operations of pointwise addition, multiplication, and multiplication by scalars.

Throughout the course, all rings are assumed to have a unit. A map $f: A \rightarrow B$, between two rings A and B, is called a ring homomorphism (or just 'morphism', for short) if $f\left(1_{A}\right)=1_{B}$, and one has $f\left(a_{1}+a_{2}\right)=f\left(a_{1}\right)+f\left(a_{2}\right)$ and $f\left(a_{1} \cdot a_{2}\right)=f\left(a_{1}\right) \cdot f\left(a_{2}\right)$, for any $a_{1}, a_{2} \in A$.

Definition. A ring A equipped with a ring homomorphism $k \rightarrow Z(A)$ is called a k-algebra. More explicitly, this means that A has a structure of vector space over k and also a ring structure such that:

1. The operations ' + ' coming from the vector space structure and the ring structure, respectively, are the same;
2. The ring multiplication $\cdot: A \times A \rightarrow A$ is a k-bilinear map.

One defines k-algebra morphisms as k-linear ring morphisms.
A (not necessarily commutative) ring, resp. algebra, A is called a division ring, resp. division algebra, if any nonzero element of A is invertible.

Let V be an n-dimensional k-vector space. The vector space $\operatorname{End}_{k} V:=\operatorname{Hom}_{k}(V, V)$ has the natural k-algebra structure, with multiplication operation given by composition of maps. We write GL(V) for the group of invertible linear operators and $\operatorname{SL}(V)$ for the subgroup of GL (V) formed by the operators with determinant 1 . We will often identify $\operatorname{End}_{k}\left(k^{n}\right) \cong \mathrm{M}_{n}(k)$ and $\mathrm{GL}\left(k^{n}\right) \cong \mathrm{GL}_{n}(k)$.

Modules over a ring. We introduce a very important notion of module.
In a sentence, a module is a vector space over a ring. More precisely, let A be a ring. Then a (left) A-module is an abelian group $(M,+)$ with an action map $A \times M \rightarrow M, a \times m \mapsto a m$, satisfying

1. $1_{A} m=m$,
2. $\left(a_{1}+a_{2}\right) m=a_{1} m+a_{2} m$,
3. $a\left(m_{1}+m_{2}\right)=a m_{1}+a m_{2}$,
4. $(a b) m=a(b m)$,
for all $a, a_{1}, a_{2} \in A$ and $m, m_{1}, m_{2} \in M$.
One can similarly define right A-modules. A convenient way to give a formal definition of right module is as follows.

First, given a ring A, one defines $A^{o p}$, the opposite ring, to be the abelian group $(A,+)$ equipped with an opposite multiplication $a, b \mapsto a \cdot_{o p} b:=b a$.
Then, a right A-module is, by definition, the same thing as a left $A^{o p}$-module.
Remark. An anti-involution on a ring A is a morphism $A \rightarrow A, a \mapsto a^{*}$ of abelian groups such that

$$
(a b)^{*}=b^{*} a^{*}, \quad\left(a^{*}\right)^{*}=a, \quad\left(1_{A}\right)^{*}=1_{A}, \quad a, b \in A
$$

An anti-involution on A provides a ring isomorphism $A \xrightarrow{\sim} A^{o p}$.
Transposition of matrices gives an example of a non-trivial anti-involution on $\mathrm{M}_{n}(k)$, a noncommutative ring.
The identity map is an anti-involution on any commutative ring. Thus, we have $A^{o p} \cong A$ for any commutative ring A and hence the notions of left and right A-modules coincide in this case.

We a going to develop rudiments of 'Linear Algebra over a ring'. Below, we will only consider left modules, unless explicitly stated otherwise.
We say that N is a submodule of M if N is an A-stable subgroup of $(M,+)$. Given a submodule N, we can construct the quotient module M / N.
A map $f: M \rightarrow N$ is an A-module morphism if it is A-linear, i.e. $f\left(m_{1}+m_{2}\right)=f\left(m_{1}\right)+f\left(m_{2}\right)$ and $f(a m)=a f(m)$.
Given an A-module morphism $f: M \rightarrow N$, then $\operatorname{ker}(f)=f^{-1}(0)$ is a submodule of M, and $\operatorname{im}(f)$ is a submodule of N. An isomorphism is, by definition, a bijective A-module morphism. There is a natural isomorphism $\operatorname{im}(f) \cong M / \operatorname{ker}(f)$.

Examples.

1. Let $A=\mathbb{Z}$. An \mathbb{Z}-module is the same thing as an abelian group. Indeed, any abelian group M comes equipped with natural \mathbb{Z}-action defined, for any $k \in \mathbb{Z}_{\geq 0}$ and $m \in M$, by the formulas

$$
k m:=\underbrace{m+\cdots+m}_{k \text { times }}, \quad(-k) m:=-(k m) .
$$

2. Let $A=k$ a field. Then k-modules are just k-vector spaces.
3. Let $A=k[x]$ where k is a field. Then an A-module is just a k-vector space V equipped with a k-linear map $\widehat{x}: V \rightarrow V$.
4. Let $A=k[x] /\left(x^{4}-1\right)$. Then an A-module is just a k-vector space V equipped with a k-linear map $\widehat{x}: V \rightarrow V$ satisfying $\widehat{x}^{4}=\mathrm{id}_{V}$.
5. Let $A=k[x, y]$, a polynomial algebra in two variables. Then an A-module is just a k-vector space V equipped with two commuting k-linear maps $\widehat{x}, \widehat{y}: V \rightarrow V$.
6. Let $A=k\langle x, y\rangle$, a free associative k-algebra on two generators. Then an A-module is just a k-vector space V equipped with two arbitrary k-linear maps $\widehat{x}, \widehat{y}: V \rightarrow V$.
7. Any ring A has the natural structure of a left, resp. right, module over itself. A submodule $J \subset A$ is just the same thing as a left, resp. right, ideal of A. Therefore, the set A / J also has the natural structure of a left, resp. right, A-module.
8. For any ring A and an integer $n>0$, the abelian group $A^{n}=A \oplus \ldots \oplus A$ of column, resp. row, vectors has the structure of a left, resp. right, $\mathrm{M}_{n}(A)$-module.

Let $A=k[x]$. Then, any ideal of A is a principal ideal $(f) \subset A$, for some polynomial $f=$ $x^{n}+c_{n-1} x^{n-1}+\cdots+c_{0} \in k[x], f \neq 0$. Let $M=k[x] /(f)$, an A-module. Then we can choose $1, x, \ldots, x^{n-1}$ as a k-basis of M. Multiplication by x sends

$$
1 \longrightarrow x \longrightarrow x^{2} \longrightarrow \cdots \longrightarrow x^{n-1} \longrightarrow x^{n}=-\left(c_{n-1} x^{n-1}+\cdots+c_{0}\right)
$$

(because $f=0$ in M). Thus, we have an isomorphism $k[x] /(f) \cong k^{n}$, as k-vector spaces, and the multiplication by x operator has matrix

$$
\left[\begin{array}{cccccc}
0 & 1 & & & & 0 \\
& 0 & 1 & & & 0 \\
& & \ddots & \ddots & & 0 \\
& & & & 1 & 0 \\
& & & & 0 & 0 \\
-c_{0} & -c_{1} & & \cdots & & -c_{n-1}
\end{array}\right] \quad(" \text { Frobenius block") }
$$

Operations on modules.

1. The direct sum of modules M_{1}, M_{2} is defined to be

$$
M_{1} \oplus M_{2}=\left\{\left(m_{1}, m_{2}\right) \mid m_{1} \in M_{1}, m_{2} \in M_{2}\right\} .
$$

The action of A is given by $a\left(m_{1}, m_{2}\right):=\left(a m_{1}, a m_{2}\right)$.
More generally, for any set I and any collection of A-modules $\left\{M_{i}\right\}_{i \in I}$, one has a direct product A-module

$$
\prod_{i \in I} M_{i}=\left\{\left(m_{i} \in M_{i}\right)_{i \in I}\right\} .
$$

We will often write an element of $\prod_{i \in I} M_{i}$ in the form $\sum_{i \in I} m_{i}$ instead of $\left(m_{i} \in M_{i}\right)_{i \in I}$.
2. The A-module $\prod_{i \in I} M_{i}$ contains a submodule

$$
\bigoplus_{i \in I} M_{i}=\left\{\left(m_{i} \in M_{i}\right)_{i \in I} \mid m_{i}=0 \text { for all but finitely many } i\right\},
$$

called direct sum.
In particular, for any $n \geq 1$, we write

$$
M^{n}:=\underbrace{M \oplus \cdots \oplus M}_{n \text { times }} .
$$

3. The sum of a collection of submodules $M_{i} \subseteq M, i \in I$, is defined to be

$$
\sum_{i \in I} M_{i}=\left\{m_{i_{1}}+\cdots+m_{i_{j}} \mid m_{i_{j}} \in M_{i_{j}}\right\} .
$$

4. The submodule generated by a fixed element $m \in M$ is defined to be

$$
A m=\{a m \mid a \in A\} .
$$

More generally, for any collection $\left\{m_{i}\right\}_{i \in I} \subset M$, of elements of M, one has

$$
\sum_{i \in I} A m_{i} \subset M
$$

the submodule generated by the m_{i}.
We say that M is finitely generated if there exist $m_{1}, \ldots, m_{k} \in M$ such that $M=A m_{1}+\cdots+$ $A m_{k}$.

Orthogonal idempotents. An element $e \in A$ is called an idempotent if one has $e^{2}=e$. If e is an idempotent then so is $1-e$, since $(1-e)^{2}=1-2 e+e^{2}=1-2 e+e=1-e$. Also, we have $e(1-e)=0$. This is a special case of the following situation.

A collection of elements $e_{1}, \ldots, e_{n} \in A$ is said to be a set of orthogonal idempotents if one has

$$
e_{i}^{2}=e_{i} \quad \text { and } \quad e_{i} e_{j}=0 \text { for } i \neq j .
$$

Examples. 1. An idempotent in $\mathrm{M}_{n}(k)$ is the same as a projector on a vector subspace $V \subset k^{n}$. Thus, giving an idempotent in $\mathrm{M}_{n}(k)$ is the same thing as giving a vector space direct sum decomposition $k^{n}=V \oplus V^{\prime}$ where $V=\operatorname{im}(e)$ and $V^{\prime}=\operatorname{ker}(e)$.
2. Let $C(X)$ be the algebra of continuous \mathbb{C}-valued functions on a topological space X. An idempotent in $\mathrm{M}_{n}(C(X))$ is a continuous map $X \rightarrow \mathrm{M}_{n}(\mathbb{C}), x \mapsto e_{x}$ such that $\left(e_{x}\right)^{2}=e_{x}$ for all $x \in X$. Thus, giving an idempotent $e \in \mathrm{M}_{n}(C(X))$ is the same thing as giving a family $\mathbb{C}^{n}=V_{x} \oplus V_{x}^{\prime}$ of direct sum decompositions of the vector space \mathbb{C}^{n} that depends on $x \in X$ in a "continuous way". Note that this implies, in particular, that the function $x \mapsto \operatorname{dim} V_{x}$ since we have $\operatorname{dim} V_{x}=r k\left(e_{x}\right)=\operatorname{tr}\left(e_{x}\right)$. is constant on each connected component of X. In topology, $C(X)$-modules of the form $e \cdot C(X)^{n}$ correspond to complex vector bundles on X.

Note that for orthogonal idempotents e_{1}, \ldots, e_{n} the element $e_{1}+\ldots+e_{n}$ is also an idempotent. Therefore, given a set of orthogonal idempotents e_{1}, \ldots, e_{n} such that $e_{1}+\cdots+e_{n} \neq 1$, one can put $e_{0}:=1-\left(e_{1}+\ldots+e_{n}\right)$ to obtain a larger set, $e_{0}, e_{1}, \ldots, e_{n}$, of orthogonal idempotents satisfying an additional equation $e_{0}+e_{1}+\cdots+e_{n}=1$. In this case one says that $e_{0}, e_{1}, \ldots, e_{n}$ form a complete set of orthogonal idempotents.

Let $e_{1}, \ldots, e_{n} \in A$ be a complete set of orthogonal idempotents and M an A-module. We claim that M, viewed as an abelian group, has a direct sum decomposition

$$
\begin{equation*}
M=e_{1} M \oplus \ldots \oplus e_{n} M \tag{3}
\end{equation*}
$$

Indeed, for any $m \in M$, we have

$$
m=1_{A} \cdot m=\sum e_{i} m
$$

so that $M=\sum M_{i}$. If $0=\sum_{i=1}^{n} e_{i} m$ holds in M, then $e_{j} m=0$ for all j, because for each $i \neq j$,

$$
0=e_{j} \cdot 0=e_{j} \sum_{i=1}^{n} e_{i} m=\sum_{i=1}^{n} e_{j} e_{i} m=e_{j}^{2} m=e_{j} m .
$$

A similar argument shows that the ring A itself can be decomposed as follows

$$
\begin{equation*}
A=\bigoplus_{1 \leq j \leq n} A e_{j}=\bigoplus_{1 \leq i, j \leq n} e_{i} A e_{j}, \tag{4}
\end{equation*}
$$

where the first decomposition is a direct sum of left ideals $A e_{i} \subset A$ and the second decomposition is just a direct sum of abelian subgroups of A.

We remark that for any idempotent $e \in A$ the pair $e, 1-e$ gives a complete collection of orthogonal idempotents. Therefore, we have $A=A e \oplus A(1-e)$, a direct sum of left ideals. It follows that the map $a \mapsto a e$ induces an A-module isomorphism $A e \cong A / A(1-e)$. On the other hand, for any A-module M decomposition (3) reads: $M=e M \oplus(1-e) M$. Thus, from (2) we deduce the following canonical bijection

$$
\begin{equation*}
\operatorname{Hom}_{A}(A e, M) \cong\{m \in M \mid(1-e) m=0\}=e M \tag{5}
\end{equation*}
$$

Next, let $e_{1}, \ldots, e_{n} \in A$ be a set of central orthogonal idempotents i.e. such that we have $a e_{i}=e_{i} a$, for all $a \in A$ and $i=1, \ldots, n$. Then, $A e_{i}=e_{i} A$ is a two-sided ideal and, for any $a \in A_{i}$, we have $a e_{i}=a=e_{i} a$. Thus, we may view $A_{i}:=A e_{i}$ as a subring of A with its own unit $1_{A_{i}}:=e_{i}$. (So, the natural imbedding $\imath: A_{i}=A e_{i} \hookrightarrow A$ is a map of rings such that $\imath\left(1_{A_{i}}\right) \neq 1_{A}$.) We see that any complete collection of central orthogonal idempotents gives a decomposition $A=A_{1} \oplus \cdots \oplus A_{n}$ into a direct sum of rings A_{i}. Furthermore, for any A-module M, the subset $e_{i} M \subset M$ is in this case A-stable and decomposition $M=\bigoplus M_{i}$ in (3) is a direct sum of A-modules. In addition, we have $A_{i} M_{j}=0$ for any $i \neq j$.

Conversely, given an arbitrary collection of rings A_{1}, \ldots, A_{n}, let $A=A_{1} \oplus \cdots \oplus A_{n}$. Then, A is a ring with unit $1_{A}=1_{A_{1}}+\ldots+1_{A_{n}}$. Moreover, the elements $1_{A_{1}}, \ldots, 1_{A_{n}}$ form a complete collection of central orthogonal idempotents in A. Further, suppose we are given, for each $i=1, \ldots, n$, an A_{i}-module M_{i}. Then $M=\bigoplus M_{i}$ has a natural A-module structure, via

$$
\left(a_{1}, \ldots, a_{n}\right)\left(m_{1}, \ldots, m_{n}\right)=\left(a_{1} m_{1}, \ldots, a_{n} m_{n}\right) .
$$

Moreover, we have
Lemma. Any module over $A=A_{1} \oplus \cdots \oplus A_{n}$ has the form $M=\bigoplus M_{i}$ for some A_{i}-modules M_{i}.
Proof. Define $M_{i}:=1_{A_{i}} M$. This gives the required decomposition.
Example. Let X be a finite set, k is a field. Let $A=k\{X\}=k$-valued functions on X. We see that

$$
k\{X\} \xrightarrow{\cong} k \oplus k \oplus \ldots \oplus k \quad(\# X \text { summands }) .
$$

via the map sending f to $\oplus_{x \in X} f(x)$. The above lemma says that a module over $k\{X\}$, for X finite, is the same as a direct sum of $\# X k$-vector spaces.

Free modules. Any ring A has the canonical structure of an A-module via left multiplication. The submodules of this module are precisely the left ideals of A, by definition of left ideal.

Modules of the form

$$
\oplus_{i \in I} A,
$$

a direct sum of copies of the module A labeled by a (possibly infinite) set I, are called free modules. We say that A^{n} is a free module of rank n.

It is important to observe that there are modules which are not free. For example, let $A=k[x]$ and let V be a finite-dimensional k-vector space. Then, as we have seen above, any k-linear map $\widehat{x}: V \rightarrow V$ gives V the structure of a $k[x]$-module. If the space V has finite dimension over k then the resulting $k[x]$-module can not be free since $\operatorname{dim}_{k}(k[x])^{n}=\infty>\operatorname{dim}_{k} V$ for any $n \geq 1$.

Definition. We say that a (possibly infinite) set $\left\{m_{i} \in M\right\}_{i \in I}$ is a basis of M if every element of M can written uniquely in the form $m=\sum a_{i} m_{i}$ (this is a finite sum), where the $a_{i} \in A$.

For example, if $M=\bigoplus_{i \in I} A$, then the standard basis for M is $\left\{1_{i} \in A \mid i \in I\right\}$.
We warn the reader that, unlike the case of vector spaces over a field, not every module over a general ring has a basis. Specifically, an A-module M has a basis $\left\{m_{i}\right\}_{i \in I}$ if and only if M is free. Indeed, it follows from the definition that the set $\left\{m_{i} \in M\right\}_{i \in I}$ is a basis of M if and only if the assignment

$$
\bigoplus_{i \in I} A \xrightarrow{\cong} M, \quad\left(a_{i}\right)_{i \in I} \mapsto \sum a_{i} m_{i}
$$

is an isomorphism of A-modules.
Note that M is finitely generated if and only if there is a surjection $A^{n} \rightarrow M$ for some free module A^{n} of finite rank.

Let $\left\{m_{1}, \ldots, m_{n}\right\}$ be a basis of M. Let $\left|a_{i j}\right| \in M_{n}(A)$, and put

$$
m_{i}^{\prime}=\sum_{j=1}^{n} a_{i j} m_{j} .
$$

Then, repeating the standard argument from Linear Algebra one concludes that $\left\{m_{i}^{\prime}\right\}$ is a basis for M if and only if $\left|a_{i j}\right|$ is invertible.

Morphisms of modules. Let A be a ring. We introduce the notation

$$
\operatorname{Hom}_{A}(M, N)=\{A \text {-module morphisms } M \rightarrow N\} .
$$

Note that $\operatorname{Hom}_{A}(M, N)$ is an abelian group (under pointwise addition of functions). If A is commutative, then $\operatorname{Hom}_{A}(M, N)$ has a natural A-module structure: for $c \in A$ and $f \in \operatorname{Hom}_{A}(M, N)$, we define $c f \in \operatorname{Hom}_{A}(M, N)$ by $(c f)(m)=c \cdot f(m)$. When A is not commutative, then the requirement that module morphisms satisfy $g(a m)=a \cdot g(m), \forall a \in A$, may fail for $c f$, in general, unless c is in the center of A.

For any module M and an element $m \in M$, the assignment $f_{m}: x \mapsto x m$ gives a morphism $f_{m}: A \rightarrow M$, of A-modules. This yields a natural isomorphism

$$
\begin{equation*}
\operatorname{Hom}_{A}(A, M) \underset{f_{m} \leftrightarrow m}{\underset{~}{\leftarrow} \leftrightarrow f\left(1_{A}\right)} \longrightarrow M . \tag{1}
\end{equation*}
$$

of abelian groups. Note that, in general, the above maps are not morphisms of modules, unless A is commutative since $\operatorname{Hom}_{A}(A, M)$ doesn't have the structure of a left A-module in general.

Lecture 2

Chinese Remainder Theorem

2. Lagrange Interpolation Formula. Let k be a field. Then for any $c_{1}, \ldots, c_{n} \in k$, and any distinct $x_{1}, \ldots, x_{n} \in k$, there exists a $p \in k[t]$ such that $p\left(x_{i}\right)=c_{i}$ for all i.

Proof. The proof comes in three steps.
Step 1: For each $i=1, \ldots, n$, define

$$
p_{i j}(t)=\frac{t-x_{j}}{x_{i}-x_{j}} .
$$

Note that

$$
p_{i j}(t)= \begin{cases}1 & \text { if } t=x_{i} \\ 0 & \text { if } t=x_{j}\end{cases}
$$

Step 2: For each $i=1, \ldots, n$, define

$$
p_{i}(t)=\prod_{j \neq i} p_{i j}(t) .
$$

Note that

$$
p_{i}(t)= \begin{cases}1 & \text { if } t=x_{i}, \tag{1}\\ 0 & \text { if } t=x_{j} \text { for any } j \neq i\end{cases}
$$

Step 3: Define

$$
p(t)=\sum_{i=1}^{n} c_{i} \cdot p_{i}(t)
$$

The polynomial thus defined satisfies the claimed property; indeed using (1) we find $p\left(c_{j}\right)=$ $\sum_{i=1}^{n} c_{i} \cdot p_{i}\left(c_{j}\right)=c_{j} \cdot p_{j}\left(c_{j}\right)=c_{j}$ for all $j=1, \ldots, n$.
We are going to extend the Lagrange Interpolation Formula to a more general ring-theoretic framework. We assume the reader is familiar with the notion of two-sided, resp. left and right, ideal in a (not necessarily commutative) ring.

Given a ring A and two-sided ideals $I_{1}, \ldots, I_{n} \subset A$, there are some standard ways one can create new two-sided ideals.

- The sum of the I_{i} is defined by

$$
I_{1}+\cdots+I_{n}=\left\{x_{1}+\cdots+x_{n} \mid x_{i} \in I_{i}\right\} .
$$

- The product of the I_{i} is defined by

$$
I_{1} \cdots I_{n}=\left\{\sum x_{1} \cdots x_{n} \mid x_{i} \in I_{i}\right\} .
$$

- The intersection of the I_{i} is just their intersection as subsets of A.

Note that we always have $I_{1} \cdots I_{n} \subseteq I_{1} \cap \cdots \cap I_{n}$.
Now, let k be a field, let $A=k[t]$. Fix distinct $x_{1}, \ldots, x_{n} \in k$, let $I_{i}=\left(t-x_{i}\right)$. Observe that, for $x_{1}, \ldots, x_{n} \in k$, we have
the x_{i} are distinct \Longleftrightarrow for any $i \neq j,-\left(t-x_{i}\right)+\left(t-x_{j}\right)=x_{i}-x_{j} \neq 0$

$$
\Longleftrightarrow \text { for any } i \neq j, I_{i}+I_{j}=A
$$

We see that, using the above notation, the Lagrange Interpolation Formula takes the following form:

Lagrange Interpolation Formula II. For any $c_{1}, \ldots, c_{n} \in k$, there exists a $p \in A$ such that $p-c_{i} \in I_{i}$ for all i.

This statement is a special case of the following more general result
3. Chinese Remainder Theorem. Let A be a not necessarily commutative ring, and I_{1}, \ldots, I_{n} two-sided ideals of A such that $I_{i}+I_{j}=A$ for all $i \neq j$. Then

1. For any $c_{1}, \ldots, c_{n} \in A$, there exists $p \in A$ such that $p-c_{i} \in I_{i}$ for all i.
2. If A is commutative, then $I_{1} \cdots I_{n}=I_{1} \cap \cdots \cap I_{n}$.

Proof of Part 1. The proof comes in three steps.
Step 1: For any $i \neq j$, we have that $I_{i}+I_{j}=A$. Thus, for any $i \neq j$ there are some $q_{i j} \in I_{i}$ and $p_{i j} \in I_{j}$ such that $q_{i j}+p_{i j}=1$. Note that $1-p_{i j}=q_{i j} \in I_{i}$.

Step 2: For each i, let

$$
p_{i}=\prod_{j \neq i} p_{i j} \in \prod_{j \neq i} I_{j} \subset I_{1} \cap \ldots I_{i-1} \cap I_{i+1} \ldots \cap I_{n}
$$

Note also that $1-p_{i} \in I_{i}$, i.e. one has $p_{i} \equiv 1 \bmod I_{i}$. This follows from observing that

$$
p_{i}=\prod_{j \neq i}\left(1-q_{i j}\right)=1+\left(\text { terms involving the } q_{i j}\right)
$$

and that for all $j \neq i, q_{i j} \in I_{i}$.
Step 3: Let

$$
p=\sum_{i=1}^{n} c_{i} p_{i}
$$

Checking that this p works, we see that for any i,

$$
p-c_{i}=c_{i}\left(1-p_{i}\right)+\sum_{j \neq i} c_{j} p_{j}
$$

and $\left(1-p_{i}\right) \in I_{i}$ and each $p_{j} \in I_{i}$ by Step 2 , so that $p-c_{i} \in I_{i}$ for all i.
Proof of Part 2. We proceed by induction. For the case of $n=2$, note that because $I_{1}+I_{2}=A$, there are some $u_{1} \in I_{1}, u_{2} \in I_{2}$ such that $u_{1}+u_{2}=1$. For any $a \in I_{1} \cap I_{2}$, we then have

$$
a=a u_{1}+a u_{2}
$$

Because $a \in I_{2}$ and $u_{1} \in I_{1}$, we have that $a u_{1} \in I_{2} I_{1}$. Because $a \in I_{1}$ and $u_{2} \in I_{2}$, we have that $a u_{2} \in I_{1} I_{2}$. Now using the assumption that A is commutative, we have that $I_{2} I_{1}=I_{1} I_{2}$ and therefore $a \in I_{1} I_{2}$. This proves that $I_{1} \cap I_{2} \subseteq I_{1} I_{2}$, and hence $I_{1} \cap I_{2}=I_{1} I_{2}$.

Now for the inductive step. By the inductive hypothesis, we know that

$$
I_{2} \cap \cdots \cap I_{n}=I_{2} \cdots I_{n}
$$

and therefore

$$
I_{1} \cap\left(I_{2} \cap \cdots \cap I_{n}\right)=I_{1} \cap\left(I_{2} \cdots I_{n}\right) .
$$

We would like to show that

$$
I_{1} \cap\left(I_{2} \cdots I_{n}\right)=I_{1} I_{2} \cdots I_{n} .
$$

This will follow from the $n=2$ case, provided that we can show that

$$
I_{1}+\left(I_{2} \cdots I_{n}\right)=A
$$

Recall that in the proof of part 1 , we constructed a $p_{1} \in A$ such that $1-p_{1} \in I_{1}$ and

$$
p_{1} \in \prod_{j \neq i} I_{j}=I_{2} \cdots I_{n}
$$

Then the fact that

$$
1=p_{1}+\left(1-p_{1}\right)
$$

implies that $1 \in I_{1}+\left(I_{2} \cdots I_{n}\right)$, and hence $I_{1}+\left(I_{2} \cdots I_{n}\right)=A$.

It is sometimes useful to restate the Chinese Remainder Theorem in a more abstract form. To this end, we consider A / I_{i}, a quotient ring by the two-sided ideal I_{i}. Define the ring homomorphisms $\pi_{i}: A \rightarrow A / I_{i}$ to be the quotient maps, so that $\operatorname{ker}\left(\pi_{i}\right)=I_{i}$.

Define π to be the composition

$$
\pi: A \xrightarrow{\text { diag }} \bigoplus_{i=1}^{n} A \xrightarrow{\oplus \pi_{i}} \bigoplus_{i=1}^{n} A / I_{i}
$$

so that

$$
\pi(a)=\left(a \bmod I_{1}, \ldots, a \bmod I_{n}\right) .
$$

Clearly, $\operatorname{ker}(\pi)=\bigcap \operatorname{ker}\left(\pi_{i}\right)=\bigcap I_{i}$.
Chinese Remainder Theorem II. Let A be a not-necessarily-commutative ring, and I_{1}, \ldots, I_{n} two-sided ideals of A such that $I_{i}+I_{j}=A$ for all $i \neq j$. Then the map π is surjective, and induces an isomorphism

$$
\bar{\pi}: A /\left(I_{1} \cap \cdots \cap I_{2}\right) \rightarrow \bigoplus_{i=1}^{n} A / I_{i} .
$$

Proof. Because we induced the map $\bar{\pi}$ by quotienting out by the kernel of π, we have that $\operatorname{ker}(\bar{\pi})=0$. Therefore, $\bar{\pi}$ is injective. Also, $\bar{\pi}$ is surjective, because for any choice of $\overline{c_{i}} \in A / I_{i}$ for each i, there is some $a \in A$ such that $a \bmod I_{i}=\overline{c_{i}}$ by the Chinese Remainder Theorem.
Definition. A two-sided, resp. left, right, ideal I of a ring A is called a maximal ideal if $I \neq A$ and the only two-sided, resp. left, right, ideal $J \supsetneq I$ is A itself.

It is clear that if $I \subset A$ is a maximal ideal and J is any ideal such $J \nsubseteq I$ then we must have $I+J=A$. Therefore, from the Chinese Remainder Theorem we deduce

Corollary. Let I_{1}, \ldots, I_{n} be pairwise distinct maximal two-sided ideals of A. Then, one has a ring isomorphism

$$
A /\left(I_{1} \cap \cdots \cap I_{2}\right) \rightarrow \bigoplus_{i=1}^{n} A / I_{i} .
$$

4. Special cases. Recal that a ring A is called a principal ideal domain (PID) when
5. A is commutative,
6. A has no zero-divisors, and
7. Any ideal of A is principal, i.e. has the form $(a):=A \cdot a$ for some $a \in A$.

Examples of PIDs include the ring \mathbb{Z}, and the polynomial ring $k[t]$ over a field k. More generally, any Eucledian domain is a PID.

Let A be a PID. For any $a, b \in A \backslash\{0\}$, we say that $d \in A$ is a gcd of a and b when $d \mid a$ and $d \mid b$, and when for any $g \in A$ such that $g \mid a$ and $g \mid b$, we also have $g \mid d$.

The following is a simple but fundamental result about PIDs.
Theorem. Let A be a PID. For any $a, b \in A \backslash\{0\}$,

$$
A a+A b=A \operatorname{gcd}(a, b)
$$

Proof. Since A is a PID, we know the ideal $A a+A b$ is equal to $A d$ for some d. Note that

$$
a \in A a \subset A a+A b=A d
$$

implies that $d \mid a$. By symmetry, $d \mid b$ as well. If $g \mid a$ and $g \mid b$, then $a, b \in A g$, so that

$$
A d=A a+A b \subset A g,
$$

which implies that $d \in A g$ and hence $g \mid d$.
Corollary. Let A be a PID. Then

$$
\operatorname{gcd}(a, b)=1 \Longleftrightarrow A a+A b=A \Longleftrightarrow \text { there exist } u, v \in A \text { such that } a u+b v=1
$$

Corollary. Let A be a PID, and let $a=a_{1} \cdots a_{n}$ where $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1$ for all $i \neq j$. Then

$$
A /(a) \cong A /\left(a_{1}\right) \oplus \cdots \oplus A /\left(a_{n}\right) .
$$

As an example, take $A=\mathbb{Z}$ and let $p_{1}, \ldots, p_{n} \in \mathbb{Z}$ be pairwise distinct prime numbers. Then, for any integers $k_{1}, \ldots, k_{n} \geq 1$, we have $\operatorname{gcd}\left(p_{i}^{k_{i}}, p_{j}^{k_{j}}\right)=1$ for $i \neq j$.
Thus, in the special case where $A=\mathbb{Z}$, the previous corollary yields a ring isomorphism

$$
\begin{equation*}
\mathbb{Z} /\left(p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}\right) \cong \bigoplus_{i=1}^{n} \mathbb{Z} /\left(p_{i}^{k_{i}}\right) \tag{2}
\end{equation*}
$$

Let A^{\times}denote the multiplicative group of invertible elements of a ring A. Then, from the previous Corollary we deduce

Corollary. There is a group isomorphism

$$
\left(\mathbb{Z} /\left(p_{1}^{k_{1}} \cdots p_{n}^{k_{n}}\right)\right)^{\times} \cong\left(\mathbb{Z} /\left(p_{1}^{k_{1}}\right)\right)^{\times} \times \ldots \times\left(\mathbb{Z} /\left(p_{n}^{k_{n}}\right)\right)^{\times} .
$$

Structure of finitely generating modules over PID's. Today we discuss modules over PIDs.
Proposition. Let M be a free module of rank m, let L be a submodule of rank L. Then there exists a basis m_{1}, \ldots, m_{n} of M and $d_{1}, \ldots, d_{k} \in A$ for some $k \leq n$, such that the elements $d_{1} m_{1}, \ldots, d_{k} m_{k}$ form a basis of L. In particular, L is free, with $\operatorname{rank}(L)=k \leq \operatorname{rank}(M)$.

Theorem. Any finitely generated module over a PID A is a finite direct sum of cyclic modules of the form

$$
\begin{equation*}
M=A^{m} \oplus \bigoplus_{i=1}^{n} A /\left(p_{i}^{d_{i}}\right) \tag{1}
\end{equation*}
$$

where each p_{i} is a prime in A. Moreover, the integer m and the collection of pairs

$$
\left\{\left(p_{1}, d_{1}\right), \ldots,\left(p_{k}, d_{k}\right)\right\}
$$

(counted with multiplicities) is uniquely determined by M up to permutations and replacing any p_{i} by $p_{i} u_{i}$ where $u_{i} \in A$ is a unit.
Proof. First, note that the proposition implies the existence part of the theorem.
Let N be a finitely generated A-module. We know there exists a surjection $f: A^{n} \rightarrow N$, so that $N \cong A^{n} / \operatorname{ker}\left(f_{n}\right)$. Now let $M=A^{n}$ and $L=\operatorname{ker}(f)$.

In the basis m_{1}, \ldots, m_{n}, we have

$$
\begin{aligned}
& M={ }_{A}^{A} \oplus \cdots \oplus \stackrel{k}{A} \oplus \cdots \oplus \stackrel{n}{A} . \\
& L=d_{1} A \oplus \cdots \oplus d_{k} A
\end{aligned}
$$

and therefore

$$
N=M / L=A / d_{1} A \oplus \cdots \oplus A / d_{k} \oplus A \oplus \cdots \oplus A
$$

It suffices to show that any $A / d A$ can be decomposed in a direct sum as in the theorem. We write $d=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$, where $p_{i} \neq p_{j}$ for $i \neq j$. By the Chinese Remainder Theorem,

$$
A / d A=A /\left(p_{1}^{r_{1}} \cdots p_{r}^{k_{r}}\right) \cong \bigoplus_{i=1}^{r} A /\left(p_{i}^{k_{i}}\right)
$$

To prove the uniqueness statement it will be convenient to introduce the following notation. Given $a \in A$, let $M^{(a)}:=\{m \in M \mid a m\}$, the set of elements of M annihilated by a. It is clear that, since A is commutative, $M^{(a)}$ is an A-submodule of M. The submodule $M^{\text {tors }}:=\sum_{a \neq 0} M^{(a)}$ is called the torsion submodule of $M . M / M^{\text {tors }}$, The quotient by torsion, has no torsion, that is, we have $\left(M / M^{\text {tors }}\right)^{\text {tors }}=0$. Note further that a free module has no torsion since the ring A has no zero divisors. Thus, we see that, for M as in (1), one has

$$
\begin{equation*}
M^{\mathrm{tors}}=\bigoplus_{i=1}^{n} A /\left(p_{i}^{d_{i}}\right) \quad \text { and } \quad M / M^{\mathrm{tors}} \cong A^{m} \tag{2}
\end{equation*}
$$

In order to determine the pairs $\left(p_{i}, d_{i}\right)$ occurring in (1) we proceed as follows. First, we recall that for any pair of different primes $p, q \in A$ and any integers $k, \ell \geq 1$, the element p^{k} is not a zero divisor in $A / q^{\ell} A$. Further, the annihilator of the element p^{k} in $A / p^{\ell} A$ is the submodule $p^{\ell-k} A / p^{\ell} A$ if $k<\ell$ and is the whole module if $k \geq \ell$.

Now, for each prime $p \in A$ we consider the annihilators of various powers of p in M. This gives an ascending chain of submodules $M^{(p)} \subset M^{\left(p^{2}\right)} \subset M^{\left(p^{3}\right)} \subset \ldots \subset M^{\text {tors }}$. Furthermore, using (2) we find

$$
M^{\left(p^{k}\right)}=\bigoplus_{\left\{i \mid p_{i}=p, d_{i}>k\right\}} p^{k} A / p^{d_{i}} A
$$

Observe that, for any integers $d>s \geq 0$ multiplication by p^{s} induces an isomorphism

$$
A / p A \xrightarrow{\sim}\left(p^{s} A / p^{d} A\right) /\left(p^{s+1} A / p^{d} A\right)
$$

Thus, we deduce A-module isomorphisms

$$
\begin{aligned}
& M^{\left(p^{k+1}\right)} / M^{\left(p^{k}\right)} \cong \bigoplus_{\left\{i \mid p_{i}=p, d_{i}>k\right\}}\left(p^{d_{i}-k} A / p^{d_{i}} A\right) /\left(p^{d_{i}-k-1} A / p^{d_{i}} A\right) \\
& \cong \bigoplus_{\left\{i \mid p_{i}=p, d_{i}>k\right\}} A / p A \cong(A / p A)^{r},
\end{aligned}
$$

where $r=\#\left\{i \mid p_{i}=p, d_{i}>k\right\}$. It follows that, for any pair (p, d), the number of summands in (1) of the form $A /\left(p^{d}\right)$ is given by the formula

$$
\operatorname{rank}\left(M^{\left(p^{d+1}\right)} / M^{\left(p^{d}\right)}\right)-\operatorname{rank}\left(M^{\left(p^{d}\right)} / M^{\left(p^{d-1}\right)}\right) .
$$

where the quotients involved are viewed as free modules over the ring $A / p A$. We will see in a subsequent lecture that the rank of a free module over a commutative ring is determined by the module (i.e. free modules of different ranks are not isomorphic). Thus, one can recover the integer m and the multiplicities of all pairs $\left(p_{i}, d_{i}\right)$ which occur in (1) from the rank of $M / M^{\text {tors }}$ and ranks of modules of the form and $M^{\left(p^{k}\right)} / M^{\left(p^{k+1}\right)}$.

Main applications. Let $A=\mathbb{Z}$, the ring of integers. This is a PID and a \mathbb{Z}-module is the same thing as an abelian group. Thus, in the special case where $A=\mathbb{Z}$, our theorem yields the following result

Corollary (Structure theorem for finite abelian groups). Any finitely generated abelian group is isomorphic to

$$
\mathbb{Z}^{m} \oplus \bigoplus_{i=1}^{n} \mathbb{Z} /\left(p_{i}^{d_{i}}\right)
$$

where the $p_{i} \in \mathbb{Z}$ are some primes.
Next, let $A=k[x]$ where k is an algebraically closed field. Let $f \in k[x]$.
A monic polynomial $f \in k[x]$ is a prime power if and only if it is of the form $f=(x-z)^{d}$ for some $z \in k$ and $d \geq 1$. Since $k[x]$ is a PID, from the theorem we deduce
Corollary. Any $k[x]$-module which is finite-dimensional over the algebraically closed field k is isomorphic, as a $k[x]$-module, to

$$
\bigoplus_{i=1}^{n} k[x] /\left(x-z_{i}\right)^{d_{i}}
$$

for some $z_{1}, \ldots, z_{n} \in k$, and $d_{i}>0$.

Note that we cannot have direct summands of the form $k[x]$ because we are considering only those $k[x]$-modules that are finite-dimensional as k-vector spaces.
Now let's see how this works with matrices. The $k[x]$-module $k[x] /(x-z)^{d}$ has as a k-basis

$$
1,(x-z), \ldots,(x-z)^{d-1}
$$

Multiplication by x acts by

$$
(x-z)^{i} \longrightarrow x(x-z)^{i}=(x-z)^{i+1}+z(x-z)^{i} .
$$

Thus, the matrix for multiplication by x is

$$
\left[\begin{array}{ccccc}
z & 1 & & & \\
& z & 1 & & \\
& & \ddots & \ddots & \\
& & & & 1 \\
& & & & z
\end{array}\right]
$$

For any associative algebra A and $X \in A$, we can map $k[x] \rightarrow A$ by $f \mapsto f(X)$. In our case, we get a homomorphism $k[x] \rightarrow M_{n}(k)$ by sending x to X. This gives an action of $k[x]$ on k^{n}, so that we get a $k[x]$-module structure on k^{n}. Now apply the theorem.

Corollary (Jordan normal form). If k is algebraically closed, then any matrix $X \in M_{n}(k)$ is conjugate to one in Jordan normal form.

Lecture 3

Tensor products

Let A be a ring.
Definition. Let M and N be a right and a left A-module, respectively. Then we define an abelian group, called tensor product of M and N over A, as follows

$$
M \otimes_{A} N=\frac{\{\text { free abelian group on symbols } m \otimes n\}}{\left\langle\begin{array}{c}
\left(m_{1}+m_{2}\right) \otimes n-m_{1} \otimes n-m_{2} \otimes n \\
m \otimes\left(n_{1}+n_{2}\right)-m \otimes n_{1}-m \otimes n_{2} \\
m a \otimes n-m \otimes a n
\end{array}\right\rangle}
$$

Comments.

- If A is a k-algebra, then $M \otimes_{A} N$ is a quotient of $M \otimes_{k} N$.
- $A \otimes_{A} N=N$ and $M \otimes_{A} A=M$
- If A is commutative then there is no difference between left and right A-modules. Hence, one can form $M \otimes_{A} N$ for any pair of left A-modules.
- The tensor product \otimes_{A} has a universal property. Note first that the assignment $m, n \mapsto m \otimes_{A} n$ gives a canonical biadditive "middle A-linear" map can : $M \times N \rightarrow M \otimes_{A} N$. Then, the universal property says that, given an abelian group V and a biadditive middle A-linear map $f: M \times N \rightarrow V$, there is a unique homomorphism \widetilde{f}, of abelian groups, that makes the following diagram commute:

where \tilde{f} is a map of abelian groups and f is a "middle A-linear" map.
Recall that any abelian group can be considered as a \mathbb{Z}-module, and therefore we can tensor them over \mathbb{Z}. In particular, for any rings A and B, we can form the tensor product $A \otimes_{\mathbb{Z}} B$, which is a ring in the obvious way:

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}
$$

We've done a similar construction for k-algebras; given k-algebras A, B, then $A \otimes_{k} B$ is a k-algebra, with the same operation as above.
Definition. Let A and B be rings. An (A, B)-bimodule structure on an abelian group M is the structure of a left A-module and of a right B-module such that the actions of A and B on M commute with each other.
Equivalently, an (A, B)-bimodule is the same thing as a left module over $A \otimes_{\mathbb{Z}}\left(B^{\mathrm{op}}\right)$.
The action of an element $a \otimes b \in A \otimes_{\mathbb{Z}}\left(B^{\mathrm{op}}\right)$ on M is written as $m \mapsto a m b=a(m b)=(a m) b$.

Examples.

- A is an (A, A)-bimodule in the obvious way.
- The space of $m \times n$ matrices over A is an $\left(\mathrm{M}_{m}(A), \mathrm{M}_{n}(A)\right)$-bimodule.

Let H be a right A-module and K be a left A-module. Certain additional structures on either H or K may survive in $H \otimes_{A} K$. For example, if B is another ring and the left action of A on K comes from a left $A \otimes_{\mathbb{Z}} B$-module structure on K then $H \otimes_{A} K$ inherits a left B-action that makes it a left B-module. Similarly, an (B, A)-bimodule structure on H induces a left B-module structure on $H \otimes_{A} K$.

The tensor algebra

Given a ring A and an A-bimodule M, we can form

$$
T_{A}(M)=A \oplus M \oplus\left(M \otimes_{A} M\right) \oplus\left(M \otimes_{A} M \otimes_{A} M\right) \oplus \cdots
$$

This is an algebra where the operation on simple tensors in a single degree is just concatenation,

$$
\left(m_{1} \otimes \cdots \otimes m_{k}\right) \cdot\left(n_{1} \otimes \cdots \otimes n_{\ell}\right)=m_{1} \otimes \cdots \otimes m_{k} \otimes n_{1} \otimes \cdots \otimes n_{\ell} .
$$

Fix a finite set X, and let $A=k\{X\}=\bigoplus_{x \in X} k \cdot \mathbf{1}_{x}$. An A-module M decomposes as $M=\bigoplus_{x \in X} M_{x}$ where M_{x} is a k-vector space. Take another A-module N. How can we think about $M \otimes_{A} N$?

We know that $M \otimes_{A} N$ will be a quotient of $M \otimes_{k} N=\bigoplus_{x, y \in X} M_{x} \otimes_{k} N_{y}$. Specifically,

$$
M \otimes_{A} N=\frac{\bigoplus_{x, y} M_{x} \otimes_{k} N_{y}}{\left\langle\left(m \cdot \mathbf{1}_{z}\right) \otimes n=m \otimes\left(\mathbf{1}_{z} n\right) \text { for all } z \in X\right\rangle} \cong \bigoplus_{x \in X} M_{x} \otimes_{k} N_{x}
$$

More generally, if X and Y are finite sets, then

$$
k\{X\} \otimes_{k} k\{Y\}=k\{X \times Y\},
$$

via the map $\mathbf{1}_{x} \otimes \mathbf{1}_{y} \mapsto \mathbf{1}_{x, y}$.
Now let M, N be $k\{X\}$-bimodules. Then $M=\left(M_{x, y}\right)_{(x, y) \in X \times X}$ because a $k\{X\}$-bimodule is just a left module over $k\{X\} \otimes k\{X\}^{\mathrm{op}}=k\{X\} \otimes k\{X\}=k\{X \times X\}$.

For any $m_{x^{\prime}, y^{\prime}} \in M_{\left(x^{\prime}, y^{\prime}\right)}$, we have

$$
\mathbf{1}_{x} \cdot m_{x^{\prime}, y^{\prime}} \cdot \mathbf{1}_{y}= \begin{cases}m_{x, y} & \text { if } x=x^{\prime}, y=y^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Thus

$$
M \otimes_{A} N=\bigoplus_{x_{1}, x_{2} \in X}\left(\bigoplus_{y \in X}\left(M_{x_{1}, y} \otimes_{k} N_{y, x_{2}}\right)\right)
$$

Let M be a bimodule over $A=k\{X\}$. Then
$T_{A} M=A \oplus\left(\bigoplus_{x_{1}, x_{2}} M_{x_{1}, x_{2}}\right) \oplus\left(\bigoplus_{x_{1}, x_{2}, x_{3}} M_{x_{1}, x_{2}} \otimes M_{x_{2}, x_{3}}\right) \oplus\left(\bigoplus_{x_{1}, x_{2}, x_{3}, x_{4}} M_{x_{1}, x_{2}} \otimes M_{x_{2}, x_{3}} \otimes M_{x_{3}, x_{4}}\right) \cdots$

Quivers

A quiver is a finite oriented graph. We can write it as an ordered pair (Q, I) where I is the set of vertices and Q is the set of arrows, often called edges.

We often denote a quiver just by the set of arrows Q.
A path in Q is a finite sequence of arrows which meet head to tail.

Thus, for every edge x one has its head vertex $h(x) \in I$ and its tail vertex $t(x) \in I$. There may be multiple edges having the same head and tail.

A representation of the quiver (Q, I) over a base field k is the data of a vector space V_{i} for each vertex $i \in I$ and a linear map $\widehat{x}: V_{t(x)} \rightarrow V_{h(x)}$ for every edge x.
Definition. The path algebra $k Q$ of Q over a field k is a k-vector space with basis formed by paths in Q, with product given by concatenation of paths which can be concatenated (paths that can't be concatenated multiply to 0). The order in which paths are concatenated is apparently a delicate issue. There are also trivial paths $\mathbf{1}_{i}$ at each vertex $i \in I$; each trivial path is an idempotent, and acts as an identity when concatenated with paths that start or end at i.

Examples.

- Consider the quiver Q with one vertex and one edge (the trivial path is implied),

Then $k Q=k[x]$. Note that, without the trivial path at the vertex, we'd only get polynomials in x with no constant term.

- Consider the quiver Q with n loops around one vertex (the trivial path is implied),

Then $k Q=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$, the free associative algebra on n generators.

- Consider the quiver Q with n vertices in a row with edges between them,

Then we get $k Q=$ the algebra of upper triangular matrices over k. The trivial path $\mathbf{1}_{i}$ at vertex i corresponds to a matrix with 1 on the i th diagonal entry and 0 elsewhere.
The main reason for considering path algebras is the following observation. Let $Q^{o p}$ denote a quiver that has the same vertex set as Q and such that the directions of all arrows of Q are reversed. Thus, each edge $x: i \rightarrow j$, of Q, gives a reverse edge $x^{*}: j \rightarrow i$, of $Q^{o p}$. Then, the following is clear

Claim. A representation of Q over k is the same thing as a $k\left(Q^{o p}\right)$-module.
There is a very useful description of the path algebra $k Q$ as a tensor algebra of a bimodule. To obtain it, we define $E_{i j}$ to be a vector space with basis the edges $\{i \rightarrow j\}$ from i to j. Now define $E=\bigoplus_{i, j \in I} E_{i j}$. Since this is indexed in two elements of I, it is a $k\{I\}$-bimodule, via

$$
\mathbf{1}_{k} \cdot e_{i j} \cdot \mathbf{1}_{\ell}= \begin{cases}e_{i j} & \text { if } k=i, j=\ell \\ 0 & \text { otherwise }\end{cases}
$$

Proposition. There is an isomorphism

$$
k Q \cong T_{k\{I\}} E=k\{I\} \oplus E \oplus\left(E \otimes_{k\{I\}} E\right) \oplus\left(E \otimes_{k\{I\}} E \otimes_{k\{I\}} E\right) \oplus \cdots
$$

Proof. There is a well-defined notion of the length of a path; we can just take the number of edges in the path. Now note that

$$
\begin{array}{cl}
k\{I\} & \text { has basis }\left\{\mathbf{1}_{i}\right\}, \text { all the paths of length } 0 \\
E & \begin{array}{l}
\text { has basis }\{i \rightarrow j\}, \text { all the paths of length } 1 \\
E \otimes_{k\{I\}} E
\end{array} \quad \begin{array}{l}
\text { generated by \{pairs } \left.\left(i_{1} \rightarrow j_{1}\right) \otimes\left(i_{2} \rightarrow j_{2}\right) \text { of paths of length } 1\right\}, \\
\text { except pairs which do not meet head to tail }\left(j_{1} \neq i_{2}\right) \text { are } 0
\end{array}
\end{array}
$$

Multiplication in $T_{k\{I\}} E$ corresponds to concatenation of paths.
Example. Let Q be the quiver of n loops on one vertex.

As we saw last class, $k Q=k\left\langle x_{1}, \ldots, x_{n}\right\rangle$, the free associative algebra on n generators. For this quiver, I has one element, so $k\{I\}=k$, and every path can be concatenated. The edge set Q from the sole vertex to itself has n elements. The proposition then corresponds to the decomposition of $k\left\langle x_{1}, \ldots, x_{n}\right\rangle$ as a direct sum of the subspaces consisting of monomials of a given degree:

$$
k\left\langle x_{1}, \ldots, x_{n}\right\rangle=k \oplus\left(\bigoplus_{x_{i} \in Q} k x_{i}\right) \oplus\left(\bigoplus_{x_{i}, x_{j} \in Q} k\left(x_{i} x_{j}\right)\right) \oplus \cdots
$$

Lecture 4

Endomorphism rings

Fix a ring A. Giving a (left) A-module structure on an abelian group M amounts to giving a ring homomorphis $A \rightarrow \operatorname{End}_{\mathbb{Z}} M$. We write $A_{M} \subset \operatorname{End}_{\mathbb{Z}} M$ for the image of this homomorphism. Then, the $\operatorname{ring} \operatorname{End}_{A}(M)=\operatorname{Hom}_{A}(M, M)$ may be identified with a subring $A_{M}^{!} \subset \operatorname{End}_{\mathbb{Z}} M$, the centralizer of A_{M} in $\operatorname{End}_{\mathbb{Z}} M$. So, we have commuting $A_{M^{-}}$and $A_{M^{-}}^{!}$-actions on M. These two actions combined together make M a left $\left(A_{M} \otimes_{\mathbb{Z}} A_{M}^{!}\right)$-module.
Further, for any integer $p \geq 1$, one may view elements of the A-module $M^{p}=M \oplus M \oplus \ldots \oplus M$ as 'column vectors'. Therefore, the ring $M_{p}(A)$, that contains A as 'scalar matrices', also acts on M^{p} in a natural way.
Lemma. For any integer $p \geq 1$ and an A-module M, there are natural ring isomorphisms

$$
\operatorname{End}_{A}\left(M^{p}\right) \cong M_{p}\left(A_{M}^{!}\right), \quad \operatorname{End}_{M_{p}(A)}\left(M^{p}\right) \cong A_{M}^{!}
$$

Proof. More generally, consider an $f \in \operatorname{Hom}_{A}\left(M^{p}, N^{q}\right)$, say mapping

$$
\left(\begin{array}{c}
m_{1} \\
\vdots \\
m_{p}
\end{array}\right) \xrightarrow{q \times p \text { matrices }}\left(\begin{array}{c}
n_{1} \\
\vdots \\
n_{q}
\end{array}\right)
$$

The entries of such a matrix are elements of $\operatorname{Hom}_{A}(M, N)$.
Example. We have $\operatorname{End}_{A}(A) \cong A^{o p}$ as rings, with $a \in A \longleftrightarrow f_{a}$:

$$
f_{b a}=f_{a} \circ f_{b}: x \mapsto x b a,
$$

(we are considering A as a left A-module, so its endomorphisms are the right-multiplication maps $f_{a}(x)=x a$; left-multiplication is not an A-module homomorphism from A to itself).

More generally, fix a pair of integers $m, n \geq 1$. Let $M=A^{m}$. Then $M^{n}=M_{m \times n}(A)$, the set of rectangular $m \times n$-matrices. This set is a left $M_{m}(A)$ and a right $M_{n}(A)$-module:

$$
M_{m}(A) \curvearrowright M_{m \times n}(A) \curvearrowleft M_{n}(A)
$$

Using the above lemma, one deduces ring isomorphisms

$$
\operatorname{End}_{M_{m}(A)}\left(M_{m \times n}(A)\right) \cong M_{n}\left(A^{o p}\right), \quad \operatorname{End}_{M_{n}(A)}\left(M_{m \times n}(A)\right) \cong M_{m}(A)
$$

Remark. If we have a free module A^{n} and three different bases for it, $\left\{e_{i}\right\},\left\{v_{i}\right\}$, and $\left\{w_{i}\right\}$ (these need not have the same cardinality), with $a_{i j}, b_{i j}, c_{i j}$ defined by $v_{i}=\sum a_{i j} e_{j}, w_{i}=\sum b_{i j} v_{j}$, and $w_{i}=\sum c_{i j} e_{j}$, then

$$
\left(c_{i j}\right)=\left(b_{i j}\right)\left(a_{i j}\right)
$$

where, when doing matrix multiplication, the elements of matrices are to be multiplied as elements of A. However, given a module homomorphism $f: A^{n} \rightarrow A^{n}$, we represent it as a matrix $\left(f_{i j}\right)$ where $f_{i j} \in \operatorname{End}_{A}(A) \cong A^{o p}$ is the map obtained by restricting the domain and codomain of f to the i th and j th factors, respectively, and the matrix representing $g \circ f$ satisfies

$$
\left((g \circ f)_{i j}\right)=\left(g_{i j}\right)\left(f_{i j}\right)
$$

where now, when doing matrix multiplication, the entries of the matrices are to be multiplied as elements of $A^{o p}$.

For any left A-modules M and N, composition of maps gives $\operatorname{Hom}_{A}(M, N)$, an abelian group, the natural structure of an $\left(\operatorname{End}_{A}(N), \operatorname{End}_{A}(M)\right)$-bimodule:

$$
\operatorname{End}_{A}(N) \curvearrowright \operatorname{Hom}_{A}(M, N) \curvearrowleft \operatorname{End}_{A}(M) .
$$

Thus, te action of an element $\phi_{N} \otimes \phi_{M} \in \operatorname{End}_{A}(N) \otimes \operatorname{End}_{A}(M)^{o p}$ on $f \in \operatorname{Hom}_{A}(M, N)$ is given by

$$
\phi_{N} f \phi_{M}: M \xrightarrow{\phi_{M}} M \xrightarrow{f} N \xrightarrow{\phi_{N}} N .
$$

In the above situation, there is a well-defined tensor product $\operatorname{Hom}_{A}(M, N) \otimes_{\operatorname{End}_{A}(M)} M$ and this tensor product inherits from M the structure of a left A-module. Furthermore, it is immediate to verify that the natural evaluation pairing $\operatorname{Hom}_{A}(M, N) \times M \rightarrow N, f \times m \mapsto f(m)$ descends to a well-defined map

$$
\text { ev : } \operatorname{Hom}_{A}(M, N) \otimes_{\operatorname{End}_{A}(M)} M \rightarrow N
$$

Observe also that the commuting actions on M of the rings A and $\operatorname{End}_{A}(M)$ combine together to make M a left $A \otimes_{\mathbb{Z}} \operatorname{End}_{A}(M)$-module. The evaluation map is A-linear, therefore it is in fact a morphism of left $A \otimes_{\mathbb{Z}} \operatorname{End}_{A}(M)$-modules.

Simple modules

Throughout, we fix a ring A.
Definition. (i) An A-module M is called cyclic if it is generated by one element, i.e., there is an element $m \in M$, called generator, such that we have $M=A m$.
(ii) An A-module is called simple if it is non-trivial and has no submodules except 0 and itself.

We'll use the notation S_{A} for the set of isomorphism classes of simple A-modules.
Example. If our ring is a field k, then a k-module M is simple if and only if M is cyclic, which is the case if and only if $\operatorname{dim}_{k}(M)=1$.
Note that an A-module is simple if and only if $M=A m$ for any non-zero $m \in M$.
Definition. A (left) ideal $J \subsetneq A$ is called maximal if, for any ideal $I \supseteq J$, we have $A=I$.
More generally, given an A-module M, one says that a submodule $N \subsetneq M$ is a maximal submodule if the only submodule $N^{\prime} \supseteq N$ is $N^{\prime}=M$.

Lemma. (i) An A-module M is cyclic iff it is isomorphic to a module of the form A / J for some left ideal $J \subset A$.
(ii) The module A / J is simple iff the ideal J is maximal.

Proof. Associated with any element $m \in M$, there is an A-module map $f_{m}: A \rightarrow M, a \mapsto a m$. The map $f_{m}: A \rightarrow M, a \mapsto a m$ is surjective iff m is a generator. In that case, the map f_{m} induces an isomorphism $M \cong A / J$, where $J:=\operatorname{ker}\left(f_{m}\right)$ is a left ideal of the ring A. Thus, we conclude that an A-module M is cyclic iff it is isomorphic to a module of the form A / J for some left ideal $J \subset A$, proving (i).

Now (ii) follows from (i) and the natura bijection between left submodules $I / J \subseteq A / J$ and ideals $J \subseteq I \subseteq A$:

Proposition. Any (left) ideal $I \subsetneq A$ is contained in a maximal ideal.
Proof. Zorn's lemma.
Corollary. Any cyclic module has a simple quotient.
Warning. If N is a submodule in M, it isn't necessarily true that there exists a maximal submodule N^{\prime} of M with $N \subseteq N^{\prime}$.

Exercise. Show that $(\mathbb{Q} / \mathbb{Z},+)$ has no maximal subgroups, i.e. maximal \mathbb{Z}-submodules.
Theorem (Schur's lemma). If M, N are simple A-modules, then any morphism $f: M \rightarrow N$ is either 0 or is an isomorphism.

Proof. Assume that $f \neq 0$. Then $\operatorname{im}(f) \neq 0$ is a submodule in N, hence $\operatorname{im}(f)=N$, i.e. f is surjective. Because $\operatorname{ker}(f) \neq M$, we must have $\operatorname{ker}(f)=0$, hence f is injective.

Corollary. For a simple module M, the ring $\operatorname{End}_{A}(M)$ is a division ring.
Proof. Every $f \neq 0$ in $\operatorname{End}_{A}(M)$ is an isomorphism, hence is invertible.
Corollary. If A is commutative, then an ideal $I \subset A$ is maximal if and only if A / I is a field.
Proof. If I is maximal then A / I is a simple left A-module, which we may also view as a left A / I-module. Then we have $A / I=(A / I)^{o p}=\operatorname{End}_{A / I}(A / I)=\operatorname{End}_{A}(A / I)$. Thus, the Schur lemma implies that A / I is a division ring, and hence a field. Conversely, if A / I is a field, then A / I is generated by every non-zero element, hence A / I is simple, hence I is maximal (by our lemma).

Corollary. If A is commutative, and $n \neq m$, then $A^{n} \not \approx A^{m}$ as A-modules.
Proof. Pick a maximal ideal $I \subset A$. If M is an A-module, we can consider $M / I M$ as an A / I-module. In particular we get

$$
(A / I)^{n} \cong A^{n} / I \cdot A^{n} \cong A^{m} / I \cdot A^{m} \cong(A / I)^{m} .
$$

But these are vector spaces over A / I, which is a field. So we must have $m=n$.

Semisimple modules.

Semisimple modules is a class of modules over a general ring for which many standard results of Linear Algebra generalize in a most straightforward way.

Proposition. For M an A-module, the following are equivalent:

1. $M \cong \oplus$ simple modules
2. $M=\sum$ simple submodules
3. M is completely reducible, i.e. for any submodule $N \subset M$, there is an $N^{\prime} \subset M$ such that $N \oplus N^{\prime}=M$.

Proof. Zorn's lemma.
Definition. If (1)-(3) above hold then M is called semisimple.
Corollary. Any direct sum, quotient, or submodule of a semisimple module is semisimple.
Proof. The case of submodules follows from (3). The case of quotients follows from (2). The case of direct sums follows from (1).

Examples. 1. If $A=k$ is a field, then any module is semisimple and free.
2. More generally, let A be a division ring. Then, A is a simple A-module. Furthermore, mimicing standard arguments from Linear Algebra one proves that any A-module is free and there is a well defined notion of rank of such a free module that generalizes the notion of dimension for vector spaces over a field. We conclude that the only simple A-modules are rank one free modules, so the set S_{A} of isomorphism classes of simple A-modules consists of 1 element. Moreover, any A-module is semisimple.
3. Still more generally, let $A=\mathrm{M}_{n}(D)$ be a matrix algebra over a division ring D. We may view the set D^{n} of n-tuples of elements on D as the set of column vectors. Then, this is a simple A-module under the usual action of matrices on column vectors. Furthermore, D^{n} is the only simple A-module, up to isomorphism, and any A-module is semisimple. Note, however, that D^{n} is not free as a module over $\mathrm{M}_{n}(D)$ unless $n=1$. Therefore, it is not true in this case that any A-module is free.

Remark. (i) Thus, there are (at least) two types of rings A for which one has a well defined notion of rank of free A-module such that, for a free module of the form $M=\bigoplus_{i \in I} A$, we have $\mathrm{rk}_{A} M:=\# I$. The first type is the commutative rings and the second is the division rings. In those two cases one can, indeed, prove that an isomorphism $\bigoplus_{i \in I} A \cong \bigoplus_{j \in J} A$, of A-modules, implies that the sets I and J have the same cardinality.

Such a statement is false for non-commutative rings in general. A counterexample can be obtained by taking an infinite dimensional vector space V over a field k, and letting $A=\operatorname{End}_{k}(V)$. It turns out that, in this case, for any $n \geq 1$ there is an A-module isomorphism $A^{n} \cong A$.
(ii) In general, there may be many different ways to decompose a given semisimple module over a ring A as a direct sum of simple modules. If, for instance, $A=k$ is a field then a simple module is the same thing as a 1 -dimensional vector space over k. So, given a k-vector space M, such that $1<\operatorname{dim}_{k} M<\infty$, there are clearly many ways to decompose M into a direct sum of 1 -dimensional subspaces.

Fix a ring A and a semisimple module M which is a finite direct sum $M=\bigoplus_{i} M_{i}$ of some simple modules M_{i}. Then, it is often convenient to group together isomorphic simple summands of M. Thus, we have

$$
\begin{equation*}
M \cong \bigoplus_{L \in S_{A}} L^{n(L)}, \quad n(L):=\#\left\{i \mid M_{i} \cong L\right\} \tag{1}
\end{equation*}
$$

It turns out that the integers $n(L), L \in S_{A}$, are, in fact, intrinsic invariants of the semisimple module M, i.e. they do not depend on the choice of decomposition $M=\bigoplus_{i} M_{i}$ into a direct sum of simple modules.

To see this, let $E_{L}:=\operatorname{End}_{A}(L)$. This is a division ring, by Schur's lemma, hence any E_{L}-module is free. We conclude that $\operatorname{Hom}_{A}(L, M)$ is a free module over the division ring E_{L} and therefore there is a well defined number (possibly equal to infinity)

$$
[M: L]:=\operatorname{rk}_{E_{L}} \operatorname{Hom}_{A}(L, M)
$$

Proposition (Multiplicity formula). Let M be a finite direct sum of simple A-modules of the form (1). Then, we have
(i) $n(L)=[M: L]$ for all $L \in S_{A}$;
(ii) The natural evaluation map

$$
\text { ev : } \bigoplus_{L \in S_{A}} \operatorname{Hom}_{A}(L, M) \otimes_{E_{L}} L \xrightarrow{\cong} M
$$

is an isomorphism of A-modules;
(iii) There is a ring isomorphism

$$
\operatorname{End}_{A}(M) \cong \bigoplus_{L \in S_{A}} \mathrm{M}_{n(L)}\left(E_{L}\right)
$$

Proof. We observe that if the statements in (i), resp. (ii), holds for M_{1} and M_{2} then it also holds for $M_{1} \oplus M_{2}$. Hence, it suffices to prove (i), resp. (ii), for M simple. In this case, by Schur's lemma, we have $n(M)=1=\operatorname{rk}_{E_{M}} \operatorname{Hom}_{A}(M, M)$ and $n(L)=0=\operatorname{rk}_{E_{L}} \operatorname{Hom}_{A}(L, M)$ for any $L \neq M$, proving (i). Further, one has $\operatorname{Hom}_{A}(M, M) \otimes_{E_{M}} M=E_{M} \otimes_{E_{M}} M=M$ and the component of the evaluation map in (ii) corresponding to $L=M$ reduces to the identity map $M \rightarrow M$. All other components vanish. Part (ii) follows from this.

To prove (iii) we compute

$$
\begin{aligned}
\operatorname{End}_{A}(M) & =\operatorname{Hom}_{A}\left(\oplus_{L \in S_{A}} L^{n(L)}, \oplus_{L^{\prime} \in S_{A}}\left(L^{\prime}\right)^{n\left(L^{\prime}\right)}\right) \\
& =\bigoplus_{L, L^{\prime} \in S_{A}} \operatorname{Hom}_{A}\left(L^{n(L)},\left(L^{\prime}\right)^{n\left(L^{\prime}\right)}\right) \\
& =\bigoplus_{L, L^{\prime} \in S_{A}} \mathrm{M}_{n(L) \times n\left(L^{\prime}\right)}\left(\operatorname{Hom}_{A}\left(L, L^{\prime}\right)\right)
\end{aligned}
$$

where we use the notation $\mathrm{M}_{n \times n^{\prime}}(H)$ for the abelian group of rectangular $n \times n^{\prime}$-matrices with entries in an abelian group H.

Observe that in the above formula, all the terms with $L \nsupseteq L^{\prime}$ vanish by the Schur lemma. Thus, we find

$$
\operatorname{End}_{A}(M)=\oplus_{L \in S_{A}} \quad \mathrm{M}_{n(L) \times n(L)}\left(\operatorname{Hom}_{A}(L, L)\right)=\oplus_{L \in S_{A}} \quad \mathrm{M}_{n(L)}\left(E_{L}\right)
$$

In view of this proposition, we have $n(L)=[M: L]$ and one calls this integer the multiplicity of a simple module L in the semisimple module M.

A ring A is said to be semisimple when any A-module is semisimple.
Theorem (Wedderburn Theorem). For a ring A, the following conditions are equivalent:

1. A is a finite direct sum

$$
A=\mathrm{M}_{r_{1}}\left(D_{1}\right) \oplus \cdots \oplus \mathrm{M}_{r_{n}}\left(D_{n}\right)
$$

where the D_{i} are division rings.
2. A is semisimple.
3. The rank 1 free A-module is semisimple.
4. Any left ideal in A has the form Ae where $e^{2}=e \in A$.
5. $A=A e_{1}+\cdots+A e_{n}$ where $e_{i}^{2}=e_{i}$ and $e_{i} e_{j}=0$ for $i \neq j$, and each $A e_{i}$ is a simple A-module.
(1 $\Rightarrow 2$ 2). The fact that any module over $\mathrm{M}_{r}(D)$ is semisimple is something that is from your homework. Now note that if $A=A_{1} \oplus \cdots \oplus A_{n}$, then an A-module is equivalent to an n-tuple $\left\{M_{i}\right\}$ where M_{i} is an A_{i}-module, so that because each $\mathrm{M}_{r_{i}}\left(D_{i}\right)$ is semisimple, so is $\mathrm{M}_{r_{1}}\left(D_{1}\right) \oplus \cdots \oplus$ $\mathrm{M}_{r_{n}}\left(D_{n}\right)$.
($2 \Rightarrow 3$). Clear.
(3 $\Rightarrow 4$). A is completely reducible as an A-module, so for any left ideal $I \subset A$, there exists a left ideal $I^{\prime} \subset A$ such that $A=I \oplus I^{\prime}$. Thus, there are $e \in I$ and $e^{\prime} \in I^{\prime}$ such that $1=e+e^{\prime}$. Now note that for any $x \in I$,

$$
\underbrace{x}_{\in I}=x \cdot 1=\underbrace{x \cdot e}_{\in I}+\underbrace{x \cdot e^{\prime}}_{\in I^{\prime}}
$$

which implies that $x \cdot e^{\prime}$ and $x=x e$. Thus, I is of the form $A e$, and $e=e^{2}$.
(4 $\Rightarrow 5$). Since any left ideal $I \subset A$ has the form $I=A e$ where $e^{2}=e$, we have for any ideal $A e$ that $A=A e \oplus A(1-e)$. Thus, A is completely reducible.
This implies that $A=\bigoplus L_{i}$, a possibly infinite direct sum of simple A-modules. But then $1=$ $e_{1}+\cdots+e_{n}$, hence $x=x \cdot 1=x e_{1}+\cdots+x e_{n}$ where $x e_{i} \in L_{i}$. Thus $A=L_{1} \oplus \cdots \oplus L_{n}$.
($5 \Rightarrow 1$). Reexpressing the statement of 5 , we have that

$$
A=\bigoplus_{j=1}^{m} L_{i}^{r_{i}}, \quad L_{i} \not \not 二 L_{j} \text { for } i \neq j
$$

Therefore

$$
A^{\mathrm{op}}=\operatorname{End}_{A}(A)=\bigoplus_{j=1}^{m} \operatorname{End}\left(L_{j}^{r_{j}}\right)=\bigoplus_{j=1}^{m} \mathrm{M}_{r_{j}}\left(\operatorname{End}_{A}\left(L_{i}\right)\right)
$$

and by Schur's lemma, $D_{i}=\operatorname{End}_{A}\left(L_{i}\right)$ is a division ring. But this gives a decomposition of $A^{\text {op }}$, not A. To fix this, note that

$$
A=\left(A^{\mathrm{op}}\right)^{\mathrm{op}}=\bigoplus_{j=1}^{m} \mathrm{M}_{r_{j}}\left(D_{j}\right)^{\mathrm{op}}
$$

that $\mathrm{M}_{r}(D)^{\mathrm{op}}=\mathrm{M}_{r}\left(D^{\mathrm{op}}\right)$, and that D^{op} is a division ring when D is.
Corollary. A commutative ring A is semisimple if and only if it is a finite direct sum of fields.
Proof. There is no way to get a commutative ring if any of the $r_{i}>1$, nor if any of the D_{j} are non-commutative division algebras.

Lecture 5

Throughout this lecture we fix a field k and a k-algebra A.
Definition. An element $a \in A$ is called algebraic if there is some monic $p \in k[t]$ such that $p(a)=0$.

Examples.

- Any idempotent or nilpotent element is algebraic.
- If $\operatorname{dim}_{k}(A)<\infty$ then any $a \in A$ is algebraic, because $1, a, a^{2}, \ldots$ cannot be linearly independent over k. Thus, there exist some $\lambda_{i} \in k$ such that $\sum \lambda_{i} a^{n_{i}}=0$.
Let $a \in A$ be an algebraic element. Consider the k-algebra homomorphism $j: k[t] \rightarrow A$ defined by $j(f)=f(a)$. Because $k[t]$ is a PID, we have that $\operatorname{ker}(j)=\left(p_{a}\right)$ is a principal ideal. The monic polynomial p_{a} is called the minimal polynomial for a. Note that we get an induced homomorphism $j: k[t] /\left(p_{a}\right) \hookrightarrow A$.

Definition. For any $a \in A$, we define

$$
\operatorname{spec}(a)=\{\lambda \in k \mid \lambda-a \text { is not invertible }\} .
$$

Examples.

- If $A=k\{X\}$, then $\operatorname{spec}(a)=\{$ the values of $a\}$.
- If k is algebraically closed and $A=\mathrm{M}_{n}(k)$, then for an $a \in A$, $\operatorname{spec}(a)=\{$ eigenvalues of $a\}$.

Lemma. Let $a \in A$ be an algebraic element with minimal polynomial $p_{a} \in k[t]$. Then

$$
\lambda-a \text { is not invertible } \Longleftrightarrow \lambda-a \text { is a zero divisor } \Longleftrightarrow p_{a}(\lambda)=0
$$

Thus, $\operatorname{spec}(a)=\left\{\right.$ roots of $\left.p_{a}\right\}$.
Proof. First, we make a general remark: for any $\lambda \in k$, we have

$$
p(t)-p(\lambda)=q(t)(\lambda-t)
$$

and because $\operatorname{deg}(q)<\operatorname{deg}(p)$, we must have $q \notin(p)$, hence $q(a) \neq 0$.
We have an injective homomorphism $j: k[t] /(p) \hookrightarrow A$ where we send f to $f(a)$. If $p(\lambda)=0$, then

$$
0=p(a)=q(a)(\lambda-a)
$$

implies that $\lambda-a$ is a zero-divisor. Clearly, if $\lambda-a$ is a zero-divisor, it is not invertible.
Now we want to show that $\lambda-a$ is not invertible $\Longrightarrow p(\lambda)=0$. Assume for the sake of contradiction that $p(\lambda) \neq 0$; then

$$
\underbrace{p(a)}_{=0}-\underbrace{p(\lambda)}_{\neq 0}=q(a)(\lambda-a)
$$

demonstrates that $\lambda-a$ is invertible.
Let's consider a special case where $a^{n}=0$, so that a is nilpotent. Then $p_{a}=t^{n}$, so that $\operatorname{spec}(a)=\{0\}$. This implies that $\lambda-a$ is invertible for any $\lambda \neq 0$. Let's see if we can find an explicit inverse.

$$
(\lambda-a)^{-1}=\left[\lambda\left(1-\lambda^{-1} a\right)\right]^{-1}
$$

$$
\begin{aligned}
& =\lambda^{-1}\left(1-\lambda^{-1} a\right)^{-1} \\
& =\lambda^{-1}\left(1+\left(\lambda^{-1} a\right)+\left(\lambda^{-1} a\right)^{2}+\cdots\right) \\
& =\sum_{i=0}^{\infty} \lambda^{-(i+1)} a^{i} \\
& =\sum_{i=0}^{n-1} \lambda^{-(i+1)} a^{i}
\end{aligned}
$$

The intermediate steps aren't really allowed, but it gets us the right answer.

Lecture 6

We consider k-algebras over an algebraically closed field k.
Proposition. Let A be a finite dimensional k-algebra.

1. $\operatorname{spec}(a) \neq \varnothing$ for any $a \in A$.
2. If A is a division algebra, then $A \cong k$.

Proof. For part 1, note that $\operatorname{dim}(A)<\infty$ implies that any $a \in A$ is algebraic, so that $\operatorname{spec}(a)=$ \{roots of $\left.p_{a}\right\}$, which is non-empty because k is algebraically closed.
For part 2 , note that for any k-algebra, we have an inclusion $k \hookrightarrow A$ by $\lambda \mapsto \lambda \cdot 1_{A}$. Suppose that $a \in A \backslash k$. Then for any $\lambda \in k$, we have that $\lambda-a \neq 0$, hence $\lambda-a$ is invertible for all $a \in k$, hence $\operatorname{spec}(a)=\varnothing$; but this contradicts part 1 .

Proposition (Schur lemma for algebras). Let M be a finite dimensional (over k) simple A-module. Then $\operatorname{End}_{A}(M)=k$, i.e. any endomorphism $f: M \rightarrow M$ is of the form $\lambda \cdot \mathrm{id}_{M}$ for some $\lambda \in k$.
Proof. We know that $\operatorname{End}_{A}(M)$ is a division algebra. The A-action on M is the same as a map $A \rightarrow \operatorname{End}_{k}(M)$, which is a finite dimensional division algebra. Let $A^{\prime}=\operatorname{im}(A)$, so $\operatorname{dim}\left(A^{\prime}\right)<\infty$ and M is a simple A^{\prime}-module, which implies $\operatorname{End}_{A^{\prime}}(M)=k$, but $^{\operatorname{End}} A_{A}(M)=\operatorname{End}_{A^{\prime}}(M)$.

Corollary.

1. The center $Z(A)$ of A acts by scalars in any finite-dimensional simple A-module.
2. If A is a commutative finite dimensional k-algebra, then any simple A-module has dimension 1 over k.

Proof. Let M be a finite-dimensional simple A-module. Then consider the action map act : $A \rightarrow$ $\operatorname{End}_{k}(M)$. If $z \in Z(A)$, then $\operatorname{act}(z) \in \operatorname{End}_{A}(M)=k$ by the Schur lemma for algebras. Part 1 follows.

If $A=Z(A)$, then any element of A acts on M by scalars, so any vector subspace $N \subseteq M$ is A-stable. Thus, $\operatorname{dim}_{k}(M)=1$.

Theorem (Wedderburn Theorem for Algebras). A is a finite-dimensional semi-simple k-algebra if and only if

$$
A \cong \mathrm{M}_{r_{1}}(k) \oplus \cdots \oplus \mathrm{M}_{r_{n}}(k)
$$

Proof. By Wedderburn's theorem, we have

$$
A \cong \mathrm{M}_{r_{1}}\left(D_{1}\right) \oplus \cdots \oplus \mathrm{M}_{r_{n}}\left(D_{n}\right)
$$

where the D_{i} are division rings. The fact that $\operatorname{dim}_{k}(A)<\infty \operatorname{implies} \operatorname{dim}_{k}\left(D_{i}\right)<\infty$ which implies that $D_{i}=k$.
Recall the notation S_{A} for the set of iso-classes of simple A-modules.
Corollary. Let A be a finite-dimensional semisimple algebra. Then

1. S_{A} is a finite set and any $M \in S_{A}$ is finite dimensional over k. Moreover, $[A: L]=\operatorname{dim}(L)$ for all $L \in S_{A}$.
2. $\operatorname{dim}(A)=\sum_{L \in S_{A}} \operatorname{dim}(L)^{2}$

Proof. Any simple A-module is cyclic, so that it is isomorphic to A / J for some J. We have $\operatorname{dim}_{k}(A / J) \leq \operatorname{dim}_{k}(A)<\infty$, so any simple A-module is finite dimensional.
Note that A satisfies a universal property, $\operatorname{Hom}_{A}(A, L) \stackrel{\cong}{\rightrightarrows} L$ is an isomorphism of k-vector spaces.
We can decompose $A=\bigoplus_{L \in S_{A}} L^{n(L)}$. We get that, for any simple L^{\prime},
$\operatorname{Hom}_{A}\left(L^{\prime}, A\right)=\operatorname{Hom}_{A}\left(L^{\prime}, \bigoplus_{L \in S_{A}} L^{n(L)}\right)=\bigoplus_{L \in S_{A}} \operatorname{Hom}\left(L^{\prime}, L\right)^{n(L)}=\bigoplus_{L \in S_{A}}\binom{k \text { if } L=L^{\prime}}{0 \text { if } L \neq L^{\prime}}^{n(L)}=k^{n\left(L^{\prime}\right)}$.
By the same argument we also have
$\operatorname{Hom}_{A}\left(A, L^{\prime}\right)=\operatorname{Hom}_{A}\left(\bigoplus_{L \in S_{A}} L^{n(L)}, L^{\prime}\right)=\bigoplus_{L \in S_{A}} \operatorname{Hom}\left(L, L^{\prime}\right)^{n(L)}=\bigoplus_{L \in S_{A}}\binom{k \text { if } L=L^{\prime}}{0 \text { if } L \neq L^{\prime}}^{n(L)}=k^{n\left(L^{\prime}\right)}$.
Because $\operatorname{Hom}_{A}(A, L) \cong L$ as k-vector spaces, we therefore have that $\operatorname{dim}\left(L^{\prime}\right)=\operatorname{dim}\left(\operatorname{Hom}_{A}\left(A, L^{\prime}\right)\right)=$ $n\left(L^{\prime}\right)$, and hence

$$
\operatorname{dim}(A)=\sum n(L) \operatorname{dim}\left(\operatorname{Hom}_{A}(L, A)\right)=\sum n(L) \operatorname{dim}(L)=\sum \operatorname{dim}(L)^{2}
$$

Lecture 7

Integration on topological groups

Let X be a locally compact topological space, i.e. any point has a compact neighborhood.
Let $C(X)$ be the space of continuous functions $X \rightarrow \mathbb{C}$. Let $C_{c}(X)$ be the subspace of $C(X)$ consisting of functions with compact support.
An integral on X is a linear functional $\int: C_{c}(X) \rightarrow \mathbb{C}$ satisfying

- If $f(x) \geq 0$ for all x, then $\int f \geq 0$, and $\int f=0 \Longleftrightarrow f=0$.
- Continuity: for every compact $K \subseteq X$, there exists a constant $C_{K} \geq 0$ such that for all $f \in C_{c}(X)$ with $\operatorname{supp}(f) \subseteq K,\left|\int_{K} f\right| \leq C_{K} \cdot \max _{x \in K}|f(x)|$.

If X is actually compact, then clearly $C_{c}(X)=C(X)$ and $\operatorname{vol}(X)=\int 1$. Moreover, Fubini's theorem guarantees that

$$
\int_{Y}\left(\int_{X} f(x, y) d x\right) d y=\int_{X}\left(\int_{Y} f(x, y) d y\right) d x
$$

A topological group G is a group that is a topological space such that multiplication $m: G \times G \rightarrow G$ and inversion $i: G \rightarrow G$ are continuous. From now on, we will make an additional assumption that all our topological groups are Hausdorff. This is easily seen to be equivalent to the condition that the set $\{e\}$, formed by the identity element of G, is a closed subset of G.
Examples. $(\mathbb{R},+),\left(\mathbb{C}^{\times}, \cdot\right),\left(\mathbb{S}^{1}, \cdot\right),\left(\mathrm{GL}_{n}(\mathbb{R}), \cdot\right),\left(\mathrm{U}\left(\mathbb{R}^{n}\right), \cdot\right)$
When we say that a topological group G acts on a topological space X, we require that the action map $G \times X \rightarrow X$ is continuous.

Given a function $f: X \rightarrow \mathbb{C}$ and a $g \in G$, define $g^{*} f(x)=f\left(g^{-1} x\right)$. We say that an integral on X is G-invariant if $\int_{X} g^{*}(f)=\int_{X} f$ for all $f \in C_{c}(X)$ and for all $g \in G$. Alternatively, when thinking about measures, we say that a measure μ is G-invariant if for all $S \subseteq X$ and $g \in G$, we have $\operatorname{vol}(g S)=\operatorname{vol}(S)$.
Theorem (Haar). Any locally compact topological group G has a left-invariant, resp. a rightinvariant, integral which is unique up to a constant factor.

Note that a left-invariant integral is not necessarily right-invariant.
Examples. Some examples of integrals which can be obtained this way:

1. $(\mathbb{R},+)$ with the measure $d x$, so $\int_{G} f=\int_{\mathbb{R}} f(x) d x$.
2. $\left(\mathbb{R}^{>0}, \cdot\right)$ with the measure $\frac{d x}{x}$, so $\int_{G} f=\int_{\mathbb{R}>0} f(x) \frac{d x}{x}$.
3. $\left(S^{1}, \theta\right)$ with the measure $d \theta$, so $\int_{G} f=\int_{0}^{2 \pi} f(\theta) d \theta$.

This theorem is obvious for Lie groups, since it is clear that nonzero left-invariant differential forms on a Lie group exist always.
Proposition. If G is a compact group, then G is unimodular (i.e. a left-invariant integral on G is automatically right-invariant).

Proof. Let \int_{L} be a left-invariant integral on a compact group G. Let $f \in C(G)$. Then define $\phi: G \rightarrow \mathbb{C}$ by $\phi(g)=\int_{L} f(x g) d x$. Notice that $\phi(g)$ is also a left-invariant integral. Therefore, there is a constant $c(g) \in \mathbb{C}$ such that

$$
\int_{L} f(x g) d x=c(g) \int_{L} f(x)
$$

Then $c(g)$ has the following properties,

1. $g \rightarrow c(g)$ is continuous on G (to see this, just plug in $f=1$).
2. $c(g)>0$ for all g.
3. $g \rightarrow c(g)$ is a group homomorphism into the multiplicative group of \mathbb{R}.

Thus, $c(g)=1$ since the image of $c: G \rightarrow \mathbb{R}^{+}$is a compact subgroup of \mathbb{R}^{+}, hence 1 .

The group algebra If G is a finite group and k is a field, then $k G$ is a k-vector space with basis $g \in G$ and with obvious multiplication. Alternatively, the group algebra $k\{G\}$ is the set of functions $G \rightarrow k$ with convolution and addition, i.e.

$$
(\phi * \psi)(x)=\sum_{g \in G} \phi\left(x g^{-1}\right) \psi(g)
$$

Proposition. For a finite group $G, k\{G\}=k G$.
Proof. The elements 1_{g} form a basis of $k\{G\}$, and $1_{g} * 1_{h}=1_{g h}$.
Now let G be a locally compact topological group with left-invariant integral \int, and let k be a topological field. For $\phi, \psi \in C_{c}(G)$, define

$$
(\phi * \psi)(x)=\int_{G} \phi(y) \psi\left(y^{-1} x\right) d y
$$

Comments.

1. Any discrete group is locally compact (discrete topology), but then $C_{c}(G)$ only includes functions with finite support.
2. If G is not discrete, then 1_{g} is not a continuous function.
3. If G is discrete (e.g. if G is finite), the unit of the group algebra is the function 1_{e}. If G is not discrete, then in fact there is no unit!

Lecture 8

Let V be a vector space over k.
Definition. A representation of a group G is a group homomorphism $\rho: G \rightarrow \operatorname{GL}(V)$. This is equivalent to a linear G-action on V.

Observe that this is also equivalent to specifying a $k G$-module structure on V. If ρ is a group representation of G, then we declare that $a=\sum_{g \in G} c_{g} g \in k G$ will act on V via

$$
\rho(a)=\sum_{g \in G} c_{g} \rho(g): V \rightarrow V
$$

or in other words, for all $v \in V$,

$$
\rho(a) v=\sum_{g \in G} c_{g} \rho(g) v .
$$

(Note that sometimes we'll just write $a v$ instead of $\rho(a) v)$. Using this view, we have the notions of a subrepresentation, quotient representation, and direct sum of representations. An "irrep" is a simple $k G$-module, and an "intertwiner" is a morphism of $k G$-modules.

Theorem (Schur Lemma for Representations). Given an algebraically closed field k, let V_{1}, V_{2} be finite-dimensional irreps. Let $f: V_{1} \rightarrow V_{2}$ be an intertwiner. If $V_{1} \neq V_{2}$, then $f=0$, and if $V_{1}=V_{2}$, then $f=\lambda \cdot \mathrm{id}_{V}$ for some $\lambda \in k$.
Proof. Apply the Schur lemma for algebras to $k G$.
From now on let $k=\mathbb{C}$. Let V be a vector space over \mathbb{C} with a positive definite hermitian inner product (\cdot, \cdot).
Definition. A unitary representation of G in V is a homomorphism $G \rightarrow \mathrm{U}(V) \subset \mathrm{GL}(V)$, or in other words, a linear G-action on V by isometries.
Lemma. Any unitary representation is completely reducible.
Proof. Let $W \subset V$ be a subrepresentation. We have that $V=W \oplus W^{\perp}$. We need to show that W^{\perp} is G-stable.
Let $x \in W^{\perp}$. We need to check that $(\rho(g) x, W)=0$. Note a very important fact:

$$
\rho \text { is unitary } \Longleftrightarrow \rho(g)^{*}=\rho(g)^{-1}=\rho\left(g^{-1}\right)
$$

Thus

$$
(\rho(g) x, W)=\left(x, \rho(g)^{*} W\right)=\left(x, \rho\left(g^{-1}\right) W \subset(x, W)=0,\right.
$$

and thus W^{\perp} is a subrepresentation of V.
Now let's consider representations of topological groups. Let G be a topological group, and let V be a finite dimensional vector space over \mathbb{C}. Then $\operatorname{GL}(V) \subset \operatorname{End}_{\mathbb{C}}(V) \cong \mathbb{C}^{\operatorname{dim}(V)^{2}}$, and this inclusion is in fact an open embedding.
Definition. A representation of G in V is a continuous representation of G.
More concretely, a representation of G in \mathbb{C}^{n} is a homomorphism $\rho: G \rightarrow \mathrm{GL}_{n}(\mathbb{C})$, with $g \mapsto\left(\rho_{i j}(g)\right)$, and this is continuous if and only if for each $1 \leq i, j \leq n, g \mapsto \rho_{i j}(g)$ is a continuous function from G to \mathbb{C}.

As we discussed last time, the natural candidate for the group algebra over a topological group is the algebra $C_{c}(G)$ with convolution as the product. Fix a left-invariant integral \int on G. Then any representation $\rho: G \rightarrow \mathrm{GL}(V)$ gives V a $\left(C_{c}(G), *\right)$-module structure: for $f \in C_{c}(G)$, define

$$
\rho(f)=\int f(g) \rho(g) \in \operatorname{End}_{\mathbb{C}}(V)
$$

If $V=\mathbb{C}^{n}$, then

$$
\rho(f)_{i j}=\int f(g) \rho_{i j}(g),
$$

and

$$
\rho(f) v=\int f(g)(\rho(g) v) .
$$

Lemma. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a continuous representation, and let $W \subset V$ be a $C_{c}(G)$-stable subspace. Then in fact W is G-stable, so it is a subrepresentation.
(Note that unless G is discrete, we have $1_{g} \notin C_{c}(G)$ for all $g \in G$, so this isn't obvious.)
Proof. Given $g \in G$, we could recover the action of the group element using a delta function,

$$
\int \delta_{g_{0}}(g) \rho(g)=\rho\left(g_{0}\right) .
$$

Since we aren't doing functional analysis, we can't really use delta functions, but we will try to approximate them anyway.

Let U_{0} be a compact neighborhood of $g \in G$. Because U_{0} is compact, there is some C such that

$$
\left|\int_{U_{0}} f\right| \leq C \cdot \max _{x \in U_{0}}|f(x)| .
$$

The group G being locally compact and Hausdorff, for any $\epsilon>0$, one can find an open neighborhood U_{ϵ} of g and a function ϕ_{ϵ} such that

1. $|\rho(x)-\rho(g)| \leq \epsilon$ for all $x \in U_{\epsilon}$
2. $\operatorname{supp}\left(\phi_{\epsilon}\right)=$ a compact subset of U_{ϵ}
3. $\phi_{\epsilon} \geq 0$
4. $\int \phi_{\epsilon}=1$

The standard way of thinking about this is of course

We claim that

$$
\left|\int \phi_{\epsilon}(x) \rho(x)-\rho(g)\right| \leq \epsilon C_{0} .
$$

To see this, note that

$$
\left|\int \phi_{\epsilon}(x) \rho(x)-\rho(g)\right|=\left|\int_{G} \rho_{\epsilon}(x) \rho(x)-\int_{G} \phi_{\epsilon}(x) \rho(g)\right| \leq \int \phi_{\epsilon}(x)|\rho(x)-\rho(g)| \leq C \epsilon
$$

Finally,

$$
\lim _{n \rightarrow \infty} \int \phi_{1 / n}(x) \rho(x)=\rho(g) .
$$

Therefore W is $\rho(g)$-stable.
Given a G-action on X, we let X^{G} be the set of G-fixed points.
Lemma (Averaging Lemma). Let G be a compact group, and let $\rho: G \rightarrow \mathrm{GL}(V)$ be a representation. Then the map $V \rightarrow V$ defined by

$$
v \mapsto \frac{1}{\operatorname{vol}(G)} \int_{G} \rho(g) v
$$

is a projection to $V^{G} \subseteq V$. In particular, given a continuous G-action on X and a function $f \in C(X)$, we can define $\operatorname{Av}(f)$ by

$$
x \mapsto \int_{G} f(g x) d g=\operatorname{Av}(f)(x)
$$

which is a G-invariant function on X.
Proof. We need to check that

1. If $v \in V^{G}$, then $\frac{1}{\operatorname{vol}(G)} \int \rho(g) v=v$.
2. For all $v \in V$, we have $\frac{1}{\operatorname{vol}(G)} \int \rho(g) v \in V^{G}$.

For 1 , note that if $\rho(g) v=v$ for all g, then

$$
\frac{1}{\operatorname{vol}(G)} \int v=\frac{1}{\operatorname{vol}(G)} \cdot \operatorname{vol}(G) v=v
$$

For 2 , we have for any $h \in G$ that

$$
\rho(h) \int_{G} \rho(g) v=\int_{G} \rho(h) \rho(g) v=\int_{G} \rho(h g) v
$$

which, because our measure is left-invariant, is equal to

$$
\int \rho(g) v
$$

Lecture 9

Last time, we discussed averaging.
Corollary. Any finite-dimensional representation of a compact group G in a hermitian vector space can be made unitary, i.e. there is a positive definite hermitian form (\cdot, \cdot) on V invariant under the group action.

Proof. Let $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{C}$ be the standard hermitian inner product. The group G acts on $V \times V$ diagonally, so we can define $(\cdot, \cdot)=\operatorname{Av}\langle\cdot, \cdot\rangle$. Explicitly,

$$
(v, w)=\int_{G}\langle g v, g w\rangle d g
$$

The integral of a positive function is positive and $\langle\cdot, \cdot\rangle$ is positive definite so

$$
(v, v)=\int_{G}\langle g v, g v\rangle d g>0
$$

for any $v \neq 0$.
Theorem. Any finite-dimensional representation of a compact group is completely reducible.
Proof. Let $G \rightarrow \mathrm{GL}(V)$ be a finite-dimensional representation of a compact group. Let $\langle\cdot, \cdot\rangle$ be the standard positive definite inner product. Then the corollary implies that there exists a G-invariant inner product, and any unitary representation is completely reducible.
Let \widehat{G} be the set of isomorphism classes of finite dimensional irreps of G. Then \widehat{G} is in bijection with $S_{\mathbb{C} G}$, the isomorphism classes of simple $\mathbb{C} G$-modules.
From now on G is finite.
Clearly, finite \Longrightarrow compact. We declare that $\int 1_{x}=1$ for all $x \in G$, so that $\operatorname{vol}(G)=\# G$, and then we have

Theorem (Maschke's Theorem). $\mathbb{C} G$ is a semisimple algebra.
This follows directly from our earlier theorem.
Given a group representation $\rho: G \rightarrow \mathrm{GL}(L)$, we can extend it to an algebra homomorphism from the group algebra $\rho: \mathbb{C} G \rightarrow \operatorname{End}_{\mathbb{C}}(L)$, where

$$
\sum_{x \in G} c_{x} x \mapsto \sum_{x \in G} c_{x} \rho(x)
$$

Applying the Wedderburn theorem, we see that there is an isomorphism

$$
\left(\bigoplus_{\rho \in \widehat{G}} \rho\right): \mathbb{C} G \stackrel{\cong}{\Longrightarrow} \bigoplus_{\rho \in \widehat{G}} \operatorname{End}_{\mathbb{C}}\left(L_{\rho}\right) .
$$

Corollary. For any $\rho \in \widehat{G}$, we have that $[\mathbb{C} G: \rho]=\operatorname{dim}\left(L_{\rho}\right)$, and hence

$$
\sum_{\rho \in \widehat{G}} \operatorname{dim}\left(L_{\rho}\right)^{2}=\# G=\operatorname{dim}_{\mathbb{C}}(\mathbb{C} G)
$$

Proposition. We have that $\# \widehat{G}=\#$ of conjugacy classes of G.
Proof. Let $Z=Z(\mathbb{C} G)$ be the center of $\mathbb{C} G$. Then

$$
\# \text { of conjugacy classes of } G=\operatorname{dim}(\text { class functions on } G)=\operatorname{dim}(Z)
$$

Now, noting the isomorphism

$$
\left(\bigoplus_{\rho \in \widehat{G}} \rho\right): \mathbb{C} G \stackrel{\cong}{\longrightarrow} \bigoplus_{\rho \in \widehat{G}} \operatorname{End}_{\mathbb{C}}\left(L_{\rho}\right)
$$

we can see that an element of $\mathbb{C} G$ commutes with all other elements if and only if the corresponding tuple of endomorphisms on the right all commute with the action of G. Therefore

$$
\operatorname{dim}(Z)=\operatorname{dim}\left(\bigoplus_{\rho \in \widehat{G}} \operatorname{End}_{G}\left(L_{\rho}\right)\right)=\operatorname{dim}\left(\bigoplus_{\rho \in \widehat{G}} \mathbb{C}\right)=\# \widehat{G}
$$

Theorem. It is the case that $\operatorname{dim}\left(L_{\rho}\right) \mid \# G$ for any $\rho \in \widehat{G}$.
We will not prove this theorem.

Pontryagin duality and Fourier transform

For the rest of this lecture we consider the case of finite abelian groups. Observe that for a finite abelian group G, we have a natural abelian group structure on \widehat{G}, by defining the product of $\chi, \rho: G \rightarrow \mathbb{C}^{\times}$to be $(\chi \rho)(x)=\chi(x) \cdot \rho(x)$.

Proposition. For any finite abelian group G, one has

1. A representation ρ is irreducible if and only if $\operatorname{dim}\left(L_{\rho}\right)=1$, i.e. $\rho: G \rightarrow \mathrm{GL}_{1}(\mathbb{C})=\mathbb{C}^{\times}$.
2. $\rho(x)$ is a root of 1 for any $\rho \in \widehat{G}$ and $x \in G$, so $\rho: G \rightarrow$ roots of unity $\subset \mathbb{S}^{1} \subset \mathbb{C}^{\times}$.
3. We have a canonical algebra isomorphism $(\mathbb{C} G, *) \cong(\mathbb{C}\{\widehat{G}\}, \cdot)$.
4. For $\rho \in \widehat{G}$, the following 'orthogonality relation' holds

$$
\sum_{x \in X} \chi(x)= \begin{cases}\# G & \text { if } \chi=1 \\ 0 & \text { if } \chi \neq 1\end{cases}
$$

Proof. For part 1 , note that G is abelian, so that $\mathbb{C} G$ is commutative, so that any simple $\mathbb{C} G$-module is 1 -dimensional.

For part 2, note that any $x \in G$ has finite order; say x has order n. Then

$$
\rho(x)^{n}=\rho\left(x^{n}\right)=\rho(1)=1 .
$$

For part 3, note that

$$
\mathbb{C} G \cong \bigoplus_{\rho \in \widehat{G}} \operatorname{End}_{G}\left(L_{\rho}\right) \cong \bigoplus_{\rho \in \widehat{G}} \mathbb{C} \cong \mathbb{C}\{G\}
$$

where we have used that $\# G=\# \widehat{G}$ for G finite abelian.
For part 4 , let $\rho \neq 1$, so that there is some $x_{0} \in G$ with $\rho\left(x_{0}\right) \neq 1$. We have

$$
\left(\sum_{x \in G} \rho(x)\right)=\sum_{x \in G} \rho\left(x_{0} x\right)=\rho\left(x_{0}\right) \sum_{x \in G} \rho(x)
$$

But because $\rho\left(x_{0}\right) \neq 1$, this is impossible unless $\sum_{x \in G} \rho(x)=0$.
Observe that $\# \widehat{G}=\# G$ by part 3 . For example, if $G=\mathbb{Z} /(n)$ and $g=1 \bmod n$, then for any choice of nth root of unity ζ, we have that $\chi_{\zeta}: g^{i} \mapsto \zeta^{i}$ provides a bijection between $\widehat{\mathbb{Z} /(n)}$ and the group of nth roots of unity.

Each element $x \in G$, gives a function $\mathrm{ev}_{x}: \widehat{G} \rightarrow \mathbb{C}, \chi \mapsto \chi(x)$. We extend the assignment $x \mapsto \mathrm{ev}_{x}$ by \mathbb{C}-linearity to get a canonical linear map

$$
\mathbb{C} G \rightarrow \mathbb{C}\{\widehat{G}\}, f \mapsto\left[\chi \mapsto \chi(f):=\sum_{x \in G} \chi(x) f(x)\right]
$$

It will be convenient to use instead the following map that differs from the above map by a constant factor.
Definition. The Fourier transform $\mathcal{F}_{G}: \mathbb{C} G \rightarrow \mathbb{C} \widehat{G}$ is defined to be the map

$$
f \mapsto\left[\widetilde{f}: \chi \mapsto \frac{1}{\sqrt{\# G}} \chi(f)\right]
$$

so that

$$
\widetilde{f}(\chi)=\frac{1}{\sqrt{\# G}} \sum_{x \in G} f(x) \chi(x)
$$

Let X be a locally compact topological space, and \int_{X} an integral on X. We define an inner product $(-,-): C_{c}(X) \times C_{c}(X) \rightarrow \mathbb{C}$ by

$$
(\phi, \psi) \mapsto \int_{X} \phi(x) \overline{\psi(x)}
$$

If X is a finite set with $\int 1_{x}=1$ for all $x \in G$, then

$$
(\phi, \psi)=\sum_{x \in X} \phi(x) \overline{\psi(x)}
$$

is an inner product on $\mathbb{C}\{X\}$.
Theorem (Plancherel theorem for finite abelian groups). The Fourier transform is an isometry $\mathbb{C}\{G\} \rightarrow \mathbb{C}\{\widehat{G}\}$, i.e. $(f, g)=(\widetilde{f}, \widetilde{g})$ for all $f, g \in \mathbb{C}\{G\}$.
Proof. We compute that

$$
\begin{aligned}
(\tilde{f}, \widetilde{g}) & =\sum_{\chi} \tilde{f}(\chi) \overline{\widetilde{g}(\chi)} \\
& =\sum_{\chi}\left(\frac{1}{\sqrt{\# G}} \sum_{x \in G} f(x) \chi(x)\right)\left(\frac{1}{\sqrt{\# G}} \sum_{y \in G} \overline{g(y) \chi(y)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{\# G} \sum_{\substack{x, y \in G, \chi \in \widehat{G}}} f(x) \bar{g}(y) \chi(x) \overline{\chi(y)} \\
& =\frac{1}{\# G} \sum_{x, y \in G} f(x) \bar{g}(y)\left(\sum_{x \in \widehat{G}} \chi\left(x y^{-1}\right)\right) \\
& =\frac{1}{\# G} \sum_{x, y \in G} f(x) \overline{g(y)}\binom{\# G \text { if } x=y}{0 \text { if } x \neq y} \\
& =\sum_{x \in G} f(x) \overline{g(x)}=(f, g) .
\end{aligned}
$$

Now, we have $\mathcal{F}_{G}: \mathbb{C}\{G\} \rightarrow \mathbb{C}\{\widehat{G}\}$; how do we find \mathcal{F}_{G}^{-1} ? To that end, for any group G, define an anti-involution $\tau: C_{c}(G) \rightarrow C_{c}(G)$ by $f^{\tau}(x)=f\left(x^{-1}\right)$.

Theorem (Inversion theorem for finite abelian groups). For any $f \in \mathbb{C}\{G\}$, we have $\widetilde{\widetilde{f}}=f^{\tau}$.
Proof. We have that

$$
\begin{aligned}
\mathcal{F}_{\widehat{G}}(\widetilde{f})(x) & =\frac{1}{\sqrt{\# G}} \sum_{\chi \in \widehat{G}} \widetilde{f}(\chi) \chi(x) \\
& =\frac{1}{\sqrt{\# G}} \sum_{\chi \in \widehat{G}}\left(\frac{1}{\sqrt{\# G}} \sum_{y \in G} f(y) \chi(y)\right) \chi(x) \\
& =\frac{1}{\# G} \sum_{\substack{\chi \in \widehat{G}, y \in G}} f(y) \chi(y x) \\
& =\frac{1}{\# G} \sum_{y \in G} f(y)\left(\sum_{x \in \widehat{G}} \chi(y x)\right) \\
& =\frac{1}{\# G} \sum_{y \in G} f(y)\binom{\# G \text { if } y=x^{-1}}{0 \text { if } y \neq x^{-1}} \\
& =f\left(x^{-1}\right)=f^{\tau}(x) .
\end{aligned}
$$

The whole theory works for an arbitrary locally compact abelian group G, with small modification: when G is finite, we let \widehat{G} denote the collection of maps $\chi: G \rightarrow \mathbb{C}^{\times}$, and the image was always contained in the circle, but when G is arbitrary, we need to specify that \widehat{G} consists of the unitary irreps. Thus, for G abelian,

$$
\widehat{G}=\left\{\chi: G \rightarrow \mathbb{S}^{1}=\mathrm{U}(1)\right\} .
$$

For example, let $G=\mathbb{S}^{1}$. The maps $\mathbb{S}^{1} \rightarrow \mathbb{S}^{1}$ are (as you saw on the homework) precisely of the form $e^{2 \pi i \theta} \mapsto e^{2 \pi i n \theta}$ for some $n \in \mathbb{Z}$. Thus, $\widehat{G} \cong \mathbb{Z}$.

Let $f \in C\left(\mathbb{S}^{1}\right)$ (note that there's no need to worry about compact support). Then we define

$$
\widetilde{f}(n)=\int_{g} f\left(e^{2 \pi i \theta}\right) e^{2 \pi i n \theta} d \theta,
$$

and we create a map $C\left(\mathbb{S}^{1}\right) \rightarrow \mathbb{C}\{\mathbb{Z}\}$ by sending f to $\widetilde{f}=\{\widetilde{f}(n)\}_{n \in \mathbb{Z}}$, which we call the Fourier coefficients of f.

Plancherel says that

$$
\int_{\mathbb{S}^{1}} f_{1}\left(e^{2 \pi i \theta}\right) \overline{f_{2}\left(e^{2 \pi i \theta}\right)} d \theta=\sum_{n \in \mathbb{Z}} \widetilde{f}_{1}(n) \overline{\tilde{f}_{2}(n)} .
$$

Now take $G=(\mathbb{R},+)$. The maps $\chi: \mathbb{R} \rightarrow \mathbb{S}^{1}$ are precisely the maps of the form $\chi_{y}: x \mapsto e^{2 \pi i y x}$, where $y \in \mathbb{R}$. Thus, $\widehat{G}=(\mathbb{R},+)$. For $f \in C_{c}(\mathbb{R})$,

$$
\widetilde{f}(y)=\int_{G} f(x) e^{2 \pi i y x} d x
$$

Remark. Note that you can think of finite as being an intersection of the properties of being compact and being discrete.

$$
\text { compact } \longleftarrow \text { Fourier } \longleftrightarrow \text { discrete }
$$

Also, note that for finite groups, we proved $G \cong \widehat{\widehat{G}}$ (more or less) directly; however, it is cleaner (and generalizes more readily) to go through group algebras, i.e. to prove that $\mathbb{C} G \cong \mathbb{C}\{\widehat{G}\}$.

Lecture 10

Now let G be a finite group, not necessarily abelian in general.
Lemma. For any function $f \in \mathbb{C}\{G\}$ we have

$$
f(e)=\sum_{\rho \in \widehat{G}} \frac{\operatorname{dim}\left(L_{\rho}\right)}{\# G} \operatorname{tr}_{L_{\rho}}(\rho(f)),
$$

where $\rho(f)=\sum_{x \in G} f(x) \cdot \rho(x)$.
Proof. Because this is a linear equation in f, it suffices to check it for $f=\mathbf{1}_{g}$ for each $g \in G$. Note that in the regular representation of G on $\mathbb{C} G$, we have that

$$
\operatorname{tr}(g \curvearrowright \mathbb{C} G)= \begin{cases}\# G & \text { if } g=e \\ 0 & \text { if } g \neq e\end{cases}
$$

Hence

$$
\# G \cdot f(e)=\operatorname{tr}(g \curvearrowright \mathbb{C} G)=\sum_{\rho \in \widehat{G}} \operatorname{dim}\left(L_{\rho}\right) \operatorname{tr}(\rho(g))=\sum_{\rho \in \widehat{G}} \operatorname{dim}\left(L_{\rho}\right) \cdot \operatorname{tr}\left(\rho\left(\mathbf{1}_{g}\right)\right) .
$$

Lemma. For any unitary representation ρ and $f \in \mathbb{C}\{G\}$, we have

$$
\rho\left(\overline{f^{\tau}}\right)=\rho(f)^{*} .
$$

Proof. Note that

$$
\rho\left(\overline{f^{\tau}}\right)=\sum_{x \in G} \overline{f\left(x^{-1}\right)} \rho(x)=\sum_{y \in G} \overline{f(y)} \rho(y)^{-1},
$$

and because ρ is a unitary representation, this equals

$$
\sum_{y \in G} \overline{f(y)} \rho(y)^{*}=\sum_{y \in G}(f(y) \rho(y))^{*}=\rho(f)^{*} .
$$

Theorem (Plancherel, general case). For $\phi, \psi \in \mathbb{C}\{G\}$,

$$
\sum_{g \in G} \phi(g) \overline{\psi(g)}=\sum_{\rho \in \widehat{G}} \frac{\operatorname{dim}(\rho)}{\# G} \operatorname{tr}\left(\rho(\phi) \rho(\psi)^{*}\right) .
$$

Proof. Let $f=\phi * \overline{\psi^{\tau}}$. Apply the orthogonality relations to f :

$$
\left(\phi * \overline{\psi^{\tau}}\right)(e)=\sum_{\rho \in \widehat{G}} \frac{\operatorname{dim}(\rho)}{\# G} \operatorname{tr}\left(\rho\left(\phi * \overline{\psi^{\tau}}\right)\right) .
$$

By definition of convolution, the LHS of the above orthogonality relation is equal to

$$
\sum_{y \in G} \phi\left(e y^{-1}\right) \overline{\psi^{\tau}}(y)=\sum_{y \in G} \phi\left(y^{-1}\right) \overline{\psi\left(y^{-1}\right)} \quad \text { (LHS of theorem). }
$$

We know that $\rho\left(\phi * \overline{\psi^{\tau}}\right)=\rho(\phi) \rho\left(\overline{\psi^{\tau}}\right)$, and by the last lemma from Lecture 11, $\rho\left(\overline{\psi^{\tau}}\right)=\rho(\psi)^{*}$. Hence the RHS of orthogonality coincides with the RHS of the theorem, and we are done.

Recall from Wedderburn theory that the map

$$
\Psi: \mathbb{C} G \rightarrow \bigoplus_{\rho \in \widehat{G}} \operatorname{End}_{\mathbb{C}}\left(L_{\rho}\right): f \mapsto \underset{\rho \in \widehat{G}}{\oplus} \rho(f)
$$

is an isomorphism. The inversion theorem gives a formula for the inverse:
Theorem (Inversion formula, general case). For $a=\underset{\rho \in \widehat{G}}{\oplus} a_{\rho} \in \underset{\rho \in \widehat{G}}{\bigoplus} \operatorname{End}_{\mathbb{C}}\left(L_{\rho}\right)$, the inverse map Ψ^{-1} is given by

$$
\Psi^{-1}(a)(g)=\sum_{\rho \in \widehat{G}} \frac{\operatorname{dim}(\rho)}{\# G} \operatorname{tr}\left(a_{\rho} \cdot \rho(g)^{-1}\right) .
$$

Proof. WLOG we can assume $a=\Psi(f)=\underset{\rho \in \widehat{G}}{\oplus} \rho(f)$ for some $f \in \mathbb{C}\{G\}$. We need to check

$$
\sum_{\rho \in \widehat{G}} \frac{\operatorname{dim}(\rho)}{\# G} \operatorname{tr}\left(\rho(f) \rho(g)^{-1}\right) \stackrel{?}{=} f(g)
$$

But the left side is just equal to

$$
\sum_{\rho \in \widehat{G}} \frac{\operatorname{dim}(\rho)}{\# G} \operatorname{tr}\left(\rho(f) \cdot \rho\left(\mathbf{1}_{g}\right)^{*}\right) \stackrel{\text { Plancherel }}{=} \sum_{x \in G} f(x) \overline{\mathbf{1}_{g}(x)}=f(g)
$$

Corollary. The element $e_{\rho}=\frac{\operatorname{dim}(\rho)}{\# G} \sum_{g \in G} \overline{\chi_{\rho}(g)} \cdot g$ is a central idempotent in $\mathbb{C} G$. Moreover,

$$
\rho^{\prime}\left(e_{\rho}\right)= \begin{cases}\operatorname{id}_{L_{\rho}} & \text { if } \rho^{\prime} \cong \rho \\ 0 & \text { if } \rho^{\prime} \neq \rho\end{cases}
$$

Proof. Take $a=\oplus_{\rho^{\prime}} a_{\rho^{\prime}}$, where $a_{\rho^{\prime}}=\left\{\begin{array}{ll}\operatorname{id}_{L_{\rho}} & \text { if } \rho^{\prime} \cong \rho, \\ 0 & \text { if } \rho^{\prime} \not \equiv \rho .\end{array}\right.$. Then

$$
\Psi^{-1}(a)(g) \stackrel{\text { inversion }}{=} \frac{\operatorname{dim}(\rho)}{\# G} \operatorname{tr}\left(\rho\left(g^{-1}\right)\right)
$$

which implies that $\Psi^{-1}(a)=\frac{\operatorname{dim}(\rho)}{\# G} \sum_{g \in G} \operatorname{tr}\left(\rho(g)^{*}\right)$. But

$$
\operatorname{tr}\left(\rho(g)^{*}\right)=\operatorname{tr}(\overline{\rho(g)})=\overline{\operatorname{tr}(\rho(g))}=\overline{\chi_{\rho}(g)}
$$

so we are done.
Recall that given a pair of functions ϕ, ψ on G we use the notation

$$
(\phi, \psi)=\sum_{x \in G} \phi(x) \overline{\psi(x)}
$$

is an inner product on $\mathbb{C}\{G\}$.
Definition. For any representation $\rho: G \rightarrow \mathrm{GL}(V)$, we define a function $\chi_{\rho} \in \mathbb{C}\{G\}$, the character of ρ, by $\chi_{\rho}(x)=\operatorname{tr}(\rho(x))$.

Theorem (Orthogonality Relations for Characters). The set $\left\{\chi_{\rho} \mid \rho \in \widehat{G}\right\}$ is an orthonormal basis of $\mathbb{C}\{G\}^{G}$, the vector space of class functions on G. In particular, we have

$$
\left(\chi_{\rho}, \chi_{\rho^{\prime}}\right)= \begin{cases}\# G & \text { if } \rho \cong \rho^{\prime}, \\ 0 & \text { if } \rho \not \neq \rho^{\prime} .\end{cases}
$$

Proof.

$$
\begin{gathered}
\left(\overline{\chi_{\rho}}, \overline{\chi_{\rho^{\prime}}}\right)=\sum_{g \in G} \overline{\chi_{\rho}(g)} \chi_{\rho^{\prime}}(g)=\left(\frac{\# G}{\operatorname{dim}(\rho)} e_{\rho}, \frac{\# G}{\operatorname{dim}\left(\rho^{\prime}\right)} e_{\rho^{\prime}}\right) \\
\stackrel{\text { Plancherel }}{=} \sum_{\sigma \in \widehat{G}} \frac{\operatorname{dim}(\sigma)}{\# G} \operatorname{tr}\left(\sigma\left(\frac{\# G}{\operatorname{dim}(\rho)} e_{\rho}\right) \cdot \sigma\left(\frac{\# G}{\operatorname{dim}\left(\rho^{\prime}\right)} e_{\rho^{\prime}}\right)^{*}\right) \\
=\sum_{\sigma \in \widehat{G}} \frac{\operatorname{dim}(\sigma)}{\# G} \frac{(\# G)^{2}}{\operatorname{dim}(\rho) \operatorname{dim}\left(\rho^{\prime}\right)} \operatorname{tr}\left(\delta_{\sigma \rho} \operatorname{id}_{L_{\rho}} \cdot \delta_{\sigma \rho^{\prime}} \operatorname{id}_{L_{\rho^{\prime}}}\right) \\
= \begin{cases}0 & \text { if } \rho \not \approx \rho^{\prime}, \\
\frac{\operatorname{dim}(\rho)}{\# G} \cdot \frac{(\# G)^{2}}{\operatorname{dim}(\rho)^{2}} \operatorname{dim}(\rho)=\# G & \text { if } \rho \cong \rho^{\prime} .\end{cases}
\end{gathered}
$$

Lecture 11

Tensor products of group representations

Recall that any abelian group can be considered as a \mathbb{Z}-module, and therefore we can tensor them over \mathbb{Z}. In particular, for any rings A and B, we can form the tensor product $A \otimes_{\mathbb{Z}} B$, which is a ring in the obvious way:

$$
(a \otimes b)\left(a^{\prime} \otimes b^{\prime}\right)=a a^{\prime} \otimes b b^{\prime}
$$

We can do the same for k-algebras; given k-algebras A, B, then $A \otimes_{k} B$ is a k-algebra, with the same operation as above.

Let A and B be arbitrary rings. Given a left A-module M and a left B-module N, we can form their "external tensor product" $M \otimes_{\mathbb{Z}} N$, sometimes denoted $M \boxtimes N$, which is a left $A \otimes_{\mathbb{Z}} B$-module.
Given two groups G and H, and a G-representation ρ and a H-representation ρ^{\prime}, then we can form an external tensor product $\rho \boxtimes \rho^{\prime}$ which is a $(G \times H)$-representation. To describe it explicitly, given $\rho: G \rightarrow \mathrm{GL}(V)$ and $\rho^{\prime}: H \rightarrow \mathrm{GL}\left(V^{\prime}\right)$, then $\rho \boxtimes \rho^{\prime}: G \times H \rightarrow \mathrm{GL}\left(V \otimes_{k} V^{\prime}\right)$ maps $g \times h$ to $\rho(g) \otimes \rho^{\prime}(h)$.
Note that the G-representation ρ is equivalent to the left $k G$-module V, and the H-represenation ρ^{\prime} is equivalent to the left $k H$-module V^{\prime}. We have a canonical isomorphism

$$
k(G \times H) \cong k G \otimes_{k} k H,
$$

and $\rho \boxtimes \rho^{\prime}$ is the $(G \times H)$-represenation that corresponds to the $\left(k G \otimes_{k} k H\right)$-module $V \boxtimes V^{\prime}$.
Given two representations ρ and ρ^{\prime} of G, then we define $\rho \otimes \rho^{\prime}: G \rightarrow \mathrm{GL}\left(V \otimes V^{\prime}\right)$ by mapping g to $\rho(g) \otimes \rho^{\prime}(g)$. This is different than \boxtimes; for example, if ρ^{\prime} is the regular representation $G \curvearrowright k G$, then $V \otimes_{k} k G$ won't be the same $V \otimes_{k G} k G=V$ (recall $\left.M \otimes_{A} A \cong M\right)$.

In other words, given two modules over an algebra, we can tensor them over the base field, but there won't be any canonical action of the algebra on it.
The special property $k G$ has is that it is a Hopf algebra, i.e. there is an algebra morphism $\delta: k G \rightarrow k G \otimes_{k} k G$ mapping g to $g \otimes g$.

Proposition.

1. If ρ is an irrep of a finite group G, and ρ^{\prime} is an irrep of a finite group H, then $\rho \boxtimes \rho^{\prime}$ is an irrep of $G \times H$.
2. Any irrep of $G \times H$ has the form $\rho \boxtimes \rho^{\prime}$ for irreps $\rho \in \widehat{G}, \rho^{\prime} \in \widehat{H}$.

Proof. Recall that $\chi_{\rho}(g)=\operatorname{tr}(\rho(g))$ and $\chi_{\rho^{\prime}}(h)=\operatorname{tr}\left(\rho^{\prime}(h)\right)$. Then

$$
\chi_{\rho \boxtimes \rho^{\prime}}(g, h)=\operatorname{tr}\left(\rho(g) \otimes \rho^{\prime}(h)\right)=\operatorname{tr}(\rho(g)) \operatorname{tr}\left(\rho^{\prime}(h)\right)=\chi_{\rho}(g) \chi_{\rho^{\prime}}(h) .
$$

Thus

$$
\left(\chi_{\rho \boxtimes \rho^{\prime}}, \chi_{\rho \boxtimes \rho^{\prime}}\right)=\left(\chi_{\rho}, \chi_{\rho}\right) \cdot\left(\chi_{\rho^{\prime}}, \chi_{\rho^{\prime}}\right) .
$$

By the orthogonality relations, this is equal to $\# G \cdot \# H=\#(G \times H)$, and therefore $\rho \boxtimes \rho^{\prime}$ is an irrep of $G \times H$.

To see part 2, we use a counting argument. The number of representations of the form $\rho \boxtimes \rho^{\prime}$ with $\rho \in \widehat{G}, \rho^{\prime} \in \widehat{H}$ is just $\#(\widehat{G} \times \widehat{H})$.
A priori, $\#(\widehat{G \times H})=\#$ of conjugacy classes in $G \times H$, but a conjugacy class in $G \times H$ is just a product of conjugacy classes from G and H, so

$$
\begin{aligned}
\#(\widehat{G \times H}) & =\# \text { of conjugacy classes in } G \times H \\
& =(\# \text { of conjugacy classes in } G) \cdot(\# \text { of conjugacy classes in } H) \\
& =\# \widehat{G} \cdot \# \widehat{H}
\end{aligned}
$$

The smash product construction

Let A be a ring, and let G be a group acting on A by automorphisms. For example, we might have $G \subset A^{\times}$, and $G \curvearrowright A$ via $g \cdot a=g a g^{-1}$. Let's use the notation ${ }^{g} a$ for g acting on a.

A G-equivariant A-module M is an A-module $A \otimes M \rightarrow M$ and a G-representation $G \times M \rightarrow M$ such that $g(a m)={ }^{g} a g(m)$. In the case of $G \subset A^{\times}$, then this just says that

$$
g(a m)=\left(g a g^{-1}\right)(g m)=(g a) m .
$$

The smash product $A \# G$ will be an algebra such that modules over $A \# G$ are equivalent to G-equivariant A-modules.

Examples.

- Let $G \curvearrowright X$ where X is a set. Let $k\{X\}$, so the group G acts also on A by $g(f)(x)=f\left(g^{-1}(x)\right)$. In particular, the action of $g \in G$ sends $\mathbf{1}_{x}$ to $\mathbf{1}_{g x}$ and any $f=\sum_{x \in X} \lambda_{x} \mathbf{1}_{x} \in A$ to

$$
g f=\sum_{x \in X} \lambda_{x} \mathbf{1}_{g x}
$$

we have Thus, Let $A=k\{X\}$, and let $G \curvearrowright X$. Then there is an obvious induced action $G \curvearrowright A$: because g sends x to $g x$, it should send $\mathbf{1}_{x}$ to $\mathbf{1}_{g x}$, and hence it sends any $f=\sum_{x \in X} \lambda_{x} \mathbf{1}_{x} \in A$ to

$$
g f=\sum_{x \in X} \lambda_{x} \mathbf{1}_{g x} .
$$

Note that $(g f)(x)=\lambda_{g^{-1}(x)}$.
Let M be an $k\{X\}$-module. We can write $M=\bigoplus_{x \in X} M_{x}$ What does it mean for M to be a G-equivariant A-module? A G-action in M amounts to giving, for any $g \in G$, maps $g_{*}: M_{x} \rightarrow M_{g(x)}$ (in general, it could be any k-linear map, even one that doesn't respect the decomposition of M over the elements of X) with the property that, for any $f=\sum_{x \in X} \lambda_{x} \mathbf{1}_{x}=\left(\lambda_{x}\right)_{x \in X} \in A$ and $m=\left(m_{x}\right)_{x \in X} \in M$,

$$
g_{*}\left(\left(\lambda_{x}\right)\left(m_{x}\right)\right)=\left(\lambda_{g^{-1}(x)}\right) g_{*}\left(\left(m_{x}\right)\right) .
$$

Visualizing M as the vector space M_{x} attached to the corresponding point x,

- For any k-algebra A and any k-vector space V, we can make a free A-module $M=A \otimes_{k} V$. Then, for any action $G \curvearrowright A$ and any G-representation $G \rightarrow \mathrm{GL}(V)$, we can let G act on $M=A \otimes_{k} V$ by $g(a \otimes v)={ }^{g} a \otimes g(v)$. Let's do an example:

Let's consider the case where $A=k\{X\}$, as above. Thus, we have $M=k\{X\} \otimes V$. Then we get what in geometry would be called a vector bundle, and moreover one carrying a G-action:

Question. Can we define an algebra $A \# G$ such that the data of a G-equivariant A-module is equivalent to the data of an $A \# G$-module?
Definition. Given a k-algebra A, the algebra $A \# G$ is defined to be a free A-module with basis G, so a general element looks like $\sum_{g \in G} a_{g} g$. We define

$$
(a g)(b h)=\left(a \cdot{ }^{g} b\right) \cdot(g h)
$$

where $a, b \in A$, and $g, h \in G$. This construction answers the question in the affirmative.
Note the similarity to the definition of the semi-direct product.
Note that we have an inclusion $A \hookrightarrow A \# G$ defined by $a \mapsto a \cdot 1_{G}$.
When G is finite (so that we can speak of $k G$), we also have an inclusion $k G \hookrightarrow A \# G$ mapping $\lambda \cdot g \mapsto \lambda \cdot g$. In particular, if $A=k$, then $k \# G=k G$. Note that $A \# G \cong A \otimes_{k} k G$ as k-vector spaces, but not as k-algebras.

Now let A be a k-algebra with an action of a finite group $G \curvearrowright A$. Then $k G \hookrightarrow A \# G$, and therefore $A \# G$ is a $k G$-bimodule, i.e. $A \# G$ has a $G \times G$ action,

$$
\left(g_{1} \times g_{2}\right): a \cdot h \mapsto g_{1} \cdot(a \cdot h) \cdot g_{2}^{-1} .
$$

Let

$$
e=\frac{1}{\# G} \sum_{g \in G} g
$$

be the standard averaging idempotent. Recall that e is central and $e^{2}=e$ in $k G \subset A \# G$.
For any $a g \in A \# G$, we have that

$$
(a g) e=\frac{1}{\# G} \sum_{h \in G} a g h=\frac{1}{\# G} \sum_{h \in G} a h=a e .
$$

Thus, for any $\sum_{g \in G} a_{g} g \in A \# G$, we have

$$
\left(\sum_{g \in G} a_{g} g\right) e=\left(\sum_{g \in G} a_{g}\right) e,
$$

and hence $(A \# G) e \cong A e$. Then, $e(A e)=e A e$ consists of the elements of $A e$ fixed by g (recall that in general if G acts on V, then $e V=V^{G}$), so there are canonical isomorphisms

$$
e(A \# G) e \cong e A e \cong A^{G} .
$$

Lecture 12

Definition. Given a finite subgroup $G \subset \mathrm{GL}(V)$, we define the McKay quiver Q_{G} associated to it as follows. The vertex set of Q_{G} is in bijection with \widehat{G}, say with $i \leftrightarrow L_{i}$. Then we set the number of edges from i to j to be

$$
\#\{i \rightarrow j\}=\operatorname{dim}\left(\operatorname{Hom}_{G}\left(L_{i}, V \otimes L_{j}\right)\right)=\left[V \otimes L_{j}: L_{i}\right]
$$

Example. Let $G=\left\{\left.\left(\begin{array}{cc}\zeta & 0 \\ 0 & \zeta^{-1}\end{array}\right) \right\rvert\, \zeta^{n}=1\right\} \subset \mathrm{GL}\left(\mathbb{C}^{2}\right)$. Then $G \cong \mathbb{Z} / n \mathbb{Z}$. Letting z be a primitive nth root of unity, then the irreducible representations of G are the maps $L_{i}: G \rightarrow \mathbb{C}^{\times}$defined by $\left(\begin{array}{cc}z & 0 \\ 0 & z^{-1}\end{array}\right) \mapsto z^{i}$ for $i=0,1, \ldots, n-1$. Noting that $\mathbb{C}^{2}=L_{1} \oplus L_{-1}$, we get

Let V be a finite-dimensional vector space over \mathbb{C}. Let $G \subset \mathrm{GL}(V)$ be a finite subgroup. Recall that the McKay quiver Q_{G} has vertex set $I=\widehat{G}$, which we will label so that $\rho \in I$ corresponds to L_{ρ}. Note that the indicator function $\mathbf{1}_{\rho} \in \mathbb{C}\{\widehat{G}\}$ is just the trivial path for ρ in the path algebra $\mathbb{C} Q_{G}$. Let $0 \in I$ correspond to the trivial representation.

We will prove the following theorem:
Theorem 1. There is an isomorphism $\left(T_{\mathbb{C}} V\right)^{G} \cong \mathbf{1}_{0} \mathbb{C} Q_{G} \mathbf{1}_{0}$.
However, we will need to prove another theorem before we can prove Theorem 1.
For each $\rho \in \widehat{G}$, choose a one-dimensional subspace of L_{ρ}, and let p_{ρ} be the projection of $\mathbb{C} G$ onto that subspace. Considered as an element of $\operatorname{End}_{\mathbb{C}}\left(L_{\rho}\right)$, the matrix of p_{ρ} is just

$$
\left(\begin{array}{ccc}
1 & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot
\end{array}\right)
$$

Because $\mathbb{C} G$ contains $\operatorname{dim}\left(L_{\rho}\right)$ copies of L_{ρ}, we have that $L_{\rho}=\mathbb{C} G \cdot p_{\rho}$. Note that $p_{\rho}^{2}=p_{\rho} \in \mathbb{C} G$. These are orthogonal idempotents, so that $p=\sum_{\rho \in \widehat{G}} p_{\rho}$ satisfies $p^{2}=p$.
As a vector space, $T_{\mathbb{C}} V \# G=T_{\mathbb{C}} V \otimes_{\mathbb{C}} \mathbb{C} G$ with a "twisted" multiplication ${ }^{1}$ via the action of G on V. Therefore $\mathbb{C} G \hookrightarrow T_{\mathbb{C}} V \# G$, and we can consider the projections p_{ρ} as living inside this larger algebra.

Theorem 2. There exists an algebra isomorphism $\Phi: p\left(T_{\mathbb{C}} V \# G\right) p \rightarrow \mathbb{C} Q_{G}$ satisfying $\Phi\left(p_{\rho}\right)=\mathbf{1}_{\rho}$ (but this condition itself does not tell us the values of Φ on all of $p\left(T_{\mathbb{C}} V \# G\right) p$).
To see that Theorem 2 implies Theorem 1, note that $p_{0}=e=\frac{1}{\# G} \sum_{g \in G} g$ and that $p_{0} p=p_{0}=p p_{0}$. Now observe that

$$
\left(T_{\mathbb{C}} V\right)^{G} \cong e\left(T_{\mathbb{C}} V \# G\right) e
$$

[^0]\[

$$
\begin{aligned}
& =p_{0}\left(T_{\mathbb{C}} V \# G\right) p_{0} \\
& =p_{0}\left[p\left(T_{\mathbb{C}} V \# G\right) p\right] p_{0} \\
\text { (by Theorem } 2) & \cong \mathbf{1}_{0}\left[\mathbb{C} Q_{G}\right] \mathbf{1}_{0} .
\end{aligned}
$$
\]

Proof of Theorem 2. Let M be a G-representation. From the matrix description of p_{ρ} in $\operatorname{End}_{\mathbb{C}}\left(L_{\rho}\right)=$ $L_{\rho} \boxtimes L_{\rho}^{*} \subset \mathbb{C} G$, we can deduce that $L_{\rho}=\mathbb{C} G \cdot p_{\rho} \subset \mathbb{C} G$ as left $\mathbb{C} G$-modules and $L_{\rho}^{*} \simeq p_{\rho} \mathbb{C} G$ as right $\mathbb{C} G$-modules. Therefore

$$
\operatorname{Hom}_{G}\left(L_{\rho}, M\right) \cong \operatorname{Hom}_{\mathbb{C} G}\left(\mathbb{C} G p_{\rho}, M\right)=p_{\rho} M
$$

Now let M be a $\mathbb{C} G$-bimodule, i.e. $(G \times G)$-representation. Then

$$
\operatorname{Hom}_{G \times G}\left(L_{\rho} \boxtimes L_{\sigma}^{*}, M\right) \cong p_{\rho} M p_{\sigma} .
$$

Thus applying Wedderburn's theorem,

$$
\begin{aligned}
p \mathbb{C} G p & =\bigoplus_{\mu \in \widehat{G}} p\left(\operatorname{End}\left(L_{\mu}\right)\right) p \\
& =\bigoplus_{\mu, \rho, \sigma \in \widehat{G}} p_{\rho}\left(\operatorname{End}\left(L_{\mu}\right)\right) p_{\sigma} \\
& =\bigoplus_{\mu, \rho, \sigma \in \widehat{G}} p_{\rho}\left(L_{\mu} \boxtimes L_{\mu}^{*}\right) p_{\sigma} \\
& =\bigoplus_{\mu \in \widehat{G}} \mathbb{C} \otimes \mathbb{C}=\bigoplus_{\mu \in \widehat{G}} \mathbb{C}=\mathbb{C}\{\widehat{G}\} .
\end{aligned}
$$

The isomorphism $p \mathbb{C} G p \cong \mathbb{C}\{\widehat{G}\}$ is of algebras, where multiplication on $\mathbb{C}\{\widehat{G}\}$ is pointwise.
Now define $M=V \otimes_{\mathbb{C}} \mathbb{C} G$, and make it a $(G \times G)$-module (i.e. $\mathbb{C} G$-bimodule), where

$$
g(v \otimes u)=g v \otimes g u, \quad(v \otimes u) g=v \otimes u g .
$$

We decompose $\mathbb{C} G$ in the same way as before to get an isomorphism of $\mathbb{C} G$-bimodules

$$
M=V \otimes\left(\bigoplus_{\mu} \operatorname{End}\left(L_{\mu}\right)\right)=\bigoplus_{\mu}\left(V \otimes L_{\mu}\right) \boxtimes L_{\mu}^{*}
$$

We want to compute $p M p$. We have

$$
\begin{aligned}
p M p & =\bigoplus_{\rho, \sigma \in \widehat{G}} p_{\rho} M p_{\sigma}=\bigoplus_{\rho, \sigma} \operatorname{Hom}_{G \times G}\left(L_{\rho} \boxtimes L_{\sigma}^{*}, M\right) \\
& =\bigoplus_{\rho, \sigma, \mu} \operatorname{Hom}_{G \times G}\left(L_{\rho} \boxtimes L_{\sigma}^{*},\left(V \otimes L_{\mu}\right) \boxtimes L_{\mu}^{*}\right)
\end{aligned}
$$

A dimension argument shows that

$$
\operatorname{Hom}_{G \times G}\left(L_{\rho} \boxtimes L_{\sigma}^{*},\left(V \otimes L_{\mu}\right) \boxtimes L_{\mu}^{*}\right)=\operatorname{Hom}_{G}\left(L_{\rho}, V \otimes L_{\mu}\right) \otimes_{\mathbb{C}} \operatorname{Hom}_{G}\left(L_{\sigma}^{*}, L_{\mu}^{*}\right)
$$

Now an application of Schur's lemma implies that

$$
p M p=\bigoplus_{\rho, \sigma} \operatorname{Hom}_{G}\left(L_{\rho}, V \otimes L_{\sigma}\right)=\bigoplus_{\rho, \sigma} E_{\rho, \sigma} .
$$

Let $E=\bigoplus_{i, j \in I} E_{i j}$. It is a $\mathbb{C}\{\hat{G}\}$-bimodule and it is an easy check that our isomorphisms $\mathbb{C}\{\widehat{G}\} \simeq$ $p \mathbb{C} G p$ and $E \simeq p M p$ are compatible with the module structures. Hence, we obtain

$$
\mathbb{C} Q_{G}=T_{\mathbb{C}\{\widehat{G}\}} E=T_{p \mathbb{C} G p}(p M p),
$$

where the first isomorphism has been proved some time ago.
The following is a key lemma:
Lemma. There is an isomorphism $p\left(T_{\mathbb{C} G} M\right) p \cong T_{p \mathbb{C} G p}(p M p)$ as $p \mathbb{C} G p$-algebras (so $\mathbf{1}_{\rho}$ still corresponds to p_{ρ}).
Proof. Let $A=\mathbb{C} G$. Given an algebra A and and $p=p^{2} \in A$ such that $A p A=A$, then for an A-bimodule M we have $M \otimes_{A} M=M p \otimes_{p A p} p M$, by a result on your current homework.
Now, by induction,

$$
M \otimes_{A} M \otimes_{A} \cdots \otimes_{A} M=M p \otimes_{p A p} p M p \otimes_{p A p} \cdots \otimes_{p A p} p M
$$

and then we can mulitply on the left and right by p to get something more symmetric,

$$
p\left(M \otimes_{A} M \otimes_{A} \cdots \otimes_{A} M\right) p=p M p \otimes_{p A p} p M p \otimes_{p A p} \cdots \otimes_{p A p} p M p .
$$

But to apply the lemma, we need to check that $\mathbb{C} G p \mathbb{C} G=\mathbb{C} G$. Using that $\mathbb{C} G=\bigoplus_{\mu \in \widehat{G}} \operatorname{End}\left(L_{\mu}\right)$, we can see that

$$
\operatorname{End}\left(L_{\mu}\right) p_{\mu} \operatorname{End}\left(L_{\mu}\right)=\operatorname{End}\left(L_{\mu}\right)
$$

because this algebra has no two-sided ideals; alternatively you can directly check that you can express any matrix as a product with the matrix for p_{μ} in the middle.
For a left $\mathbb{C} G$-module N, we have

$$
M \otimes_{\mathbb{C} G} N=\left(V \otimes_{\mathbb{C}} \mathbb{C} G\right) \otimes_{\mathbb{C} G} N=V \otimes_{\mathbb{C}} N
$$

where $v \otimes x \otimes n \mapsto v \otimes x$.n and the left G-action on $V \otimes_{\mathbb{C}} N$ is $g(v \otimes n)=g v \otimes g n$. Induction shows that $T_{\mathbb{C} G} M \cong T_{\mathbb{C}} V \otimes \mathbb{C} G$, where

$$
\left(v_{1} \otimes x_{1}\right) \otimes \cdots \otimes\left(v_{i} \otimes x_{i}\right) \mapsto v_{1} \otimes x_{1} v_{2} \otimes x_{1} x_{2} v_{3} \otimes \cdots \otimes\left(x_{1} \cdots x_{i-1} v_{i}\right) \otimes\left(x_{1} \cdots x_{i}\right)
$$

This explicit formula shows that $T_{\mathbb{C} G} M=T_{\mathbb{C}} V \# G$ as $\mathbb{C} G$-algebras, and we are done. (End of proof of Theorem 2.)

Lecture 13

Induced Representations

Suppose we have two rings A and B and a homomorphism $f: A \rightarrow B$. Given a B-module N, we can treat it as an A-module simply by composing $A \xrightarrow{f} B \rightarrow \operatorname{End}(N)$. We will denote the resulting A-module by $f^{*} N$, to distinguish it from N itself. (This may be confusing if you are an algebraic geometer, because it would be the pullback to you.) This is a functor from B-Mod to A-Mod.

Note that f makes B an A-bimodule, by

$$
a_{1} \cdot b \cdot a_{2}=f\left(a_{1}\right) b f\left(a_{2}\right)
$$

Given an A-module M, we can construct two functors A-Mod $\rightarrow B$-Mod:

- Induction: $B \otimes_{A} M$ is a left B-module.
- Coinduction: $\operatorname{Hom}_{A}(B, M)$ is a left B-module.

There are important relations between these constructions:

$$
\begin{gathered}
\operatorname{Hom}_{B}\left(B \otimes_{A} M, N\right) \cong \operatorname{Hom}_{A}\left(M, f^{*} N\right) \\
\operatorname{Hom}_{B}\left(N, \operatorname{Hom}_{A}(B, M)\right) \cong \operatorname{Hom}_{A}\left(f^{*} N, M\right) .
\end{gathered}
$$

Since we won't be using these, I'll leave them as exercises. They follow easily using the relevant universal properties.

Let G be a group and $H \subset G$ a subgroup. Let $\rho: H \rightarrow \operatorname{GL}(M)$ be a representation over a field k. There are three ways of constructing an induced representation, and they all turn out to be equivalent when G is finite.

1. We construct a representation $\operatorname{Ind}_{H}^{G}(\rho)$ as follows. Define

$$
\operatorname{Ind}_{H}^{G}(\rho)=\left\{\begin{array}{l|l}
f: G \rightarrow M & \begin{array}{c}
f(x h)=\rho(h) f(x) \\
\text { for all } x \in G, h \in H
\end{array}
\end{array}\right\}
$$

and then let G act on it by

$$
(g f)(x):=f\left(g^{-1} x\right) .
$$

2. We called the following construction coinduction when we discussed it earlier. We consider $\operatorname{Hom}_{H}(k\{G\}, M)$ as a G-representation by letting G act on $k\{G\}$ by right translations.
3. When G is finite, we can also use the inclusion $k H \hookrightarrow k G$ to construct $k G \otimes_{k H} M$.

Remark. Any k-algebra B is a B-bimodule, and $B^{*}=\operatorname{Hom}_{k}(B, k)$. Left multiplication on the input gives a right action, and right multiplication on the input gives a left action. We say that B is Frobenius algebra if there is a B-bimodule isomorphism $B \cong B^{*}$.

Suppose that we have a Frobenius algebra. In an isomorphism $B \cong B^{*}$, look at where $1_{B} \in B$ goes; say it goes to $\phi \in B^{*}$. Then because 1_{B} has a special property, namely that $b \cdot 1=1 \cdot b$ for all $b \in B$, then ϕ must have the same property, so that $\phi\left(b_{1} b_{2}\right)=\phi\left(b_{2} b_{1}\right)$.

Thus, a finite-dimensional algebra B is Frobenius if and only if there exists a bilinear form $\operatorname{tr}: B \rightarrow k$ that is symmetric and non-degenerate.
For any finite G, the algebra $k G$ is Frobenius.
If $B \cong B^{*}$ and B is finite-dimensional, then $\operatorname{Hom}_{A}(B, M) \cong B^{*} \otimes_{A} M \cong B \otimes_{A} M$.
Remark. Let's consider the first version of induction, in the case when M is the trivial 1-dimensional representation. Then $\operatorname{Ind}_{H}^{G}($ triv $)=k\{G / H\}$ because it consists of functions from G to k such that $f(g h)=\rho(h) f(g)=f(g)$ for all $g \in G, h \in H$, so the function f is determined by what it does to the cosets G / H.
Observe that $\operatorname{Ind}_{H}^{G}(\rho)$ has a natrual structure of a $k\{G / H\}$-module. Since, for any $f \in \operatorname{Ind}_{H}^{G}(\rho)$ and $\psi \in k\{G / H\}$, we have $\psi f \in \operatorname{Ind}_{H}^{G}(\rho)$, we see that for any $\rho, \operatorname{Ind}_{H}^{G}(\rho)$ is a $(k\{G / H\} \# G)$-module. Thus, $\operatorname{Ind}_{H}^{G}(\rho)$ is a G-equivariant $k\{G / H\}$-module.

Remark. We have

and

We claim that

$$
\operatorname{Ind}_{H}^{G}(\rho)=\left\{s: G / H \rightarrow\left(G \times_{H} M\right) \text { which are sections of } p\right\} .
$$

Example. Let $G=\mathbb{R}$ and $H=\mathbb{Z}$, so that $G / H=\mathbb{R} / \mathbb{Z} \cong \mathbb{S}^{1}$. Let $\chi: \mathbb{Z} \rightarrow \operatorname{GL}(M)$ be a 1-dimensional representation of \mathbb{Z} where $1 \mapsto q \in \mathbb{C}^{\times}$, and hence $n \mapsto q^{n}$. Then

$$
\operatorname{Ind}_{\mathbb{Z}}^{\mathbb{R}}(\chi)=\{f: \mathbb{R} \rightarrow \mathbb{C} \mid f(x+1)=q \cdot f(x)\},
$$

the space of quasi-periodic functions on \mathbb{R}. The fact that we don't get exactly periodic functions is related to the non-triviality of the vector bundles indicated above. If q is an nth root of unity, then we can lift a periodic function on \mathbb{R} (i.e. a function on \mathbb{S}^{1}) to a quasi-periodic function on \mathbb{R} (i.e. a function on an n-sheeted cover of \mathbb{S}^{1}).

Lecture 14

Symmetric functions

A partition of an integer $d \geq 1$ is an integer sequence $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots \geq 0\right)$ such that $\sum \lambda_{i}=d$. We call the λ_{i} 's 'parts' of the partition λ and we define $|\lambda|:=\sum \lambda_{i}$. Let \mathcal{P}_{d} be the set of partitions of d.

The Symmetric group S_{n} acts on the ring $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ by permutations of the variables x_{1}, \ldots, x_{n}. We use mutli-index notation, so that for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, the symbol x^{α} denotes $x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$. Fix an integer $d \geq 0$, and let $R_{n}^{d}=\mathbb{Z}^{d}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ denote the \mathbb{Z}-module of homogeneous integer polynomials of degree d in n variables. In what follows, the number of variables will not be essential and all the results below hold for any n as long as $n \geq d$, since any partition $\lambda \in \mathcal{P}_{d}$ has at most d nonzero parts. Thus, we will suppress n from the notation and simply write R^{d} for R_{n}^{d}. A cleaner approach would be to work with projective limits and define $R^{d}:=\lim _{\grave{n}} R_{n}^{d}$ where the transition maps $R_{n+1} \rightarrow R_{n}$ evaluates x_{n+1} to zero.
We claim that R^{d} is a free \mathbb{Z}-module of rank $\# \mathcal{P}_{d}$. Specifically, the following symmetric functions, called the monomial symmetric functions, form a \mathbb{Z}-basis

$$
m_{\lambda}=\sum_{\substack{\text { all } \alpha \text { which are } \\ \text { a permutation } \\ \text { of } \lambda \in \mathcal{P}_{d}}} x^{\alpha}
$$

as λ ranges over the elements of \mathcal{P}_{d} with no more than n non-zero elements.
Note that $R=\bigoplus_{d \geq 0} R^{d}$ is a ring, and that it has the structure of a graded ring. We see that

$$
\sum_{d \geq 0} \operatorname{rank}\left(R^{d}\right) t^{d}=\sum_{d \geq 0}\left(\# \mathcal{P}_{d}\right) t^{d}=\prod_{k \geq 0} \frac{1}{1-t^{k}}
$$

by a theorem of Euler.
For each $r>0$, we let e_{r} denote the r th elementary symmetric function in infinitely many variables x_{1}, x_{2}, \ldots. Then their generating function is

$$
E(t)=\sum_{r} e_{r} t^{r}=\prod_{i \geq 1}\left(1+x_{i} t\right)
$$

(This product is only true up to degree n if we are working with n variables.)
A basic well-known result about symmetric functions says
Theorem. The ring of symmetric polynomials is the free commutative ring on the elementary symmetric polynomials, i.e. $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{Z}\left[\sigma_{1}, \ldots, \sigma_{n}\right]$.
One deduces that $R=\mathbb{Z}\left[e_{1}, e_{2}, \ldots\right]$, a free polynomial ring in infinitely many variables (by definition, any individual element of $\mathbb{Z}\left[e_{1}, e_{2}, \ldots\right]$ is a polynomial in finitely many e_{i} 's only).
Now define h_{r} by

$$
H(t)=\sum_{r \geq 0} h_{r} t^{r}=\prod_{i \geq 1} \frac{1}{1-x_{i} t}
$$

These h_{i} are called the complete symmetric functions. We can see that in general

$$
h_{r}=\sum_{\lambda \in \mathcal{P}_{r}} m_{\lambda},
$$

with $h_{0}=1$ and $h_{1}=e_{1}$. Thus, we have

$$
H(t) \cdot E(-t)=\prod_{i \geq 1} \frac{1}{1-x_{i} t} \cdot \prod_{i \geq 1}\left(1-x_{i} t\right)=1 .
$$

Therefore, looking at coefficients,

$$
\sum_{r=0}^{n}(-1)^{r} e_{r} h_{n-r}=0 .
$$

This gives a way of recursively expressing h_{n} in terms of the e_{i} 's and the h_{k} for $k<n$. The above result has as a corollary that $R=\mathbb{Z}\left[h_{1}, h_{2}, \ldots\right]$. In fact, the h_{i} 's freely generate R as a \mathbb{Z}-algebra, because if they satisfied any non-trivial relations between each other, we could use the result to turn that into a non-trivial relation between the e_{i} 's, which we know is impossible.

In summary: the m_{λ} freely generate R as a \mathbb{Z}-module, the e_{i} 's freely generate R as a ring, and the h_{i} 's freely generate R as a ring.
For each $r \geq 1$, we define the power sum $p_{r}=\sum x_{i}^{r}$. Their generating function is

$$
P(t)=\sum_{r \geq 1} p_{r} t^{r-1} .
$$

It is a standard computation that

$$
\begin{gathered}
P(t)=\sum_{r \geq 1} p_{r} t^{r-1}=\sum_{i \geq 1} \sum_{r \geq 1} x_{i}^{r} t^{r-1}=\sum_{i \geq 1} \frac{x_{i}}{1-x_{i} t}= \\
\sum_{i \geq 1} \frac{d}{d t}\left(\log \left(\frac{1}{1-x_{i} t}\right)\right)=\frac{d}{d t}\left(\log \left(\prod_{i \geq 1} \frac{1}{1-x_{i} t}\right)\right)=\frac{d(\log (H(t)))}{d t}=\frac{H^{\prime}(t)}{H(t)} .
\end{gathered}
$$

We can also then see that

$$
P(-t)=\frac{E^{\prime}(t)}{E(t)}
$$

In coefficents, these observations tell us that

$$
n \cdot h_{n}=\sum_{r=1}^{n} p_{r} h_{n-r}, \quad n \cdot e_{n}=\sum_{r=1}^{n}(-1)^{r-1} p_{r} e_{n-r} .
$$

These are called Newton's identities. As a corollary, if we allow symmetric functions with coefficients in \mathbb{Q} so that we can get rid of the n 's, we see that

$$
\mathbb{Q} \otimes_{\mathbb{Z}} R=\mathbb{Q}\left[p_{1}, p_{2}, \ldots\right] .
$$

Remark. Let $x=\operatorname{diag}\left(x_{1}, \ldots, x_{n}\right)$, and let $x \curvearrowright V=k^{n}$. Then $x \curvearrowright \underbrace{V \otimes \cdots \otimes V}_{r \text { times }}$, via $x \otimes \cdots \otimes x$.
Taking the trace of this action,

$$
\operatorname{tr}\left(\left.x\right|_{\Lambda^{r} V}\right)=e_{r}\left(x_{1}, \ldots, x_{n}\right)
$$

$$
\operatorname{tr}\left(\left.x\right|_{\mathrm{Sym}^{r} V}\right)=h_{r}\left(x_{1}, \ldots, x_{n}\right)
$$

You might hope that there is some construction on V such that x has trace $p_{r}\left(x_{1}, \ldots, x_{n}\right)$ on it. There is no such thing, but Adams pretended there was such a thing, and his construction is important in topology.

$$
\operatorname{tr}\left(\left.x\right|_{\operatorname{Adams}(V)}\right)=p_{r}\left(x_{1}, \ldots, x_{n}\right)
$$

Given a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$, we define

$$
e_{\lambda}=e_{\lambda_{1}} e_{\lambda_{2}} \cdots, \quad h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \cdots, \quad p_{\lambda}=p_{\lambda_{1}} p_{\lambda_{2}} \cdots
$$

The e_{λ} form a \mathbb{Z}-basis for R, the h_{λ} also form a \mathbb{Z}-basis for R, and the p_{λ} form a \mathbb{Q}-basis for $\mathbb{Q} \otimes_{\mathbb{Z}} R$.
Given a partition $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$, we define $d_{i}(\lambda)=\#\left\{s \mid \lambda_{s}=i\right\}$. and then define

$$
z_{\lambda}=\prod_{i \geq 1} i^{d_{i}(\lambda)} \cdot\left(d_{i}(\lambda)!\right)
$$

Now note that

$$
H(t)=\exp \left(\sum_{r \geq 1} p_{r} \frac{t^{r}}{r}\right)=\prod_{r \geq 1} e^{p_{r} \frac{t^{r}}{r}}=\prod_{r \geq 1}\left(\sum_{d_{r}=0}^{\infty}\left(p_{r} t^{r}\right)^{d_{r}} \frac{1}{r^{d_{r}} \cdot d_{r}!}\right)=\sum_{\lambda} \frac{1}{z_{\lambda}} p_{\lambda} t^{|\lambda|}
$$

Thus,

$$
\prod_{i \geq 1} \frac{1}{1-x_{i} t}=\sum_{\lambda} \frac{1}{z_{\lambda}} p_{\lambda} t^{|\lambda|}
$$

Schur functions

Recall the Vandermonde polynomial:

$$
D_{n}=\prod_{1 \leq i<j \leq n}\left(x_{i}-x_{j}\right) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right], \quad \operatorname{deg}\left(D_{n}\right)=\frac{n(n-1)}{2}
$$

Let $s_{i j}=(i, j) \in S_{n}$. Then $s_{i j}\left(D_{n}\right)=-D_{n}$. The $s_{i j}$ generate S_{n}, so for any $s \in S_{n}$, we have $s\left(D_{n}\right)= \pm D_{n}$. We conclude that there is a map sign : $S_{n} \rightarrow\{ \pm 1\}$, which is automatically a group homomorphism, such that $\operatorname{sign}\left(s_{i j}\right)=-1$. Let

$$
\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\operatorname{sign}}=\left\{f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right] \mid s(f)=\operatorname{sign}(s) \cdot f\right\}
$$

This is a $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$-module.
Proposition. The module $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\text {sign }}$ is a rank 1 free $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$-module, generated by the Vandermonde polynomial D_{n}.

Proof. Suppose that f is skew-symmetric. Then $\left.f\right|_{x_{i}=x_{j}}=0$ implies that $\left(x_{i}-x_{j}\right) \mid f$, and because $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$ is a UFD and all of the polynomials $x_{i}-x_{j}$ are coprime, we must have that

$$
D_{n}=\prod_{i<j}\left(x_{i}-x_{j}\right) \mid f
$$

Given $f \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]$, we define the alternation of f to be

$$
a(f)=\sum_{\sigma \in S_{n}} \operatorname{sign}(\sigma) \sigma(f) \in \mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\text {sign }}
$$

Thanks to the above proposition, we have $D_{n} \mid a(f)$. Thus, for any $\alpha=\left(\alpha_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}$, we have

- $a\left(x^{\alpha}\right)=0$ whenever there are any i, j such that $\alpha_{i}=\alpha_{j}$.
- For $\rho=(n-1, n-2, \ldots, 0)$, we have $a\left(x^{\rho}\right)=D_{n}$.
- $a\left(x^{s(\alpha)}\right)=s\left(a\left(x^{\alpha}\right)\right)$ for any permutation $s \in S_{n}$.

Hence, up to sign, we can rearrange a non-zero $a\left(x^{\alpha}\right)$ so that $\alpha_{1}>\cdots>\alpha_{n}$. For any α, we can write $\alpha=\lambda+\rho$ for $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right)$. Define the Schur polynomial for λ to be

$$
s_{\lambda}(x)=\frac{a\left(x^{\lambda+\rho}\right)}{a\left(x^{\rho}\right)}=\frac{\operatorname{det}\left(x_{i}^{\lambda_{j}+n-j}\right)_{i, j}}{\operatorname{det}\left(x_{i}^{n-j}\right)_{i, j}}
$$

(note that the numerator resembles the Vandermonde determinant, except that we added λ_{j} 's to the powers).

The set $\left\{a\left(x^{\alpha}\right) \mid \alpha=\left(\alpha_{1}>\cdots>\alpha_{n}\right)\right\}$ forms a \mathbb{Z}-basis of $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{\text {sign }}$, which (as we proved last class) is a rank 1 free $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$-module with $\mathbb{Z}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$-basis $\left\{D_{n}\right\}$. Because s_{λ} is just defined by dividing by $a\left(x^{\rho}\right)=D_{n}$, we have that $\left\{s_{\lambda}\right\}$ is a \mathbb{Z}-basis of R.

Thus, for $\lambda \in \mathcal{P}_{d}$ we have defined the various classes of symmetric polynomials:

e_{λ}	elementary
m_{λ}	monomial
h_{λ}	complete
p_{λ}	power sum
s_{λ}	Schur

Lecture 15

Cauchy identities

The Cauchy identities involve the expression

$$
X Y=\frac{1}{\prod_{i, j=1}^{n}\left(1-x_{i} y_{j}\right)}
$$

The first Cauchy identity states that

$$
X Y=\sum_{\lambda} \frac{p_{\lambda}(x) p_{\lambda}(y)}{z_{\lambda}}
$$

This follows from the identity

$$
\prod_{i} \frac{1}{1-x_{i} t}=\sum_{\lambda} \frac{1}{z_{\lambda}} p_{\lambda} t^{|\lambda|}
$$

where instead of x_{1}, \ldots, x_{n}, we introduce n^{2} variables $\left\{x_{i} y_{j}\right\}_{i, j \in[1, n]}$. Then, the left side becomes $X Y$ and the right side is what we want.
Proposition (2nd Cauchy identity).

$$
X Y=\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)=\sum_{\lambda} h_{\lambda}(y) m_{\lambda}(x)
$$

Proof. Recall that the generating function for the complete symmetric polynomials was

$$
H(t)=\prod_{i \geq 1} \frac{1}{1-t x_{i}}
$$

Thus,

$$
X Y=\prod_{j} H\left(y_{j}\right)=\prod_{j} \sum_{r \geq 0} h_{r}(x) y_{j}^{r}=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} h_{\alpha}(x) y^{\alpha}=\sum_{\lambda} h_{\lambda}(x) m_{\lambda}(y)
$$

where in the last equality we grouped the α 's according to which λ they are a permutation of.
Proposition (3rd Cauchy identity).

$$
X Y=\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y)
$$

Proof. The determinantal formula says that for any $\alpha \in \mathbb{Z}_{\geq 0}^{n}$,

$$
a\left(x^{\alpha}\right)=a\left(x^{\rho}\right) \operatorname{det}\left(h_{\alpha_{i}-n+j}\right)_{i j},
$$

where h 's with negative indices are declared to be 0 , and ρ is as we defined last time,

$$
\rho=(n-1, n-2, \ldots, 1,0) .
$$

Thus,

$$
a\left(x^{\alpha}\right)=a\left(x^{\rho}\right) \sum_{\substack{s \in S_{n} \\ \beta \in \mathbb{Z}_{\geq 0}^{n}}} \operatorname{sign}(s) h_{\beta-s(\rho)}(x) .
$$

Now we use the 2 nd identity to see that

$$
a\left(x^{\rho}\right) a\left(y^{\rho}\right) \cdot X Y=a\left(x^{\rho}\right) \sum_{\substack{s \in S_{n} \\ \lambda}} h_{\lambda}(x) \operatorname{sign}(s) y^{s(p)} m_{\lambda}(y)
$$

where we expanded $a\left(y^{\rho}\right)$ as an alternation explicitly. Then

$$
a\left(x^{\rho}\right) a\left(y^{\rho}\right) \cdot X Y=a\left(x^{\rho}\right) \sum_{\substack{\alpha \in \mathbb{Z}_{\geq}^{n} \\ s \in S_{n}}} h_{\alpha}(x) \operatorname{sign}(s) y^{\alpha+s(\rho)}
$$

Letting $\beta=\alpha+s(\rho)$,

$$
a\left(x^{\rho}\right) a\left(y^{\rho}\right) \cdot X Y=a\left(x^{\rho}\right) \sum_{\beta, s} \operatorname{sign}(s) h_{\beta-s(\rho)}(x) y^{\beta}
$$

which is precisely the expression in the determinental formula. Thus,

$$
a\left(x^{\rho}\right) a\left(y^{\rho}\right) \cdot X Y=\sum_{\beta \in \mathbb{Z}_{\geq 0}^{n}} a\left(x^{\beta}\right) y^{\beta}=\sum_{\substack{\mu \\ s \in S_{n}}} a\left(x^{s(\mu)}\right) y^{s(\mu)}=\sum_{\mu, s} a\left(x^{\mu}\right) \operatorname{sign}(s) y^{s(\mu)}
$$

where in the last step we used that $a\left(x^{s(\mu)}\right)=\operatorname{sign}(s) \cdot a\left(x^{\mu}\right)$. Finally, letting $\mu=\lambda+\rho$, this is equal to

$$
\sum_{\mu} a\left(x^{\mu}\right) a\left(y^{\mu}\right)=\sum_{\lambda} a\left(x^{\lambda+\rho}\right) a\left(y^{\lambda+\rho}\right)
$$

Dividing both sides by $a\left(x^{\rho}\right) a\left(y^{\rho}\right)$ and applying the definition of the Schur polynomials, we are done.

Proposition (4th Cauchy identity).

$$
a\left(x^{\rho}\right) \cdot a\left(y^{\rho}\right) \cdot X Y=\operatorname{det}\left\|\frac{1}{1-x_{i} y_{j}}\right\|_{i, j=1, \ldots, n} \quad(\text { Cauchy determinant })
$$

Proof. This is in home work.
One can use the Cauchy determinant to obtain an alternative proof of the 3rd Cauchy identity as follows.

We begin with the following simple observation. Let $f(u, v)$ be a function in two variables. Then, one has

$$
\operatorname{det}\left\|f\left(x_{i}, y_{j}\right)\right\|_{i, j=1, \ldots, n}=a_{y}\left(f\left(x_{1}, y_{1}\right) \cdot f\left(x_{2}, y_{2}\right) \cdots f\left(x_{n}, y_{n}\right)\right)
$$

where $a_{y}(-)$ denotes alternating of the y-variables.
Applying the above formula to the Cauchy determinant and using the geometric series expantion $\frac{1}{1-a}=1+a+a^{2}+\ldots$, we find

$$
\begin{aligned}
\operatorname{det}\left\|\frac{1}{1-x_{i} y_{j}}\right\|_{i, j=1, \ldots, n} & =a_{y}\left(\frac{1}{1-x_{1} y_{1}} \cdots \frac{1}{1-x_{n} y_{n}}\right) \\
& =a_{y}\left(\left(\sum_{\lambda_{1} \geq 0} x_{1}^{\lambda_{1}} y_{1}^{\lambda_{1}}\right) \cdots\left(\sum_{\lambda_{n} \geq 0} x_{n}^{\lambda_{n}} y_{n}^{\lambda_{n}}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =a_{y}\left(\sum_{\lambda_{1}, \ldots, \lambda_{n} \geq 0}\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}\right)\left(y_{1}^{\lambda_{1}} \cdots y_{n}^{\lambda_{n}}\right)\right) \\
& =\sum_{\lambda_{1}, \ldots, \lambda_{n} \geq 0}\left(x_{1}^{\lambda_{1}} \cdots x_{n}^{\lambda_{n}}\right) \cdot a_{y}\left(y_{1}^{\lambda_{1}} \cdots y_{n}^{\lambda_{n}}\right) \\
& =\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}} x^{\lambda} a\left(y^{\lambda}\right) \\
& =\sum_{\lambda=\left(\lambda_{1}>\ldots>\lambda_{n} \geq 0\right)} \sum_{s \in S_{n}} x^{s(\lambda)} a\left(y^{s(\lambda)}\right) \\
& =\sum_{\lambda=\left(\lambda_{1}>\ldots>\lambda_{n} \geq 0\right)} \sum_{s \in S_{n}} \operatorname{sign}(s) \cdot x^{s(\lambda)} a\left(y^{\lambda}\right) \\
& =\sum_{\lambda \text { partinions with }} a\left(x^{\lambda+\rho}\right) a\left(y^{\lambda+\rho}\right) .
\end{aligned}
$$

Therefore, the Cauchy determinant identity yields:

$$
X Y=\frac{1}{a\left(x^{\rho}\right) a\left(y^{\rho}\right)} \cdot \operatorname{det}\left\|\frac{1}{1-x_{i} y_{j}}\right\|=\sum_{\lambda} \frac{a\left(x^{\lambda+\rho}\right)}{a\left(x^{\rho}\right)} \frac{a\left(y^{\lambda+\rho}\right)}{a\left(y^{\rho}\right)}=\sum_{\lambda} s_{\lambda}(x) s_{\lambda}(y) .
$$

The above computation can also be used to obtain an alternative prove of the Jacobi-Trudi (determinantal) identity. Indeed, from an intermediate step in the above computation we get

$$
a\left(x^{\rho}\right) \cdot X Y=\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}} x^{\lambda} \frac{a\left(y^{\lambda}\right)}{a\left(y^{\rho}\right)} .
$$

On the other hand, from the proof of the 2nd Cauchy identity, we know that

$$
X Y=\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}} x^{\alpha} h_{\alpha}(y)
$$

This implies

$$
\begin{aligned}
a\left(x^{\rho}\right) \cdot X Y & =\left(\sum_{s \in S_{n}} \operatorname{sign}(s) \cdot x^{s(\rho)}\right) \cdot \sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}} x^{\alpha} h_{\alpha}(y) \\
& =\sum_{\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathbb{Z}_{\geq 0}^{n}} \sum_{s \in S_{n}} \operatorname{sign}(s) \cdot x^{s(\rho)+\alpha} h_{\alpha}(y) .
\end{aligned}
$$

The Hall inner product $\langle\cdot, \cdot\rangle_{\text {Hall }}: R \times R \rightarrow \mathbb{Z}$ is defined by $\left\langle h_{\mu}, m_{\lambda}\right\rangle_{\text {Hall }}=\delta_{\lambda \mu}$.
Lemma. Let $\left\{u_{\lambda}\right\}$ and $\left\{v_{\lambda}\right\}$ be a pair of bases of R. Then the following are equivalent:

1. $\left\langle u_{\lambda}, v_{\mu}\right\rangle_{\text {Hall }}=\delta_{\lambda \mu}$
2. $\sum_{\lambda} u_{\lambda}(x) v_{\lambda}(y)=X Y$.

Proof. Expanding in the basis,

$$
u_{\lambda}=\sum_{\nu} a_{\lambda \nu} h_{\nu}, \quad v_{\mu}=\sum_{\sigma} b_{\mu \sigma} m_{\sigma} .
$$

Then 1 is equivalent to

$$
\sum_{\nu} a_{\lambda \nu} b_{\mu \nu}=\delta_{\lambda \mu}
$$

and 2 is equivalent to

$$
\sum_{\lambda} u_{\lambda}(x) v_{\lambda}(y)=X Y \stackrel{\text { Cauchy } 2}{=} \sum_{\nu} h_{\nu}(x) m_{\nu}(y) .
$$

But both of these are equivalent to the claim that the matrix of a 's is inverse to the matrix of b 's, i.e.,

$$
\sum_{\lambda} a_{\lambda \nu} b_{\lambda \sigma}=\delta_{\nu \sigma} .
$$

Applying the 1st Cauchy identity,

$$
X Y=\sum_{\lambda} \frac{1}{z_{\lambda}} p_{\lambda}(x) p_{\lambda}(y)
$$

which we proved last time, we get as a corollary of this lemma that

$$
\left\langle p_{\lambda}, p_{\mu}\right\rangle_{\text {Hall }}=z_{\lambda} \cdot \delta_{\lambda \mu} .
$$

Another corollary is that $\left\langle s_{\lambda}, s_{\mu}\right\rangle_{\text {Hall }}=\delta_{\lambda \mu}$ (by the 3rd Cauchy identity, and the lemma). Lastly, we get as a corollary that $\langle\cdot, \cdot\rangle_{\text {Hall }}$ is a symmetric positive definite bilinear form (this is important because it is defined in an a priori non-symmetric way).
Now we define an involution $\tau: R \rightarrow R$.
Definition. Define $\tau: R \rightarrow R$ by $\tau\left(e_{r}\right)=h_{r}$. Because these generate R as an algebra, this then implies that $\tau\left(e_{\lambda}\right)=h_{\lambda}$ for all $\lambda \in \mathcal{P}_{n}$.
Proposition. The map τ is an involution, and τ respects $\langle\cdot, \cdot\rangle_{\text {Hall }}$.
Proof. The action of τ is as a matrix T, and Newton's identities tell us that

$$
\sum_{r=0}^{n}(-1)^{r} e_{r} h_{n-r}=0
$$

Because $T^{2}\left(e_{r}\right)=T\left(h_{r}\right)$ and because Newton's identities are symmetric under switching e 's and h 's, we must have that $T^{2}\left(e_{r}\right)=e_{r}$, and hence $T^{2}=\mathrm{id}$.
You have equations expressing p_{r} in terms of e_{λ} 's and h_{λ} 's from last time. These equations and induction imply that $\tau\left(p_{r}\right)=(-1)^{r-1} p_{r}$. Thus,

$$
\left\langle\tau\left(p_{\lambda}\right), \tau\left(p_{\mu}\right)\right\rangle_{\text {Hall }}= \begin{cases} \pm\left\langle p_{\lambda}, p_{\mu}\right\rangle_{\text {Hall }}=0 & \text { if } \lambda \neq \mu \\ \left\langle p_{\lambda}, p_{\lambda}\right\rangle_{\text {Hall }} & \text { if } \lambda=\mu\end{cases}
$$

Young diagrams. The Young diagram of a partition $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right)$ with $|\lambda|=n$ is

Thus, the total number of blocks in the diagram is n.
There is a natural involution on Young diagrams, $\lambda \mapsto \lambda^{t}$, defined by interchanging rows and columns.

There is another determinantal formula, which is symmetric with respect to this involution:

$$
s_{\lambda}=\operatorname{det}\left(e_{\lambda_{i}^{t}-i+j}\right) .
$$

As a corollary, we get that $\tau\left(s_{\lambda}\right)=s_{\lambda^{t}}$ (apply involution to first determinantal formula; e 's and h^{\prime} 's are interchanged, and we flip λ).

Representation rings.

Fix a group G and a commutative ring Z (which in most cases will in fact be \mathbb{Z}).
Definition. The Grothendieck group $K_{Z}(G)$ is defined as follows. Take M, the free Z-module with basis consisting of isomorphism classes $[V]$ of finite-dimensional, completely reducible G representations V, and quotient M by the relation $\left[V \oplus V^{\prime}\right]-[V]-\left[V^{\prime}\right]$.
Note that, for example, if $V=L_{1}^{m_{1}} \oplus \cdots \oplus L_{k}^{m_{k}}$ where $L_{i} \in \widehat{G}$, we have

$$
[V]=m_{1}\left[L_{1}\right]+\cdots+m_{k}\left[L_{k}\right] .
$$

Thus, we could also think of $K_{Z}(G)$ as being the free Z-module with basis [L_{i}], for each $L_{i} \in \widehat{G}$. Note that any element of $K_{Z}(G)$ can be put in the form $[M]-[N]$ by looking at the terms with positive or negative coefficients and grouping them.
For an example, note that if $G=\{e\}$, then $K_{Z}(\{e\})=\mathbb{Z}$, where $[V] \leftrightarrow \operatorname{dim}(V)$.
Let G be a finite group. We define an inner product $K_{Z}(G) \times K_{Z}(G) \rightarrow Z$ by

$$
\left\langle[L],\left[L^{\prime}\right]\right\rangle_{\mathrm{Rep}}= \begin{cases}1 & \text { if } L \cong L^{\prime}, \\ 0 & \text { if } L \not \approx L^{\prime}\end{cases}
$$

Alternatively, we can define

$$
\langle[M],[N]\rangle_{\mathrm{Rep}}=\operatorname{dim}\left(\operatorname{Hom}_{G}(M, N)\right) .
$$

Moreover, $K_{Z}(G)$ has a commutative ring structure, by $[M][N]=[M \otimes N]$. This is valid because $M \otimes\left(N_{1} \oplus N_{2}\right) \cong\left(M \otimes N_{1}\right) \oplus\left(M \otimes N_{2}\right)$. The unit for the multiplication is the trivial representation.
Define $\chi: K_{\mathbb{C}}(G) \rightarrow \mathbb{C}\{G\}^{G}$ by sending $[M]$ to χ_{M}, the character of the representation M. We know that $\chi_{M \otimes N}=\chi_{M} \cdot \chi_{N}$, so that χ is a ring homomorphism.

Proposition. χ is in fact an isometric ring isomorphism.
Proof. This follows directly from the orthogonality relations for irreducible characters, and the fact that the irreducible characters are a basis for the space of class functions.

Now let $G=S_{d}$, and let R^{d} be the homogeneous symmetric functions of degree d (in a large, unspecified number of variables). We define $\psi: S_{d} \rightarrow R^{d}$ by $\psi(s)=p_{\lambda(s)}$, where $\lambda(s)$ is the cycle type of s. Now we define a map on the space of class functions, $\Psi: \mathbb{C}\left\{S_{d}\right\}^{S_{d}} \rightarrow R^{d}$, by

$$
\Psi(f)=\frac{1}{d!} \sum_{s \in S_{d}} f(s) \psi(s)
$$

We often refer to this as $\langle f, \psi\rangle_{S_{d}}$, even though ψ is not the same kind of object as f.
Lemma. If $s \in C_{\lambda}$ (i.e., s has cycle type λ) then

$$
\#(\text { centralizer of } s)=z_{\lambda} .
$$

This then implies that $\# C_{\lambda}=\frac{\# S_{d}}{\#(\text { centralizer })}=\frac{d!}{z_{\lambda}}$.
Corollary. $\Psi\left(\mathbf{1}_{C_{\lambda}}\right)=z_{\lambda}^{-1} p_{\lambda}$
A key map we will talk about next class is the Frobenius characteristic map

$$
\operatorname{ch}: K_{\mathbb{C}}\left(S_{d}\right) \xrightarrow{\chi} \mathbb{C}\left\{S_{d}\right\}^{S_{d}} \xrightarrow{\Psi} R^{d}
$$

defined by sending $[M]$ to $\left\langle\chi_{M}, \psi\right\rangle_{S_{d}}$.
Using the notation from last time, $K_{Z}\left(S_{d}\right)$ is the Grothendieck group of finite-dimensional $S_{d^{-}}$ representations over a commutative ring Z.

We can make a commutative ring structure on

$$
K_{Z}=\bigoplus_{d \geq 0} K_{Z}\left(S_{d}\right)
$$

by defining the circle product $\circ: K_{Z}\left(S_{m}\right) \times K_{Z}\left(S_{n}\right) \rightarrow K_{Z}\left(S_{m+n}\right)$ as follows: we consider the natural inclusion $j: S_{m} \times S_{n} \rightarrow S_{m+n}$, and for any M and N (representations of S_{m} and S_{n}, respectively), we define

$$
M \circ N=\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}} M \boxtimes N .
$$

More generally, given $\lambda=\left(\lambda_{1} \geq \lambda_{2} \geq \cdots\right) \in \mathcal{P}_{n}$, we define

$$
S_{\lambda}=S_{\lambda_{1}} \times S_{\lambda_{2}} \times \cdots,
$$

and given representations M_{i} over each $S_{\lambda_{i}}$, we can form

$$
M_{1} \circ M_{2} \circ \cdots \circ M_{k}=\operatorname{Ind}_{S_{\lambda}}^{S_{n}}\left(M_{1} \boxtimes M_{2} \boxtimes \cdots \boxtimes M_{k}\right) .
$$

Lemma. The circle product is associative and commutative, and thus K_{Z} is a commutative associative ring.

Proof. Let M, N, and L be representations of S_{m}, S_{n}, and S_{ℓ} respectively. Then directly from the definition,

$$
(M \circ N) \circ L=\operatorname{Ind}_{S_{m} \times S_{n} \times S_{\ell}}^{S_{m+n+\ell}}(M \boxtimes N \boxtimes L)=M \circ(N \circ L) .
$$

Commutativity follows from the fact that inducing from two subgroups which are conjugate to one another gives the same result, so

$$
\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(M \boxtimes N)=\operatorname{Ind}_{S_{n} \times S_{m}}^{S_{m+n}}(N \boxtimes M) .
$$

Lecture 16

Frobenius characteristic

We define the Frobenius characteristic map $\operatorname{ch}_{n}: K_{\mathbb{C}}\left(S_{n}\right) \xrightarrow{\chi} \mathbb{C}\left\{S_{n}\right\}^{S_{n}} \xrightarrow{\Psi} \mathbb{C} \otimes_{\mathbb{Z}} R$ (where R is the ring of symmetric functions, complexified by tensoring with \mathbb{C}) by sending $[M]$ to

$$
\frac{1}{n!} \sum_{s \in S_{n}} \chi_{M}(s) \cdot p_{\lambda(s)}
$$

Then we let ch be the sum of all these maps,

$$
\operatorname{ch}=\left(\bigoplus_{n \geq 0} \operatorname{ch}_{n}\right): K_{\mathbb{C}} \rightarrow \mathbb{C} \otimes_{\mathbb{Z}} R
$$

Theorem.

1. The map ch restricts to a ring isomorphism $\left(K_{\mathbb{Z}}, \circ\right) \rightarrow R$.
2. The map ch is an isometry.
3. The map ch takes $\operatorname{sign} \otimes(-)$ to τ, i.e. $\operatorname{ch}(\operatorname{sign} \otimes M)=\tau(\operatorname{ch}(M))$.
4. The map ch acts as follows, for all $\lambda \in \mathcal{P}_{n}$:

- $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}($ triv $) \longmapsto h_{\lambda}$
- $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\operatorname{sign}) \longmapsto e_{\lambda}$

Remark. Let $j: H \hookrightarrow G$ be a group embedding. Let E and F be representations of H and G, respectively. Then there is a canonical isomorphism

$$
\operatorname{Hom}_{G}\left(\operatorname{Ind}_{H}^{G} E, F\right) \cong \operatorname{Hom}_{H}\left(E, j^{*} F\right)
$$

Thus, for any class function $f \in \mathbb{C}\{G\}^{G}$,

$$
\left\langle\chi_{\operatorname{Ind}_{H}^{G} E}, f\right\rangle_{G}=\left\langle\chi_{E},\left.f\right|_{H}\right\rangle_{H}
$$

This is the key ingredient in the proof of the first statement; the rest is just the definitions.
Proof of 1 (ring homomorphism). Let M and N be representations of S_{m} and S_{n}, respectively. Then

$$
\begin{aligned}
\operatorname{ch}(M \circ N) & =\Psi\left(\chi\left(\operatorname{Ind}_{S_{m} \times S_{n}}^{S_{m+n}}(M \boxtimes N)\right)\right) \\
& =\left\langle\chi_{\operatorname{Ind}_{S_{m \times S}}^{S_{m+n}}(M \boxtimes N)}, \psi\right\rangle_{S_{m+n}} \\
(\text { by remark }) & =\left\langle\chi_{M \boxtimes N},\left.\psi\right|_{S_{m} \times S_{n}}\right\rangle_{S_{m} \times S_{n}} \\
& =\frac{1}{m!} \frac{1}{n!} \sum_{\substack{s \in S_{m} \\
s^{\prime} \in S_{n}}} \chi_{M \boxtimes N}\left(s \times s^{\prime}\right) \cdot \psi\left(s \times s^{\prime}\right)
\end{aligned}
$$

$$
=\frac{1}{m!n!} \sum_{s, s^{\prime}} \chi_{M}(s) \chi_{N}\left(s^{\prime}\right) p_{\lambda\left(s \times s^{\prime}\right)} .
$$

Note that, for any $\mu \in \mathcal{P}_{m}$ and $\nu \in \mathcal{P}_{n}$, we have $p_{\mu \sqcup \nu}=p_{\mu} \cdot p_{\nu}$. The cycle type $\lambda\left(s \times s^{\prime}\right)$ is just $\lambda(s) \sqcup \lambda\left(s^{\prime}\right)$, and therefore $p_{\lambda\left(s \times s^{\prime}\right)}=p_{\lambda(s)} \cdot p_{\lambda\left(s^{\prime}\right)}$.

$$
\begin{aligned}
& =\frac{1}{m!n!} \sum_{s, s^{\prime}} \chi_{M}(s) \chi_{N}\left(s^{\prime}\right) p_{\lambda(s)} p_{\lambda\left(s^{\prime}\right)} \\
& =\left[\frac{1}{m!} \sum_{s \in S_{m}} \chi_{M}(s) p_{\lambda(s)}\right]\left[\frac{1}{n!} \sum_{s^{\prime} \in S_{n}} \chi_{N}\left(s^{\prime}\right) p_{\lambda\left(s^{\prime}\right)}\right]
\end{aligned}
$$

so we have shown ch is a ring homomorphism.

Proof of 2. We showed that χ was an isometry last time, so it will suffice to show that Ψ is an isometry because ch $=\chi \circ \Psi$.

For any $\lambda, \mu \in \mathcal{P}_{n}$, we take the Hall inner product

$$
\left\langle\Psi\left(\mathbf{1}_{C_{\lambda}}\right), \Psi\left(\mathbf{1}_{C_{\mu}}\right)\right\rangle_{\text {Hall }} .
$$

We know that $\Psi\left(\mathbf{1}_{C_{\lambda}}\right)=z_{\lambda}^{-1} \cdot p_{\lambda}$, so we compute

$$
\begin{aligned}
\left\langle\Psi\left(\mathbf{1}_{C_{\lambda}}\right), \Psi\left(\mathbf{1}_{C_{\mu}}\right)\right\rangle_{\text {Hall }} & =\left\langle z_{\lambda}^{-1} \cdot p_{\lambda}, z_{\mu}^{-1} \cdot p_{\mu}\right\rangle=z_{\lambda}^{-1} z_{\mu}^{-1}\left\langle p_{\lambda}, p_{\mu}\right\rangle \\
& =\left\{\begin{array}{ll}
z_{\lambda}^{-1} & \text { if } \lambda=\mu, \\
0 & \text { if } \lambda \neq \mu
\end{array}=\left\langle\mathbf{1}_{C_{\lambda}}, \mathbf{1}_{C_{\mu}}\right\rangle\right.
\end{aligned}
$$

Proof of 3. Write the character $\chi_{M}=\sum_{\lambda \in \mathcal{P}_{n}} \chi\left(C_{\lambda}\right) \cdot \mathbf{1}_{C_{\lambda}}$ so that

$$
\operatorname{ch}(M)=\sum_{\lambda \in \mathcal{P}_{n}} \chi\left(C_{\lambda}\right) \cdot z_{\lambda}^{-1} \cdot p_{\lambda}
$$

We have $\tau\left(p_{d}\right)=(-1)^{d-1} \cdot p_{d}$ and taking product, $\tau\left(p_{\lambda}\right)=(-1)^{\sum\left(\lambda_{i}-1\right)} \cdot p_{\lambda}$. Thus,

$$
\tau(\operatorname{ch}(M))=\sum_{\lambda \in \mathcal{P}_{n}} \chi\left(C_{\lambda}\right) \cdot z_{\lambda}^{-1}(-1)^{\sum \lambda_{i}-1} \cdot p_{\lambda}
$$

Note that

$$
\operatorname{sign}(\text { cycle of length } d)=(-1)^{d-1}
$$

so

$$
\left.\operatorname{sign}\right|_{C_{\lambda}}=(-1)^{\sum\left(\lambda_{i}-1\right)} .
$$

Thus

$$
\chi_{\operatorname{sign} \otimes M}=\sum_{\lambda \in \mathcal{P}_{n}} \chi_{\operatorname{sign} \otimes M}\left(C_{\lambda}\right) \mathbf{1}_{C_{\lambda}}=\sum_{\lambda} \chi_{M}\left(C_{\lambda}\right) \cdot(-1)^{\sum\left(\lambda_{i}-1\right)} \mathbf{1}_{C_{\lambda}},
$$

and therefore

$$
\operatorname{ch}(\operatorname{sign} \otimes M)=\sum_{\lambda} \chi\left(C_{\lambda}\right)(-1)^{\sum \lambda_{i}-1} \Psi\left(\mathbf{1}_{C_{\lambda}}\right)=\sum_{\lambda} \chi\left(C_{\lambda}\right)(-1)^{\sum\left(\lambda_{i}-1\right)} z_{\lambda}^{-1} p_{\lambda}
$$

which is exactly the expression we wanted.

Proof of 4. Let's compute the Frobenius character of the trivial representation.

$$
\operatorname{ch}\left(\operatorname{triv}_{n}\right)=\sum_{\lambda \in \mathcal{P}_{n}} z_{\lambda}^{-1} p_{\lambda}=h_{n} \in R .
$$

For the sign representation, we just get

$$
\operatorname{ch}(\operatorname{sign})=\tau\left(h_{n}\right)=e_{n} .
$$

Using the fact that ch is a homomorphism (which we just proved),

$$
\begin{aligned}
\operatorname{ch}\left(\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\operatorname{triv})\right) & =\operatorname{ch}\left(\operatorname{triv}_{\lambda_{1}} \circ \operatorname{triv}_{\lambda_{2}} \circ \cdots\right) \\
& =\operatorname{ch}\left(\operatorname{triv}_{\lambda_{1}}\right) \operatorname{ch}\left(\operatorname{triv}_{\lambda_{2}}\right) \cdots \\
& =h_{\lambda_{1}} h_{\lambda_{2}} \cdots \\
& =h_{\lambda} .
\end{aligned}
$$

We see that ch is surjective, since the functions h_{λ} belong to the image of ch and these functions generate R as a ring. The map ch is injective, as it is an isometry. We conclude that ch is an isomorphism.

Lecture 17

There are three main ways partitions come up in what we've been doing.

Irreducible representations of the group S_{n}

For any $\lambda \in \mathcal{P}_{n}$, we define an alternating sum in the Grothendieck group,

$$
V^{\lambda}=\sum_{s \in S_{n}} \operatorname{sign}(s)\left[\operatorname{Ind}_{S_{\lambda+\rho-s(\rho)}}^{S_{n}}(\text { triv })\right]
$$

Last time we constructed a ring homomorphism from the Grothendieck group ch : $K_{\mathbb{Z}}=\bigoplus_{n} K_{\mathbb{Z}}\left(S_{n}\right) \rightarrow$ R. We compute

$$
\begin{aligned}
& \operatorname{ch}\left(V^{\lambda}\right)=\sum_{s \in S_{n}} \operatorname{sign}(s) \operatorname{ch}\left(\operatorname{Ind}_{S_{\lambda+\rho-s(\rho)}}^{S_{n}}(\text { triv })\right) \\
&=\sum_{s \in S_{n}} \operatorname{sign}(s) \cdot h_{\lambda+\rho-s(\rho)} \stackrel{\text { determinantal }}{\text { identity }}= \\
& s_{\lambda} .
\end{aligned}
$$

Therefore, we find

$$
\left\langle V^{\lambda}, V^{\mu}\right\rangle_{\operatorname{Rep}}=\left\langle\operatorname{ch}\left(V^{\lambda}\right), \operatorname{ch}\left(V^{\mu}\right)\right\rangle_{\text {Hall }}=\left\langle s_{\lambda}, s_{\mu}\right\rangle_{\text {Hall }}=\delta_{\lambda \mu},
$$

and in particular,

$$
\left\langle V^{\lambda}, V^{\lambda}\right\rangle_{\text {Rep }}=1
$$

which implies
Corollary. Either V^{λ} or $-V^{\lambda}$ (this sign is in the Grothendieck group) is an actual irreducible representation of the group S_{n} where $n=|\lambda|$.

We know that the Schur functions form a \mathbb{Z}-basis of R. Therefore, regardless of signs, the classes V^{λ} form \mathbb{Z}-basis of $K_{\mathbb{Z}}$.

Corollary. $\chi_{V^{\lambda}}\left(c_{\mu}\right)=\left\langle s_{\lambda}, p_{\mu}\right\rangle_{\text {Hall }}$
Proof. We have

$$
s_{\lambda}=\operatorname{ch}\left(V^{\lambda}\right)=\sum_{\mu \in \mathcal{P}_{n}} z_{\mu}^{-1} \chi_{V^{\lambda}}\left(c_{\mu}\right) p_{\mu}
$$

so

$$
\left\langle s_{\lambda}, p_{\nu}\right\rangle_{\mathrm{Hall}}=\sum_{\mu} z_{\mu}^{-1} \chi_{V^{\lambda}}\left(c_{\mu}\right)\left\langle p_{\mu}, p_{\nu}\right\rangle_{\mathrm{Hall}}=\chi_{V^{\lambda}}\left(c_{\mu}\right)
$$

We define a partial order on partitions. Given $\lambda=\left(\lambda_{1}, \ldots\right), \mu=\left(\mu_{1}, \ldots\right) \in \mathbb{Z}^{n}$, we say $\lambda \leq \mu$ if $\lambda_{1} \leq \mu_{1}$, and $\lambda_{1}+\lambda_{2} \leq \mu_{1}+\mu_{2}, \ldots$, and $\lambda_{1}+\cdots+\lambda_{n} \leq \mu_{1}+\cdots+\mu_{n}$.

Define O_{λ} to be the nilpotent conjugacy class with Jordan blocks $\lambda_{1}, \ldots, \lambda_{n}$.

Proposition.

1. $O_{\lambda} \subseteq \overline{O_{\mu}} \Longleftrightarrow \lambda \leq \mu$.
2. $\lambda \leq \mu \Longleftrightarrow \mu^{t} \leq \lambda^{t}$.
3. $s(\rho)<\rho$ for all non-identity $s \in S_{n}$.

Proposition.

1. $\left\langle\operatorname{Ind}_{S_{\mu}}^{S_{n}} \text { triv, } V^{\lambda}\right\rangle_{\text {Rep }}= \begin{cases}0 & \text { unless } \mu \leq \lambda, \\ 1 & \text { if } \mu=\lambda .\end{cases}$
2. $\left\langle\operatorname{Ind}_{S_{\mu}}^{S_{n}} \operatorname{sign}: V^{\lambda}\right\rangle_{\operatorname{Rep}}= \begin{cases}0 & \text { unless } \mu \leq \lambda^{t}, \\ 1 & \text { if } \mu=\lambda^{t} .\end{cases}$
3. $V^{\lambda}=V_{\lambda^{t}}$

Proof.

$$
\begin{aligned}
V^{\lambda} & =\sum_{s \in S_{n}} \operatorname{sign}(s) \cdot\left[\operatorname{Ind}_{S_{\lambda+\rho-s(p)}}^{S_{n}}(\text { triv })\right] \\
& =\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\text { triv })+\sum_{\mu>\lambda} a_{\lambda \mu}\left[\operatorname{Ind}_{S_{\mu}}^{S_{n}}(\text { triv })\right]
\end{aligned}
$$

The transition matrix from $\operatorname{Ind}_{S_{\mu}}^{S_{n}}$ to V^{λ} is of the form

$$
\left(\begin{array}{cccc}
1 & * & \cdots & * \\
& 1 & \ddots & \vdots \\
& & \ddots & * \\
& & & 1
\end{array}\right)
$$

with respect to the partial ordering. The inverse of a strict upper triangular matrix is also strictly upper triangular, so

$$
\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\text { triv })=V^{\lambda}+\sum_{\mu>\lambda} b_{\lambda \mu} \cdot V^{\mu}
$$

which proves part 1. Part 2 follows from part 1 by applying ch and τ.
Thus V^{λ} is the unique irrep of S_{n} which occurs both in $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\operatorname{triv})$ and $\operatorname{Ind}_{S_{\lambda} t}^{S_{n}}(\operatorname{sign})$.

The Specht module

Let $\{1, \ldots, n\}=I_{1} \sqcup \cdots \sqcup I_{k}$ be a partition with $\# I_{j}=\lambda_{j}$, which collectively we will call I. This naturally corresponds to λ, a partition in the sense we've been using. Then we define

$$
S_{I}=S_{I_{1}} \times \cdots \times S_{I_{k}} \subset S_{n}
$$

We define D_{I} to be a product of certain Vandermonde determinants of various sizes,

$$
D_{I}=D_{I_{1}} \times \cdots \times D_{I_{k}}
$$

where

$$
D_{I_{m}}:=\prod_{i, j \in I_{m}}\left(x_{i}-x_{j}\right)
$$

Thus, $D_{I} \in k^{d_{\lambda}}\left[x_{1}, \ldots, x_{n}\right]$ is a homogeneous polynomial of degree

$$
d_{\lambda}:=\operatorname{deg}\left(D_{I}\right)=\sum \frac{\lambda_{i}\left(\lambda_{i}-1\right)}{2}
$$

We then define

$$
V_{\lambda}=k S_{n} \cdot D_{I} \subset k^{d_{\lambda}}\left[x_{1}, \ldots, x_{n}\right]
$$

The representation $V_{\lambda^{t}}$ is called the Specht S_{n}-module. The subgroup

$$
S_{I}=S_{I_{1}} \times \cdots \times S_{I_{k}} \subset S_{n}
$$

is called a Young subgroup.
Theorem. Let $\operatorname{char}(k)=0$, and let I be a partition as above.

1. V_{λ} is irreducible.
2. $V_{\lambda} \not \neq V_{\mu}$ for $\lambda \neq \mu$.
3. Any irrep of S_{n} is isomorphic to some V_{λ}.

Proof. We'll assume that $k \subseteq \mathbb{C}$, though it holds in more generality. It will suffice to show that V_{λ} is simple for $k=\mathbb{C}$, since extending the field can only cause it to split more.

Suppose $V_{\lambda}=V \oplus V^{\prime}$ is a non-trivial S_{n}-stable decomposition. Then $\operatorname{pr}_{V} \in \operatorname{End}_{\mathbb{C}}\left(V_{\lambda}\right)$. To reach a contradiction, we will show that every intertwiner $f: V_{\lambda} \rightarrow V_{\lambda}$ is a scalar operator. Let f be an intertwiner; then

$$
f\left(D_{I}\right)=D^{\prime} \in k^{d_{\lambda}}\left[x_{1}, \ldots, x_{n}\right]
$$

for some D^{\prime}. We have $s\left(D_{I}\right)=\operatorname{sign}(s) \cdot D_{I}$ for all $s \in S_{I}$, so $s\left(D^{\prime}\right)=\operatorname{sign}(s) \cdot D^{\prime}$ for all $s \in S_{I}$ because f is an intertwiner. Thus, for all $i, j \in I_{r}$ for any r, we have that $s_{i j}\left(D^{\prime}\right)=-D^{\prime}$, so D^{\prime} vanishes on the set

$$
\left\{\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{C}^{n} \mid a_{i}=a_{j}\right\}
$$

hence $\left(x_{i}-x_{j}\right) \mid D^{\prime}$, and because we are working in a UFD,

$$
\left(\prod_{p=1}^{k} \prod_{i, j \in I_{p}}\left(x_{i}-x_{j}\right)\right) \mid D^{\prime}
$$

so that $D_{I} \mid D^{\prime}$. But D_{I} and D^{\prime} are homogeneous polynomials of degree d_{λ}, so $D^{\prime}=c \cdot D_{I}$ for some $c \in \mathbb{C}$. Thus $f\left(D_{I}\right)=c \cdot D_{I}$, and so for any $a \in \mathbb{C} S_{n}$, we have

$$
f\left(a D_{I}\right)=a \cdot f\left(D_{I}\right)=c \cdot a \cdot D_{I},
$$

and hence $f=c \cdot$ id.
The same argument shows that there are no interwiners between V_{λ} and V_{μ} if $|\lambda| \neq|\mu|$.
The conjugacy classes of S_{n} are indexed by \mathcal{P}_{n}. Thus, the number of conjugacy classes is $\# \mathcal{P}_{n}=\# \widehat{S_{n}}$. This proves (3).
To complete the proof of the theorem we now show that V_{λ} occurs in $\operatorname{Ind}_{S_{\lambda^{t}}}^{S_{n}}(\operatorname{triv})$ and $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\operatorname{sign})$. Recall that a $\lambda \in \mathcal{P}_{n}$ corresponds to

$$
D_{\lambda}=D_{\lambda_{1}} \cdot D_{\lambda_{2}} \cdots
$$

and $s\left(D_{\lambda}\right)=\operatorname{sign}(s) \cdot D_{\lambda}$ for all $s \in S_{\lambda}$, so there exists a surjective map $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}(\operatorname{sign}) \rightarrow V_{\lambda}$, sending 1 to D_{λ}. Because V_{λ} is simple, this implies that V_{λ} occurs in $\operatorname{Ind}_{S_{\lambda}}^{S_{n}}($ sign $)$.
In our notation, $D_{n}=a\left(x^{\rho}\right)$, so that

$$
D_{\lambda}=a\left(x^{\rho_{\lambda_{1}}}\right) a\left(x^{\rho_{\lambda_{2}}}\right) \cdots
$$

Expanding the product and counting along columsn instead of rows (see diagram), we have

$$
D_{\lambda}=\left(x_{1} x_{\lambda_{1}+1} x_{\lambda_{1}+\lambda_{2}+1} \cdots\right)^{0}\left(x_{2} x_{\lambda_{1}+2} x_{\lambda_{1}+\lambda_{2}+2} \cdots\right)^{1} \cdots
$$

Therefore $S_{\lambda^{t}}$ acts trivially on D_{λ} with coordinates transposed, i.e., we get a nonzero map j : Ind $d_{S_{\lambda t}}^{S_{n}}$ (triv) $\rightarrow V_{\lambda}$. This shows Part 3 .

Corollary.

1. $\left[k^{d}\left[x_{1}, \ldots, x_{n}\right]: V_{\lambda}\right]= \begin{cases}1 & \text { if } d=d_{\lambda}, \\ 0 & \text { if } d<d_{\lambda} .\end{cases}$
2. The representation V_{λ} is defined over \mathbb{Q}.
3. $V_{\lambda} \cong V_{\lambda}^{*}$.

Proof. There exists an S_{n}-invariant, positive definite \mathbb{Q}-bilinear form β on V_{λ} (considered as a vector space over \mathbb{Q}), and the map from $V \rightarrow V^{*}$ sending v to $\beta(-, v)$ is a \mathbb{Q}-linear function (we can't do this over \mathbb{C} because it'd be skew-linear).

Schur-Weyl duality

Let V be a finite-dimensional \mathbb{C}-vector space. For any $n \geq 1$, we have a natural action $S_{n} \curvearrowright V^{\otimes n}$. We let $j: \operatorname{End}_{\mathbb{C}}(V) \rightarrow \operatorname{End}_{\mathbb{C}}\left(V^{\otimes n}\right)$ be the Lie algebra action defined by

$$
a\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=\left(a v_{1}\right) \otimes v_{2} \otimes \cdots \otimes v_{n}+v_{1} \otimes\left(a v_{2}\right) \otimes \cdots \otimes v_{n}+\cdots
$$

Lemma. $\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)$ is the algebra generated by $\operatorname{im}(j)$.
Proof. The inclusion \supseteq is clear.
First of all, we have a chain of isomorphisms:

$$
(\operatorname{End}(V))^{\otimes n} \cong\left(V \otimes V^{*}\right)^{\otimes n} \cong V^{\otimes n} \otimes\left(V^{*}\right)^{\otimes n} \cong V^{\otimes n} \otimes\left(V^{\otimes n}\right)^{*} \cong \operatorname{End}\left(V^{\otimes n}\right)
$$

It's easy to see that the composite isomorphism $F:(\operatorname{End}(V))^{\otimes n} \cong \operatorname{End}\left(V^{\otimes n}\right)$ sends $a_{1} \otimes \ldots \otimes a_{n} \in$ $(\operatorname{End}(V))^{\otimes n}$ to the linear map $F\left(a_{1} \otimes \ldots \otimes a_{n}\right): V^{\otimes n} \rightarrow V^{\otimes n}$ given by

$$
v_{1} \otimes \ldots \otimes v_{n} \mapsto a_{1}\left(v_{1}\right) \otimes \ldots \otimes a_{n}\left(v_{n}\right)
$$

It follows in particular that F is an algebra isomorphism.
Second, we see that

$$
\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)=\left(\operatorname{End}\left(V^{\otimes n}\right)\right)^{S_{n}}=\left((\operatorname{End}(V))^{\otimes n}\right)^{S_{n}}
$$

Third, we know from the homework that $\left(A^{\otimes n}\right)^{S_{n}}$ is generated by elements of the form

$$
(a \otimes 1 \otimes \cdots \otimes 1)+(1 \otimes a \otimes \cdots \otimes 1)+\cdots
$$

for any algebra A, and thus this is true in particular for $A=\operatorname{End}(V)$.
Next, we consider the following two natural actions, $S_{n} \curvearrowright V^{\otimes n} \curvearrowleft \operatorname{GL}(V)$, where S_{n} permutes tensorands, and $g \in \mathrm{GL}(V)$ acts by

$$
g\left(v_{1} \otimes \cdots \otimes v_{n}\right)=g v_{1} \otimes \cdots \otimes g v_{n}
$$

This gives us maps

$$
S_{n} \xrightarrow{j_{1}} \operatorname{End}_{\mathbb{C}}\left(V^{\otimes n}\right) \stackrel{j_{2}}{\longleftarrow} \mathrm{GL}(V)
$$

Let $A\left(S_{n}\right)$ be the \mathbb{C}-linear span of $\operatorname{im}\left(j_{1}\right)$, and similarly let $A(\mathrm{GL})$ be the \mathbb{C}-linear span of $\mathrm{im}\left(j_{2}\right)$.
Theorem (Schur-Weyl duality).

1. Inside $\operatorname{End}_{\mathbb{C}}\left(V^{\otimes n}\right)$, we have $A\left(S_{n}\right)^{!}=A(\mathrm{GL})$ and $A(\mathrm{GL})^{!}=A\left(S_{n}\right)$.
2. If $\operatorname{dim}(V) \geq n$, then each irrep of S_{n} occurs in $V^{\otimes n}$, and in particular,

$$
V^{\otimes n}=\bigoplus_{\lambda \in \mathcal{P}_{n}} V_{\lambda} \otimes L_{\lambda}
$$

where the V_{λ} are the Specht modules and the L_{λ} are mutually non-isomorphic GL(V)-irreps.

Proof of 1. Clearly, $A(\mathrm{GL}) \subseteq A\left(S_{n}\right)^{!}$; the non-trivial part is the other inclusion. The argument we will use is an illustration of Lie theory.

Consider $a \in \operatorname{End}_{\mathbb{C}}(V)$. Then $e^{t a} \in \mathrm{GL}(V)$ for any $t \in \mathbb{C}$, so that $j_{2}\left(e^{t a}\right) \in A(\mathrm{GL})$ for all $t \in \mathbb{C}$. Applying it to a simple tensor,

$$
\begin{aligned}
j_{2}\left(e^{t a}\right)\left(v_{1} \otimes \cdots \otimes v_{n}\right) & =e^{t a}\left(v_{1}\right) \otimes \cdots \otimes e^{t a}\left(v_{n}\right) \\
& =\left(v_{1}+t a\left(v_{1}\right)+o(t)\right) \otimes \cdots \otimes\left(v_{n}+t a\left(v_{n}\right)+o(t)\right) \\
& =\left(v_{1} \otimes \cdots \otimes v_{n}\right)+t\left(\sum_{i=1}^{n}\left(v_{1} \otimes \cdots \otimes a v_{i} \otimes \cdots \otimes v_{n}\right)\right)+o(t)
\end{aligned}
$$

Taking the derivative with respect to t and evaluating at 0 , we see that

$$
(a \otimes 1 \otimes \cdots \otimes 1)+(1 \otimes a \otimes \cdots \otimes 1)+\cdots \in A(\mathrm{GL})
$$

for all $a \in \operatorname{End}(V)$. (Since $A(\mathrm{GL})$ is a finite dimensional vector space, it is topologically closed.) By the lemma from last time, the elements of the above form generate the algebra $\operatorname{End}_{S_{n}}\left(V^{\otimes n}\right)=A\left(S_{n}\right)$!.
Since $\mathbb{C} S_{n}$ is a semisimple algebra, we have that $A\left(S_{n}\right)$ is a semisimple algebra, and you will show on the homework that this implies $A\left(S_{n}\right)^{!}$is semisimple, hence $A(\mathrm{GL})$ is semisimple, hence $A\left(S_{n}\right)=A\left(S_{n}\right)!=A(\mathrm{GL})^{!}$.
Proof of 2. We want to show that there is a copy of the regular representation of S_{n} on $V^{\otimes n}$ if $\operatorname{dim}(V) \geq n$. Let $\left\{v_{1}, \ldots, v_{d} \mid d \geq n\right\}$ be a \mathbb{C}-basis of V, and let $s \in S_{n}$. Then the elements

$$
v_{s(1)} \otimes \cdots \otimes v_{s(n)} \in V^{\otimes n}
$$

span a copy of $\mathbb{C} S_{n}$.

Lecture 18

Jacobson density

Let X and Y be sets, and consider $\operatorname{Map}(X, Y)$. We equip this with the pointwise topology, which is defined as follows. For $f \in \operatorname{Map}(X, Y)$, a basis of open neighborhoods of f is given by, for all $n \geq 1$ and $x_{1}, \ldots, x_{n} \in X$,

$$
\mathcal{U}_{x_{1}, \ldots, x_{n}}=\left\{f^{\prime}: X \rightarrow Y \mid f^{\prime}\left(x_{i}\right)=f\left(x_{i}\right) \text { for all } i=1, \ldots, n\right\} .
$$

Thus, $f_{i} \rightarrow f$ if and only if, for any $x \in X$, we have $f_{i}(x)=f(x)$ for all $i \gg 0$.
Let A be a ring, and let M be an A-module; equivalently, we have an action map $A \rightarrow \operatorname{End}_{\mathbb{Z}}(M)$. We have

$$
A \rightarrow A_{M}:=\operatorname{im}(\text { action }) \hookrightarrow A_{M}^{!!} .
$$

Theorem (Jacobson density). If M is a semisimple A-module, then A_{M} is pointwise dense in $A_{M}^{!}$; in other words, for any $A_{M}^{!}$-linear map $f: M \rightarrow M$ and any collection $m_{1}, \ldots, m_{n} \in M$, there is an $a \in A$ such that $f\left(m_{1}\right)=a m_{1}$ for all $i=1, \ldots, n$.
Example. Let $A=k$, so that M is a vector space over k, say with $\operatorname{dim}(M)=n$. Then $k!=A_{M}^{!}=$ $\mathrm{M}_{n}(k)$, and so $k!!=A_{M}^{!!}=\mathrm{M}_{n}(k)!=k$.
Lemma. Let A be a ring, and let L be an A-module. Let $M=L^{n}$. Then $A_{L^{n}}^{!!} \cong A_{L}^{!!}$.
Example. Let $L=A$. Then $A_{L}^{!}=A^{\text {op }}$, so that $A_{L}^{!!}=\left(A^{\mathrm{op}}\right)^{\mathrm{op}}=A$. Thus, the lemma implies that $\left(A_{A^{n}}\right)!!=A$, so we see that the fact that k was a field in our earlier example was unnecessary.

Proof of Lemma. First, recall that we proved a long time ago,

$$
A_{L^{n}}^{!}=\operatorname{End}_{A}\left(L^{n}\right)=\mathrm{M}_{n}\left(\operatorname{End}_{A}(L)\right)=\mathrm{M}_{n}\left(A_{L}^{!}\right)
$$

Second, note that, if L is a B-module, then L^{n} has a $\mathrm{M}_{n}(B)$-module structure, and

$$
\operatorname{End}_{\mathrm{M}_{n}(B)}\left(L^{n}\right)=\{\operatorname{diag}(a, \ldots, a) \mid a \in \underbrace{\operatorname{End}_{B}(L)}_{:=B_{L}^{!}}\} .
$$

Third, we therefore have that $\left(A_{L^{n}}\right)^{!}=\left(\mathrm{M}_{n}\left(A_{L}^{!}\right)\right)$. We have $B=A_{L}^{!}$, and by our second observation,

$$
\left(A_{L^{n}}\right)^{!!}=\left(\mathrm{M}_{n}\left(A_{L}^{!}\right)\right)^{!}=\left\{\operatorname{diag}(a, \ldots, a) \mid a \in\left(A_{L}^{!}\right)^{!}=A_{L}^{!!}\right\} .
$$

Example. Let $A=\mathrm{M}_{d}(k)$, and let $L=k^{d}$. Let $n \geq 1$, so that $L^{n}=\left(k^{d}\right)^{n}$ can be identified with the $d \times n$ matrices over k. Then $A=\mathrm{M}_{d}(k)$ acts on the left on L^{n}, and $A^{!}=\mathrm{M}_{n}(k)$ acts on the right, and

$$
\left(k^{d}\right)^{n}=\left(k^{n}\right)^{d} \Longrightarrow A^{!!}=\mathrm{M}_{d}(k) .
$$

Let L be a finite-dimensional vector space over k. Let $A=\operatorname{End}_{k}(L)$, and let M be a finitely generated A-module (we know $M \cong L^{n}$ for some n, but we ignore this for now). We have an evaluation map

$$
\text { ev : } L^{\diamond} \otimes_{k} L=\operatorname{Hom}_{A}(L, M) \otimes L \cong \operatorname{Hom}_{A}(L, M) \otimes_{\operatorname{End}(L)} L \xrightarrow{\sim} M,
$$

and

$$
\operatorname{End}_{k}\left(L \otimes L^{\diamond}\right)=\operatorname{End}(L) \otimes \operatorname{End}\left(L^{\diamond}\right)
$$

Then $A=\operatorname{End}(L) \otimes 1$ and $A^{!}=1 \otimes \operatorname{End}\left(L^{\diamond}\right)$.

Lecture 19

Now let's prove the theorem we stated last time,
Theorem (Jacobson density). If M is a semisimple A-module, then A_{M} is pointwise dense in $A_{M}^{!}$; in other words, for any $A_{M}^{!}$-linear map $f: M \rightarrow M$ and any collection $m_{1}, \ldots, m_{n} \in M$, there is an $a \in A$ such that $f\left(m_{1}\right)=$ am m_{1} for all $i=1, \ldots, n$.
Proof. Let M be a semisimple A-module, $f: M \rightarrow M$ an $A_{M}^{!}$-module map, and $m_{1}, \ldots, m_{n} \in M$ a collection of elements. We want to find $a \in A$ such that $f\left(m_{i}\right)=a m_{i}$ for all i.

First, consider the case $n=1$: the submodule $A m \subset M$ has a direct summand $M^{\prime} \subset M$ such that $M=A m \oplus M^{\prime}$ since M is semisimple. Let $p: M \rightarrow A m$ denote the first projection, which is A-linear and hence $p \in A_{M}^{!}$. Therefore f and p commute, so $f(m)=f(p(m))=p(f(m))$ implies $f(m) \in A m$, i.e., there exists $a \in A$ such that $f(m)=a m$.

In the general case, we use a diagonal trick. Consider M^{n}, which is still a semisimple A-module, and let $x=\left(m_{1}, \ldots, m_{n}\right) \in M^{n}$. By the lemma from last lecture, the map $f \mapsto \operatorname{diag}(f, \ldots, f)=: F$ is an isomorphism $A \stackrel{!!}{\cong} \xlongequal{\cong} A_{M^{n}}^{!!}$. The $n=1$ case implies there exists $a \in A$ such that $F(x)=a x$. Equivalently, $f\left(m_{i}\right)=a m_{i}$ for all i.

Corollary 1. Let M be a semisimple A-module. Assume that M is finitely generated over $A_{M}^{!}$. Then $A_{M}^{!}{ }_{M}=A_{M}$.
Proof. Let $M=A_{M}^{!} m_{1}+\cdots+A_{M}^{!} m_{n}$. Let $f \in A_{M}^{!!}$. By Jacobson density, there exists $a \in A$ such that $f\left(m_{i}\right)=a m_{i}$ for $i=1, \ldots, n$. Given $m \in M$ we can write $m=b_{1} m_{1}+\cdots+b_{n} m_{n}$ for $b_{i} \in A_{M}$. Hence $f(m)=f\left(\sum b_{i} m_{i}\right)=\sum b_{i} f\left(m_{i}\right)=\sum b_{i} a m_{i}=\sum a b_{i} m_{i}=a m$.

Corollary 2. Let A be an algebra over $k=\bar{k}$. Let M be a simple finite dimensional A-module. Then $\operatorname{act}_{M}: A \rightarrow \operatorname{End}_{k}(M)$ is surjective.

Proof. Since M is simple and k is algebraically closed, $A_{M}^{!}=k$ by Schur's lemma. Corollary 1 implies $A_{M}^{!!}=A_{M}$ but $A_{M}^{!!}=k!=\operatorname{End}_{k}(M)$, so $A_{M}=\operatorname{End}_{k}(M)$.

Theorem (Burnside's theorem). Let M be a finite-dimensional vector space over an algebraically closed field k. Let $A \subset \operatorname{End}_{k}(M)$ be a subalgebra such that there is no A-stable subspace in M other than 0 and M itself. Then $A=\operatorname{End}_{k}(M)$.

The Jacobson radical

Let A be an arbitrary ring. Given a left A-module M, and $m \in M$, define $\operatorname{Ann}_{M}(m)=\{a \in A \mid$ $a \cdot m=0\}$. This is a left ideal in A. The map $a \mapsto a \cdot m$ gives a morphism $A \rightarrow M$, of left A-modules. Hence, we obtain an A-module embedding $A / \operatorname{Ann}_{M}(m) \rightarrow M$.

We put $\operatorname{Ann}_{M}=\bigcap_{m \in M} \operatorname{Ann}_{M}(m)$. Equivalently, Ann_{M} is the kernel of the ring homomorphism $A \rightarrow \operatorname{End}_{\mathbb{Z}} M, a \mapsto \operatorname{act}_{M}(a)$. Thus, Ann_{M} is a two-sided ideal in A.

Let S_{A} be the set of isomorphism classes of simple A-modules. The following result gives various equivalent definitions of the Jacobson Radical:

Theorem. For any ring A, the following 7 sets are equal:
(1) $\{a \in A \mid \forall x, y \in A, 1+x a y$ is invertible $\}$
(2L) $\{a \in A \mid \forall x \in A, 1+x a$ has a left inverse $\}$
(2R) $\{a \in A \mid \forall x \in A, 1+a x$ has a right inverse $\}$
(3L) The intersection of all maximal left ideals in A.
(3R) The intersection of all maximal right ideals in A.
(4L) $\bigcap_{L \in S_{A}} \mathrm{Ann}_{L}$
(4R) The intersection of the annihilators of all simple right A-modules.
The set $J(A)$ defined by these conditions is a two-sided ideal in A, thanks to (4L)-(4R), called the Jacobson Radical of A.

Proof. We will prove $4 L \Longleftrightarrow 3 L \Longleftrightarrow 2 L \Longleftrightarrow 1$. The corresponding claims for ' R ' will follow.
$(4 L \Longleftrightarrow 3 L)$: Let $\mathcal{M}=\left\{(M, m) \mid M \in S_{A}, m \in M \backslash\{0\}\right\}$. Define a map from \mathcal{M} to the set of maximal left ideals by $(M, m) \mapsto \operatorname{Ann}_{M}(m)$. This map is surjective since simple A-modules are precisely the A-modules of the form A / I for a maximal left ideal I of A. Hence, the intersection of all maximal left ideals of A is equal to

$$
\bigcap_{(M, m) \in \mathcal{M}} \operatorname{Ann}_{M}(m)=\bigcap_{M \in S_{A}} \bigcap_{m \in M \backslash\{0\}} \operatorname{Ann}_{M}(m)=\bigcap_{M \in S_{A}} \operatorname{Ann}_{M}
$$

We note that the rightmost intersection above is clearly a two-sided ideal.
$(3 L \Longleftrightarrow 2 L): a \in A$ has no left inverse iff it is contained in a proper left ideal iff it is contained in a maximal left ideal.

Let \mathcal{L} be the set of elements $a \in A$ such that $1+x a$ has a left inverse for all $x \in A$. Let $a \in \mathcal{L}$ and assume there is a maximal left ideal I not containing a. Then $A a+I=A \Rightarrow 1=$ $x a+y$ (for some $x \in A, y \in I) \Rightarrow y=1+x a$. Since $a \in \mathcal{L}$, then y has a left inverse, which is impossible since it is in I. Therefore, $\mathcal{L} \subseteq I$ for all maximal left ideals I.

Conversely, assume a is in all maximal left ideals, but there is x such that $1+x a$ has no left inverse. Then $1+x a$ is in some maximal left ideal I. But $x a$ is also in this ideal, so 1 is in this ideal, a contradiction.

From above, we deduce that the set \mathcal{L} is a two-sided ideal. We will use this in the next step:
$(2 L \Longleftrightarrow 1):$ Let $a^{\prime} \in \mathcal{L}$ and for arbitrary $x, y \in A$ set $a=x a^{\prime} y$. Then $a \in \mathcal{L}$ since \mathcal{L} is a two-sided ideal. Hence, $1+a$ has a left inverse b, so $b(1+a)=1 \Rightarrow b=1-b a$. Since $a \in \mathcal{L}$, then b has a left inverse c, so that $c b=1$. But $c=c \cdot 1=c(b(1+a))=c b(1+a)=1+a$. Thus $(1+a) b=1$, so $1+a$ has a two-sided inverse, whence $(2 L) \Rightarrow(1)$. The reverse inclusion is clear.

Lemma (Nakayama lemma). Let M be a finitely-generated A-module such that $J(A) \cdot M=M$. Then $M=0$.

Proof. Find a minimal generating set m_{1}, \ldots, m_{n}. Then we have $M=J(A) \cdot M=\sum J(A) m_{i}$. Then we may write $m_{n}=j_{1} m_{1}+\ldots+j_{n-1} m_{n-1}+j_{n} m_{n}$ for $j_{i} \in J(A)$. But then we have $\left(1-j_{n}\right) m_{n}=j_{1} m_{1}+\ldots+j_{n-1} m_{n-1}$. Since $j_{n} \in J(A)$, then $1-j_{n}$ is invertible, so that m_{n} is actually in the span of $\left\{m_{i} \mid i<n\right\}$, so we have a smaller generating set, a contradiction.

Lemma. $J(A / J(A))=0$.
Proof. Simple A-modules are also simple $A / J(A)$-modules, so we are done by definition (4L).
Definition. Given a left/right/2-sided ideal $I \subset A$,

1. we say I is nil if any $a \in I$ is nilpotent, and
2. we say I is nilpotent if there exists n such that $I^{n}=0$, which is equivalent to requiring $a_{1} \cdots a_{n}=0$ for all $a_{1}, \ldots, a_{n} \in I$.

Lemma.

1. If I, J are nilpotent, then $I+J$ is also nilpotent.
2. Any nil ideal is contained in $J(A)$.

Proof of 1. Suppose $I^{m}=0$ and $J^{n}=0$. We claim that $(I+J)^{m+n}=0$. We can see this as follows: if we take $a_{1}, \ldots, a_{m+n} \in I \cup J$, then there will be either $\geq m$ elements $a_{i} \in I$ or $\geq n$ elements in J. Assume WLOG that $a_{i_{1}}, \ldots, a_{i_{m}} \in I$. Then $a_{1} \cdots a_{m+n}=\left(\cdots a_{i_{1}}\right)\left(\cdots a_{i_{2}}\right) \cdots\left(\cdots a_{i_{m}}\right) \cdots a_{m+n}=0$ since I is an ideal.

Proof of 2. If I is a left nil ideal, then $a \in I$ implies that $x a \in I$ for all $x \in A$. Hence $x a$ is nilpotent, so $1+x a$ is invertible. Therefore by (2L) $a \in J(A)$.

Lecture 20

Structure theory of finite dimensional algebras

Theorem. Let A be a finite-dimensional algebra over k. Then

1. $J(A)$ is the maximal nilpotent ideal of A, i.e., $J(A)$ is a nilpotent ideal and it contains any other nilpotent ideal.
2. $A / J(A)$ is a semisimple algebra.
3. A has only finitely many maximal two-sided ideals.
4. $J(A)=\bigcap$ maximal two-sided ideals.

Proof of 1. Let $J:=J(A)$. We have a decreasing chain of two-sided ideals $A \supset J \supset J^{2} \supset J^{3} \supset \cdots$, which must stabilize since A is finite-dimensional (hence Artinian). Therefore there exists $N \gg 0$ such that $J^{N+1}=J^{N}$. Since J^{N} is a finitely generated A-module, Nakayama's lemma implies that $J^{N}=0$, so J is nilpotent. \checkmark
Proof of 2. $J(A / J(A))=0$ so by Problem 6 of Homework 8, we know $A / J(A)$ is semisimple. \checkmark
Proof of 3. Wedderburn's theorem implies that $A / J(A)=A_{1} \oplus \cdots \oplus A_{n}$ where $A_{i}=\mathrm{M}_{r_{i}}\left(D_{i}\right)$ is a simple algebra. Any two-sided ideal $I \subset \bigoplus A_{i}$ has the form $I=I_{1} \oplus \cdots \oplus I_{n}$ where I_{n} is a two-sided ideal in A_{i}. The maximal ideals in $A / J(A)$ are $A_{1} \oplus \cdots \oplus A_{i-1} \oplus 0 \oplus A_{i+1} \oplus \cdots \oplus A_{n}$.

We claim that if \mathfrak{a} is a maximal two-sided ideal in A, then $J(A) \subset \mathfrak{a}$. If this were not the case, then $J(A)+\mathfrak{a}=A$. Hence $1=j+a$ for some $j \in J(A), a \in \mathfrak{a}$. But then $a=1-j$ is invertible, a contradiction.

In general, we have a bijection
$\{$ maximal two-sided ideals of A containing $J(A)\} \longleftrightarrow\{$ maximal two-sided ideals of $A / J(A)\}$.
Thus, the number of maximal two-sided ideals is finite.
Proof of 4. This is clear from our description of maximal ideals in $A / J(A)$ from part 3.
Remark. Let A be a ring, $J \subset A$ a two-sided ideal, and M a left (resp. right) A-module. Then $M / J M=(A / J) \otimes_{A} M$ (resp. $\left.M / M J=M \otimes_{A}(A / J)\right)$ is a left (resp. right) (A / J)-module.

Theorem. Let A be a finite-dimensional algebra over an algberaically closed field k. Let $J=J(A)$, and define $\bar{A}:=A / J$. Then $A \cong\left(T_{\bar{A}}\left(J / J^{2}\right)\right) / I$ where I is a two-sided ideal in the tensor algebra satisfying

$$
T^{\geq 2}\left(J / J^{2}\right) \supseteq I \supseteq T^{\geq N}\left(J / J^{2}\right)
$$

for sufficiently large N.
Corollary. Let A be finite-dimensional over an algebraically closed field k such that

$$
\bar{A}=A / J(A)=\underbrace{k \oplus \cdots \oplus k}_{n \text { times }}
$$

Then there exists a finite quiver Q with vertex set $\{1, \ldots, n\}$ such that $A=k Q / I$ with $(k Q)_{\geq 2} \supseteq$ $I \supseteq(k Q)_{\geq N}$ for some sufficiently large N.

Proof. By the remark, $E:=J / J^{2}$ is an A / J-bimodule. Since A / J is a direct sum of fields, we have a decomposition $E=\bigoplus E_{i j}$. Define the quiver Q so that E corresponds to the paths.

In order to state the proposition below we need the following
Definition. An element $a \in A$, resp. a two-sided ideal $J \subset A$, is said to be nilpotent if there exists an integer $m \geq 0$ such that $a^{m}=0$, resp. $J^{m}=0$ (according to the definition of powers of an ideal, the latter means that for any m-tuple of elements $a_{1}, \ldots, a_{m} \in J$ one has $a_{1} \cdots a_{m}=0$).
If A is commutative and $a \in A$, then a is nilpotent iff the principal ideal $A a \subset A$ is nilpotent.
The proof of the theorem relies on the following useful result about orthogonal idempotents is the following

Proposition (Lifting of idempotents). Let $J \subset A$ be a nilpotent two-sided ideal in an arbitrary ring A. Let $\bar{e}_{1}, \ldots, \bar{e}_{n} \in A / J$ be a collection of orthogonal idempotents, i.e., we have $\bar{e}_{i} \cdot \bar{e}_{j}=\delta_{i j} \bar{e}_{i}$. Then,
(i) There exist orthogonal idempotents $e_{i} \in A$ such that $e_{i} \bmod J=\bar{e}_{i}$ for all $i=1, \ldots, n$.
(ii) For any other collection $e_{1}^{\prime}, \ldots, e_{n}^{\prime} \in A$, of orthogonal idempotents such that $e_{i}^{\prime} \bmod J=\bar{e}_{i}$, one can find an invertible element $u \in A$ such that one has $e_{i}^{\prime}=u e_{i} u^{-1}$ for all i.
Proof. We only prove part (i). The key case here is the case where $n=1$, so we need to lift just one idempotent \bar{e}_{1}. To this end, observe first that, the ideal J being nilpotent, there exists an integer $m>0$ such that $J^{2^{m}}=0$. Therefore, it is sufficient to prove that the lifting property holds for all ideals J such that $J^{2^{m}}=0$. Using induction on m and the equation $J^{2^{m}}=\left(J^{2^{m-1}}\right)^{2}$ one reduces the last statement to the case $m=1$.

Thus, we may (and will) assume that $m=1$ i.e., we have $J^{2}=0$. This implies that the A-action on J by left, resp. right, multiplication descends to an A / J-action. Hence, the ideal J acquires the natural structure of an A / J-bimodule. Decomposing this bimodule according to the action of the idempotents \bar{e}_{1} and $\bar{e}_{2}:=1-\bar{e}_{1}$, yields a direct sum decomposition

$$
J=\bar{e}_{1} J \bar{e}_{1} \oplus \bar{e}_{2} J \bar{e}_{2} \oplus \bar{e}_{1} J \bar{e}_{2} \oplus \bar{e}_{2} J \bar{e}_{1} .
$$

Let $a \in A$ be an arbitrary element such that $a \bmod J=\bar{e}_{1}$. We will show that there exist elements $y_{11} \in \bar{e}_{1} J \bar{e}_{1}$ and $y_{22} \in \bar{e}_{2} J \bar{e}_{2}$ such that the element $a+y_{11}+y_{22}$ is an idempotent of the ring A.

To find these elements, we put $x:=a^{2}-a$. Then, we have: $x \bmod J=\left(a^{2}-a\right) \bmod J=\bar{e}_{1}^{2}-\bar{e}_{1}=0$. Hence, $x \in J$. Therefore, one can write $x=\sum x_{i j}$, where $x_{i j} \in \bar{e}_{i} J \bar{e}_{j}, i, j \in\{1,2\}$. Since the element $a^{2}-a$ commutes with a, in J one has an equation $\bar{e}_{1} x=x \bar{e}_{1}$. This forces $x_{12}=x_{21}=0$. Thus, $x=x_{11}+x_{22}$. Now, writing $y=y_{11}+y_{22}$ for an unknown element and using that $y^{2} \in J^{2}=0$ and $\bar{e}_{1} y_{22}=y_{22} \bar{e}_{1}=0$, we compute

$$
\begin{aligned}
(a+y)^{2}-(a+y) & =\left(a^{2}-a\right)+a y+y a-y \\
& =x+\bar{e}_{1} y+y \bar{e}_{1}-y \\
& =x_{11}+x_{22}+y_{11}+y_{11}-\left(y_{11}+y_{22}\right) \\
& =x_{11}+x_{22}+y_{11}-y_{22} .
\end{aligned}
$$

We see that letting $y_{11}:=-x_{11}$ and $x_{22}:=y_{22}$ makes the element $e_{1}:=a+y$ an idempotent. Moreover, we have $e_{1} \bmod J=a \bmod J=\bar{e}_{1}$, as desired.

We now complete the proof of the proposition by induction on n, the number of idempotents. The case $n=1$ has been considered above. In the case where $n>1$, we put $\bar{e}:=\sum_{i} \bar{e}_{i}$. The orthogonality of our idempotents implies that \bar{e} is also an idempotent. Thus, we can find a lift of \bar{e} to an idempotent $e \in A$. Once e has been chosen, we replace the ring A by $e A e$, resp. the ideal J by $e J e$. This way, we achieve that $e \bmod J=1$ so we have $\bar{e}_{1}+\ldots+\bar{e}_{n}=1$. Now, the idempotents $\bar{e}_{i}, i=1, \ldots, n-1$, can be lifted, by induction, to some orthogonal idempotents $e_{i} \in A$. Finally, we put $e_{n}:=1-\left(e_{1}+\ldots+e_{n-1}\right)$. This provides a lift of the last idempotent \bar{e}_{n}. Part (i) is proved.
We leave the proof of (ii) to the interested reader.
Proof of Theorem. The proof proceeds in several steps.
Step 1: We claim that there exists a section $\varepsilon: \bar{A} \rightarrow A$, i.e. that there exists a subalgebra $A^{\prime} \subset A$ such that $A^{\prime} \hookrightarrow A \rightarrow \bar{A}$ is an isomorphism.
Since \bar{A} is semisimple over an algebraically closed field, it is a direct sum of matrix algebras $\bigoplus_{\ell} \mathrm{M}_{n_{\ell}}(k)$. Let $\bar{e}_{\ell, i j}$ denote the matrix with a 1 in the (i, j) position as an element of $\mathrm{M}_{n_{\ell}}(k)$. Then $\left\{\bar{e}_{i i}^{(\ell)}\right\}$ forms a collection of orthogonal idempotents in \bar{A}. It follows, We can lift them to orthogonal idempotents in $e_{i i}^{(\ell)} \in A$, see Lecture 2 . Since $\sum_{\ell, i} e_{i i}^{(\ell)} \in 1+J$ is idempotent and invertible, it is 1 . Let $e_{\ell}=\sum_{i} e_{i i}^{(\ell)}$. Then $e_{\ell} A e_{\ell}$ are orthogonal subalgebras of A for distinct ℓ. Hence it suffices to lift each $\mathrm{M}_{n_{\ell}}(k)$ to $e_{\ell} A e_{\ell}$. We therefore drop the ℓ subscript and assume $\sum e_{i i}=1$.

Suppose that for I a two-sided square-zero ideal of A, we can lift a matrix subalgebra of A / I to A. Then applying this to the sequence $A=A / J^{N} \rightarrow A / J^{N-1} \rightarrow \cdots \rightarrow A / J=\bar{A}$ with $I=J^{i} / J^{i+1} \subset A / J^{i+1}$, we are done. To prove the square-zero case, i.e., $\bar{A}=A / I$ and $I^{2}=0$: first take an arbitrary lift $e_{i, i+1} \in A$ of $\bar{e}_{i, i+1} \in \bar{A}$. By multiplying on the left by $1-e_{j j}$ for $j \neq i$ and on the right by $1-e_{j j}$ for $j \neq i+1$, we get $e_{j j} e_{i, i+1}=\delta_{i j}$ and $e_{i, i+1} e_{j j}=\delta_{i+1, j}$. Do the same for $e_{i+1, i}$. Then $e_{i, i+1} e_{i+1, i}-e_{i i} \in I$ implies

$$
\left(e_{i, i+1} e_{i+1, i}-e_{i i}\right)^{2}=e_{i, i+1}\left(r-e_{i+1, i}\right)+e_{i i}=0
$$

where $r=e_{i+1, i} e_{i, i+1} e_{i+1, i}-e_{i+1, i} \in I$. Thus $e_{i, i+1}\left(e_{i+1, i}-r\right)=e_{i i}$. The analogous computation shows that $\left(e_{i+1, i}-r\right) e_{i, i+1}=e_{i+1, i+1}$. Replacing $e_{i+1, i}$ with $e_{i+1, i}-r$, we can assume that

$$
e_{i+1, i} e_{i, i+1}=e_{i+1, i+1}, \quad e_{i, i+1} e_{i+1, i}=e_{i i}
$$

Now set $e_{i j}=e_{i, i+1} e_{i+1, i+2} \cdots e_{j-1, j}$ and $e_{j i}=e_{j, j-1} \cdots e_{i+1, i}$ for $i<j$. One sees that the span of $\left\{e_{i j}\right\}$ is isomorphic to $\mathrm{M}_{n}(k)$ as algebras.

Step 2: The projection $J \rightarrow J / J^{2}$ is an \bar{A}-bimodule map, where \bar{A} acts on J via ε. We want to show that there exists an \bar{A}-bimodule section $J / J^{2} \rightarrow J$.

Let $M=J / J^{2}$. Keeping the notation from Step 1 , it suffices to lift $e_{\ell} M e_{m}$ to $e_{\ell} J e_{m}$. Note that an $\left(\mathrm{M}_{n_{\ell}}(k), \mathrm{M}_{n_{m}}(k)\right.$-bimodule is the same as an $\mathrm{M}_{n_{\ell}}(k) \otimes \mathrm{M}_{n_{m}}(k)^{\text {op }} \cong \mathrm{M}_{n_{\ell}}(k) \otimes \mathrm{M}_{n_{m}}(k) \cong \mathrm{M}_{n_{\ell} n_{m}}(k)-$ module. Any such module is a direct sum of the simple module $k^{n_{\ell} n_{m}}$. Decompose M into a direct sum of simple modules and lift one vector from each summand. The $\bar{A} \otimes \bar{A}^{\mathrm{op}}$-span of these lifts gives the desired section.

Step 3: Let $f: \widetilde{A} \rightarrow A$ be an algebra homomorphism. Let $\widetilde{J} \subset \widetilde{A}$ and $J \subset A$ be two-sided nilpotent ideals such that (i) $f(\widetilde{J}) \subset J$, (ii) $\widetilde{A} / \widetilde{J} \rightarrow A / J$ is surjective, and (iii) $\widetilde{J} / \widetilde{J}^{2} \rightarrow J / J^{2}$ is surjective. Then f is surjective.

This claim just follows by induction (think J-adic completion).
Finishing the proof: Steps 1 and 2 give maps $\varepsilon: \bar{A} \rightarrow A$ and $J / J^{2} \hookrightarrow J \hookrightarrow A$. The universal property of tensor algebras ${ }^{2}$ gives an algebra map $f: T:=T_{\bar{A}}\left(J / J^{2}\right) \rightarrow A$. Then $f\left(T^{\geq 1}\right) \subset J$ implies $f\left(T^{\geq i}\right) \subset J^{i}$ for all $i \geq 1$. In particular, since $J^{N}=0$ for some N, we get $f\left(T^{\geq N}\right) \subset J^{N}=0$. Hence $T^{\geq N} \subset \operatorname{ker}(f)=: I$. On the other hand, our construction of f gives a commutative diagram

which shows that if $a \in I$, then $f\left(a \bmod T^{\geq 2}\right)=0$ implies $a \bmod T^{\geq 2}=0$, i.e. that $a \in T^{\geq 2}$. Hence $I \subset T^{\geq 2}$.
Lastly, apply Step 3 to $\widetilde{A}=T$ and $\widetilde{J}=T^{\geq 1}$ to conclude the theorem.

[^1]
Lecture 21

Today, we'll discuss a trick that will let us extend some of our results about finite-dimensional algebras to some infinite-dimensional algebras.
Definition. An algebra is said to be "nice" (this isn't standard terminology) if it is a \mathbb{C}-algebra of at most countable dimension over \mathbb{C}.

Clearly, a subalgebra or a quotient of a nice algebra is nice, and any finitely generated \mathbb{C}-algebra is nice because it is a quotient of some $\mathbb{C}\left\langle x_{1}, \ldots, x_{n}\right\rangle$, which has a countable basis.
Recall that for an algebra A and $a \in A$, we defined $\operatorname{spec}(a)=\{\lambda \in \mathbb{C} \mid a-\lambda$ is not invertible $\}$.
Theorem (Spectral theorem). Let A be a nice algebra, and let $a \in A$. Then

1. a is nilpotent $\Longleftrightarrow \operatorname{spec}(a)=\{0\}$.
2. a is algebraic $\Longleftrightarrow \operatorname{spec}(a)$ is a non-empty finite set.
3. a is non-alegbraic $\Longleftrightarrow \mathbb{C} \backslash \operatorname{spec}(a)$ is at most countable.

Let $\mathbb{C}(t)$ be the field of rational functions in t.
Lemma. Let $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{C}$ be distinct. If $\sum \frac{c_{i}}{t-\lambda_{i}}=0$ in $\mathbb{C}(t)$, then all of the c_{i} are 0 .
Proof of lemma. Clearing denominators, we get that $\frac{f(t)}{\Pi\left(t-\lambda_{i}\right)}=0$ for some $f(t) \in \mathbb{C}[t]$, hence $f(t)=0$. But for any i, the fact that $f\left(\lambda_{i}\right)=0$ implies that $c_{i}=0$.
Proof of theorem. Given an $a \in A$, define

$$
R_{a}=\left\{\left.\frac{f}{g} \in \mathbb{C}(t) \right\rvert\, f, g \text { are coprime, and } g \text { is non-zero on } \operatorname{spec}(a)\right\} .
$$

Thus, for any $g_{1}, \ldots, g_{n} \in \mathbb{C} \backslash \operatorname{spec}(a)$, we have $\frac{1}{g} \in R_{a}$ where

$$
g(t)=\left(t-g_{1}\right) \cdots\left(t-g_{n}\right) \in R_{a}
$$

and any denominator has this form. Note that R_{a} is a subring of $\mathbb{C}(t)$. Now, we can define an evaluation map $j_{a}: R_{a} \rightarrow A$ by

$$
\frac{f}{g} \mapsto f(a) \cdot g(a)^{-1}=f(a)\left(a-g_{1}\right)^{-1} \cdots\left(a-g_{n}\right)^{-1}
$$

Observe that if a is not algebraic, then for any $\frac{f}{g} \in R_{a}$, if $j_{a}\left(\frac{f}{g}\right)=0$, we have $f(a) g(a)^{-1}=0$, hence $f(a)=0$, hence $f=0$ because a is not algebraic. Thus, j_{a} is injective when a is not algebraic.
Our lemma demonstrates that $\left\{\left.\frac{1}{t-\lambda} \right\rvert\, \lambda \in \mathbb{C} \backslash \operatorname{spec}(a)\right\}$ is a \mathbb{C}-linearly independent subset of R_{a}, and our observation above implies that $\left\{(a-\lambda)^{-1} \mid \lambda \in \mathbb{C} \backslash \operatorname{spec}(a)\right\}$ is linearly independent (when a is not algebraic). Because $\operatorname{dim}_{\mathbb{C}}(A) \leq$ countable, we must have that $|\mathbb{C} \backslash \operatorname{spec}(a)| \leq$ countable.

We also know that if a is algebraic, then $\operatorname{spec}(a)=\{$ roots of the minimal polynomial of $a\}$, which must be a finite set, and which is non-empty because \mathbb{C} is algebraically closed.

It is impossible to have $\operatorname{spec}(a)$ be finite and $\mathbb{C} \backslash \operatorname{spec}(a)$ to be at most countable at the same time, so parts 2 and 3 follow.

Now we will prove part 1 . We clearly know that a is nilpotent $\Longleftrightarrow a$ is algebraic and $\operatorname{spec}(a)=\{0\}$, but we want to drop the assumption that a is algebraic. We can do this because $\operatorname{spec}(a)=\{0\}$ implies that $\operatorname{spec}(a)$ is finite, hence a is algebraic by part 2 .

Corollary. If A is nice and $a \in A$, then $\operatorname{spec}(a)$ is non-empty.
Proof. Obviously, a is either algebraic or not algebraic; apply the theorem.
Corollary. If A is a nice division algebra, then $A=\mathbb{C}$.
Proof. Let $a \in A \backslash \mathbb{C}$, so that $a-\lambda \neq 0$ for all $\lambda \in \mathbb{C}$. Because A is a division algebra, this implies that $a-\lambda$ is invertible for all $\lambda \in \mathbb{C}$, hence $\operatorname{spec}(a)=\varnothing$, which is a contradiction.

Theorem (Schur lemma for nice algberas). If A is a nice algebra and M is a simple A-module, then $\operatorname{End}_{A}(M)=\mathbb{C}$.

Proof. Pick a non-zero $m \in M$. We have a diagram

$$
A \xrightarrow[\ell]{a \mapsto a m} M \stackrel{f(m) \longleftarrow f}{i} \operatorname{End}_{A}(M)
$$

but because M is simple, ℓ is surjective. Again because M is simple, if $f(m)=0$ then $f(A \cdot m)=0$, hence $f=0$, so that i is injective.

The fact that A is nice then implies that $\operatorname{End}_{A}(M)$ is nice, hence $\operatorname{End}_{A}(M)$ is a nice division algebra, hence $\operatorname{End}_{A}(M)=\mathbb{C}$.

Proposition. Let A be a nice algebra. Then $J(A)$ is the unique maximal nil-ideal.
Remark. We know that if A is finite-dimensional, then $J(A)$ is nilpotent.
Proof. If $a \in J(A)$, then $1-x a$ is invertible for all $x \in A$, so $1-\lambda a$ is invertible for all $\lambda \in \mathbb{C}$. Therefore, $a-\lambda$ is invertible for all $\lambda \neq 0$, so we must have $\operatorname{spec}(a) \subseteq\{0\}$. By the spectral theorem, a is nilpotent. Thus, $J(A)$ is a nil-ideal. But we have proved in a previous class that any nil-ideal is contained in $J(A)$; this implies the claim.

Theorem. Let A be a nice algebra with trivial Jacobson radical, i.e. $J(A)=0$. The action map $A \rightarrow \prod_{M \in S_{A}} \operatorname{End}_{\mathbb{C}}(M)$ is an embedding of A as a pointwise dense subalgebra, i.e. for any finite subset $S \subset S_{A}$, any $m_{1}, \ldots, m_{n} \in \bigoplus_{M \in S} M$, and any $f \in \bigoplus_{M \in S} \operatorname{End}_{\mathbb{C}}(M)$, there is some $a \in A$ such that $f\left(m_{i}\right)=a m_{i}$ for all $i=1, \ldots, n$.

Proof. Because

$$
J(A)=\bigcap_{M \in S_{A}} \operatorname{Ann}(M)=0
$$

we have that the action map j is injective. Because M is simple, $A_{M}^{!}=\operatorname{End}_{A}(M)=\mathbb{C}$, and thus $A_{M}^{!!}=\operatorname{End}_{\mathbb{C}}(M)$. Now the result follows from the Jacobson density theorem.

Commutative case

Theorem. Let A be a nice commutative algebra. Then $J(A)=\{$ nilpotent $a \in A\}$. Given an algebra homomorphism $\chi: A \rightarrow \mathbb{C}$, let \mathbb{C}_{χ} be \mathbb{C} considered as an A-module via χ. Then the natural maps \{algebra homomorphisms $A \rightarrow \mathbb{C}\} \xrightarrow{\chi \mapsto \mathbb{C}_{\chi}} S_{A} \xrightarrow{M \mapsto \operatorname{Ann}(M)}\{$ maximal ideals in $A\}$ are bijections.

Proof. If $a \in A$ is nilpotent, then $A a$ is a nil ideal, so that $A a \subseteq J(A)$. Conversely, any $a \in J(A)$ is nilpotent by our proposition.

Let $M \in S_{A}$ be a simple A-module. Since A is commutative, $A_{M} \subset A_{M}^{!}$(A obviously commutes with itself). Because M is simple, we have $A_{M}^{!}=\mathbb{C}$ by Schur's lemma, so that $A_{M}=\mathbb{C}$, hence $\operatorname{dim}_{\mathbb{C}}(M)=1$, hence there is some χ such that $a m=\chi(a) m$.

Next we need to show that any maximal ideal I in a commutative algebra A is the annihilator of a simple module. Take $M=A / I$ so that $\operatorname{Ann}(M)=I$. Then I is a maximal left ideal iff M is simple.

Lecture 22

Recall that A is a nice commutative algebra. Let \widehat{A} be the collection of algebra homomorphisms from A into \mathbb{C}. We already showed that $\widehat{A} \cong S_{A}$ given by $\chi \mapsto \mathbb{C}_{\chi}$. Let $\operatorname{Nil}(A)$ be the collection of nilpotent elements of A. Let ev : $A \rightarrow \mathbb{C}\{\widehat{A}\}$ be the evaluation algebra homomorphism ev $(a)(\chi)=\chi(a)$. We will also denote $\widehat{a}=\operatorname{ev}(a)$.

Theorem. Let A be a nice commutative algebra. Then

1. $\operatorname{ker}(\mathrm{ev})=\operatorname{Nil}(A)$.
2. $\mathrm{im}(\mathrm{ev})$ is pointwise dense.
3. For $a \in A, \operatorname{spec}(a)$ is the set of values of \widehat{a}.

Proof. We know parts 1 and 2, but not 3 yet. This holds if and only if $\operatorname{spec}(a)=\{\chi(a) \mid \chi \in \widehat{A}\}$. For any $\lambda \in \mathbb{C}, \lambda \in \operatorname{spec}(a)$ if and only if $a-\lambda$ is not invertible, which is the case if and only if $A(a-\lambda)$ is contained in a maximal ideal (by Zorn's lemma), which we know is the kernel of some χ. Thus, $a-\lambda \in A(a-\lambda) \subseteq \operatorname{ker}(\chi)$ if and only if $0=\chi(a-\lambda)$, if and only if $\lambda=\chi(a)$.

Theorem (Hilbert's Nullstellensatz). Let A be a finitely generated commutative \mathbb{C}-algebra. Let $I \subseteq A$ be an ideal; then $a \in \bigcap\{$ maximal ideals of A containing $I\}$ if and only if $a^{n} \in I$ for some sufficiently large n.
Proof. a $\bmod I$ is contained in the intersection of maximal ideals in A / I if and only if it lies in $\operatorname{Nil}(A / I)$, i.e. a^{n} is eventually in I.
Corollary. Let $A=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Let $V(I)=\left\{c \in \mathbb{C}^{n} \mid p(c)=0\right.$ for all $\left.p \in I\right\}$. Then $\left.f\right|_{V(I)}=0$ if and only if $f^{n} \in I$ for some n.
Proof. $\left.f\right|_{V(I)}=0$ if and only if $\mathrm{ev}_{c}(f)=0$ for all $c \in V(I)$. The latter condition is equivalent to saying that $f \in \bigcap_{\left\{c \mid \operatorname{ker}^{\left.\left(\mathrm{ev}_{c}\right) \supset I\right\}}\right.} \operatorname{ker}\left(\mathrm{ev}_{c}\right)=\bigcap\{$ maximal ideals in A containing $I\}$, which the theorem shows is the case if and only if $f^{n} \in I$ for some n.

Topological Versions of These Results

Definition. Let A be a \mathbb{C}-algebra. A norm on A is a function $|\cdot|: A \rightarrow \mathbb{R}_{\geq 0}$ such that

1. $|a|=0$ if and only if $a=0$.
2. $|\lambda a|=|\lambda| \cdot|a|$ for all $\lambda \in \mathbb{C}$.
3. $|a+b| \leq|a|+|b|$.
4. $|a b| \leq|a||b|$.

Examples.

1. $C(X)$ where X is a compact topological space and $|f|=\|f\|_{\infty}=\max _{x \in X}|f(x)|$.
2. $A=\operatorname{End}_{\mathbb{C}}(V)$ where $|a|=\sup _{|v|=1}|a v|$.

A Banach algebra is an algebra A with norm $|\cdot|$ which is complete as a metric space.
Lemma. Let A be a Banach algebra. Fix an element $a \in A$. Then

1. $\operatorname{spec}(a)$ is a closed subset of the disk of radius $|a|$.
2. The function $f: \mathbb{C} \backslash \operatorname{spec}(a) \rightarrow A$ given by $z \mapsto(a-z)^{-1}$ is a holomorphic function.
3. $\left|(a-z)^{-1}\right| \rightarrow 0$ as $|z| \rightarrow \infty$.

Proof. The idea is just to factor a out of the resolvent to get $a^{-1}\left(1-a^{-1} z\right)^{-1}=\frac{1}{a} \sum_{k}\left(a^{-1} z\right)^{k}$, which is absolutely continuous, hence convergent in the Banach algebra. Therefore, it is continuous and one can differentiate termwise. This lemma is Homework 9, Problem 7.

Theorem (Gelfand). For any Banach algebra A and $a \in A, \operatorname{spec}(a) \neq \varnothing$.
Proof. Suppose that $\operatorname{spec}(a)=\varnothing$; then $z \mapsto(a-z)^{-1}$ is a holomorphic function $\mathbb{C} \rightarrow A$. It is also bounded by (3). By Liouville, this must be constant, which is a contradiction.

All of our results on nice algebras in Lecture 24 only relied on the fact that A nice implies spec $(a) \neq \varnothing$ (in particular, so we get Schur's Lemma). Thus all of those results also hold for Banach algebras by Gelfand's theorem.

Corollary. Let A be a commutative Banach algebra. Then:
(i) Any algebra homomorphism $\chi: A \rightarrow \mathbb{C}$ is a continuous map.
(ii) If A is a field then $A=\mathbb{C}$.

Now equip \widehat{A} with the topology of pointwise convergenceand consider the algebra $C(\widehat{A})$ with the usual norm $|f|=\sup _{\chi \in \widehat{A}}|f(\chi)|$.
The following result is known as the Gelfand representation.
Theorem. Let A be a commutative Banach algebra.

1. \widehat{A} is a compact, Hausdorff topological space.
2. For all $a \in A, \widehat{a}=\operatorname{ev}(a)$ is a continuous function on \widehat{A} and $\operatorname{spec}(\widehat{a})$, the set of values of the function \widehat{a}, equals $\operatorname{spec}(a)$.
3. The map $a \mapsto \widehat{a}=\operatorname{ev}(a)$ gives an algebra homomorphism $\mathrm{ev}: A \rightarrow C(\widehat{A})$ such that $|\operatorname{ev}(a)| \leq|a|$ for all $a \in A$, i.e. ev is a weak contraction.
4. $\operatorname{ker}(\mathrm{ev})$ is the set of elements that are topologically nilpotent, i.e. $\limsup \left|a^{n}\right|^{1 / n} \rightarrow 0$.

Proof. The topology of pointwise convergence is (by definition) the weakest topology such that \widehat{a} is continuous for all $a \in A$. By Gelfand's theorem, $\operatorname{spec}(a)$ is a nonempty compact set contained in the disk of radius $|a|$ and is equal to $\mathrm{ev}_{a}(\widehat{A})$ by the remark. This proves (2). Then (3) follows from part (1) of the lemma above.
The kernel of the evaluation map is exactly $\{a \in A \mid \chi(a)=0$ for all $\chi \in \widehat{A}\}$, which happens if and only if $\operatorname{spec}(a)=\{0\}$, which is equivalent to $\lim \sup \left|a^{n}\right|^{1 / n}=\max \{|z|, z \in \operatorname{spec}(a)\}=0$ by Homework 9, Problem 7. This implies (4).
To prove (1), let D be the unit disk in \mathbb{C} and let D_{A} be the unit disk in A. For every $\chi_{\widehat{A}} \in \widehat{A}$, χ maps D_{A} to D by part (3). Therefore χ is a weak contraction, hence continuous; and \widehat{A} is a pointwise closed subset in $\operatorname{Maps}\left(D_{A}, D\right)=D^{D_{A}}$, which is a compact set by Tychonoff (pointwise convergence topology is exactly the product topology). Therefore, \widehat{A} is compact and the map is a weak contraction.

Example. Let G be a locally compact group, and \int be a left invariant integral. We can consider $L^{1}(G)$, which is the closure of the space of continuous functions with compact support. We equip
$L^{1}(G)$ with the convolution product

$$
\left(f_{1} \star f_{2}\right)(g)=\int f_{1}(h) f_{2}\left(h^{-1} g\right) d h
$$

(we use $*$ for convolution). Then, the algebra $\left(L^{1}(G), \star\right)$, equipped with the L^{1}-norm, satisfies all the axioms of Banach algebras except one: the algebra $\left(L^{1}(G), \star\right)$ does not necessarily have a unit.

In more detail, let G be a group with discrete topology. Then, the unit of the algebra $\left(L^{1}(G), \star\right)$ is the Dirac delta δ_{e} supported at the identity $e \in G$. In that case, $A:=\left(L^{1}(G), \star\right)$ is indeed a Banach algebra.
Now let be a discrete abelian group. Then, the Pontryagin dual \widehat{G}, i.e. the continuous group homomorphisms $G \rightarrow \mathbb{S}^{1}$, is a compact topological group. Any element $\chi \in \widehat{G}$ gives an algebra homomorphism $A=L^{1}(G) \rightarrow \mathbb{C}, f \mapsto \int_{G} f(g) \chi(g) d g$. Moreover, it is easy to show that this yields a homeomorphism $\widehat{G} \cong \widehat{A}$, of topological spaces. Thus, one has the Gelfand representation ev : $L^{1}(G) \rightarrow C(\widehat{A})=C(\widehat{G})$.

Next, let G be a locally compact abelian group which is not discrete. Then, δ_{e}, the Dirac delta, is not in L^{1} and the algebra $A:=\left(L^{1}(G), \star\right)$ has no unit. To fix this, in the case where G is not discrete, we formally adjoin a unit by defining

$$
A=\mathbb{C} 1 \oplus L^{1}(G)
$$

Thus, A is a a unital commutative Banach algebra with norm $|z \cdot 1 \oplus f|=|z|+|f|_{L^{1}}$ and $L^{1}(G)$ is a codimension 1 ideal in A.

Proposition. The Fourier transform defines a group homeomorphism

$$
\widehat{A} \cong \widehat{G} \sqcup\{\infty\}
$$

where the additional point $\infty \in \widehat{A}$ corresponds to the algebra homomorphism $A \rightarrow A / L^{1}(G)=\mathbb{C}$.
Proof. Let $\zeta: A \rightarrow \mathbb{C}$ be an algebra homomorphism. We proved that ev is an isometry, so ζ restricted to $L^{1}(G)$ is a bounded linear functional with $\|\zeta\|_{1}=1$. The dual of $L^{1}(G)$ is $L^{\infty}(G)$ so ζ may be considered as an almost everywhere bounded function on G. Pick $f \in L^{1}(G)$ such that $\zeta(f)=\int_{G} \zeta(h) f(h) d h \neq 0$. Then define $\chi(g)=\frac{\int \zeta(g h) f(h) d h}{\int \zeta(h) f(h) d h}$. The fact that ζ is an algebra homomorphism and has norm 1 implies that $\chi: G \rightarrow \mathbb{S}^{1}$ is a unitary character of G, i.e. $\chi \in \widehat{G}$. Then one sees that ζ as a functional corresponds to the Fourier transform of χ. See Bourbaki, Vol IX, Théories spectrales, Ch 2, §1, Proposition 1.1 for details.

Thanks to the proposition, the Gelfand representation takes the form ev : $\mathbb{C} 1 \oplus L^{1}(G) \rightarrow C(\widehat{G} \sqcup\{\infty\})$. Let $C_{0}(\widehat{G}):=\{f \in C(\widehat{G} \sqcup\{\infty\}) \mid f(\infty)=0\}$. Then the map ev restricts to a homomorphism ev : $L^{1}(G) \rightarrow C_{0}(\widehat{G})$, of non-unital algebras.

As an application of Gelfand representation's we obtain a short proof of the following difficult result in Fourier analysis originally due to Norbert Wiener.

Theorem. If $f \in C\left(\mathbb{S}^{1}\right)$ and f nowhere vanishes, then Fourier (f) is absolutely convergent implies that Fourier $\left(\frac{1}{f}\right)$ is absolutely convergent.

Proof. We let $G=\mathbb{Z}$, so that $\widehat{G}=\mathbb{S}^{1}$. Consider $\ell^{1}(\mathbb{Z})$, and the evaluation map ev : $\ell^{1}(\mathbb{Z}) \rightarrow C\left(\mathbb{S}^{1}\right)$ sending φ to Fourier $(\varphi) \in C\left(\mathbb{S}^{1}\right)$. There exists some $\varphi \in \ell^{1}(\mathbb{Z})$ such that $\operatorname{Fourier}(\varphi)=\operatorname{ev}(\varphi)=f$, and

$$
0 \notin\{\text { values of } f\}=\{\text { values of } \operatorname{ev}(\varphi)\} .
$$

Therefore $0 \notin \operatorname{spec}(\varphi)$, and therefore there exists a $\varphi^{-1} \in \ell^{1}(\mathbb{Z})$ (inverse with respect to convolution). We have Fourier $\left(\varphi^{-1}\right)=\frac{1}{f}$.

Lecture 23

Last time, we discussed Banach algebras, and now we'll add a new piece of structure to them.
Definition. A $*$-algebra is a Banach algebra A equipped with an anti-involution $*$, sending a to a^{*}, such that for all $a, b \in A$ and $\lambda \in \mathbb{C}$, one has

$$
(a b)^{*}=b^{*} a^{*}, \quad\left(a^{*}\right)^{*}=a, \quad(\lambda a)^{*}=\bar{\lambda} a^{*}, \quad\left|a^{*}\right|=|a|, \quad\left|a \cdot a^{*}\right|=|a|^{2} .
$$

The last condition implies $\left|a^{*}\right|=|a|$.

Examples.

- Let X be a compact Hausdorff space, and let $A=C(X)$, with norm $|f|=\max _{x \in X}|f(x)|$. Then the map $f \mapsto f^{*}$ defined by $f^{*}(x)=\overline{f(x)}$ makes A a $*$-algebra.
- Let V be a finite-dimensional hermitian vector space, and let $A=\operatorname{End}(V)$, with norm $|a|=\max _{v \in V \backslash\{0\}} \frac{|a(v)|}{|v|}$. Then the map $a \mapsto a^{*}$ (the hermitian adjoint) makes A a $*$-algebra.
remarks (i) Let $\widehat{A}=\operatorname{Hom}_{\mathrm{alg}}(A, \mathbb{C})$, which is a compact Hausdorff space. There is a natural evaluation map ev : $A \rightarrow C(\widehat{A})$. If $A=C(X)$, then $\widehat{A}=X$, using our identification of the points of X with maximal ideals. Specifically, the map

$$
\text { ev : } C(X) \rightarrow C(\widehat{C(X)})=C(X)
$$

is the identity.
(ii) For any locally compact topological group G (nondiscrete, say), the Banach algebra $L^{1}(G)$ has the natural anti-involution $f \mapsto f^{*}$ where $f^{*}(g)=\overline{f\left(g^{-1}\right)}$. (In the case where G is not discrete, one can extend this anti-involution to an anti-involution on $A=\mathbb{C} 1 \oplus L^{1}(G)$ by the formula $(z \cdot 1+f)^{*}=\bar{z} \cdot 1+f^{*}$.) Let $|\cdot|_{L^{1}}$ be the L^{1}-norm. Then, It is immediate from the definition that $\left|f^{*}\right|_{L^{1}}=|f|_{L^{1}}$ holds for all $f \in L^{1}(G)$. However, the equation $\left.\left|f \star f^{*}\right|_{L^{1}}=|f|_{L^{1}}\right)^{2}$ does not hold, in general. Thus, the anti-involution $f \mapsto f^{*}$ does not make the Banach algebra $L^{1}(G)$ into a $*$-algebra. remarks
Theorem. For any commutative $*$-algebra A, the evaluation map ev : $A \rightarrow C(\widehat{A})$ is an isomorphism of Banach algebras that respects the anti-involution.
Thus, any commutative *-algebra is isomorphic to an algebra of the form $C(X)$ for a compact topological space X.

Proof. We are going to use the Stone-Weierstrass theorem:
Theorem (Stone-Weierstrass). Let X be a compact Hausdorff space, and let $B \subset C(X)$ be a subalgebra that separates points, and that is stable under the involution of complex conjugation. Then B is dense (with respect to the uniform convergence norm) in $C(X)$.
In our setting, statement 1 implies that $\mathrm{im}(\mathrm{ev})$ is stable under conjugation, and im(ev) separates points essentially by definition. Thus, statement 2 follows from statement 1 .

Now we will prove statement 1 . First, we will need the following fact: if $u \in A$ is invertible, then $\lambda \in \operatorname{spec}(u) \Longleftrightarrow \lambda^{-1} \in \operatorname{spec}\left(u^{-1}\right)$. This is clear: $u-\lambda$ is invertible $\Longleftrightarrow u^{-1}-\lambda^{-1}$ is invertible.

Recall that for a Banach algebra A, we can define $\exp : A \rightarrow A$ by

$$
\exp (a)=1+a+\frac{a^{2}}{2}+\cdots,
$$

and the fact that $\left|a^{n}\right| \leq|a|^{n}$ ensures that this is absolutely convergent. We claim that $\lambda \in$ $\operatorname{spec}(a) \Longrightarrow e^{\lambda} \in \operatorname{spec}(\exp (a))$. This follows from the fact that

$$
\frac{\exp (a)-e^{\lambda}}{a-\lambda}=1+\cdots
$$

as a formal power series absolutely convergent in a (take the Taylor series of the holomorphic function $\frac{e^{z}-e^{\lambda}}{z-\lambda}$. Therefore if $\exp (a)-e^{\lambda}$ is invertible, we can define $(a-\lambda)^{-1}$.

Let A be a $*$-algebra. We say that a is hermitian (respectively, skew-hermitian) if $a^{*}=a$ (respectively, if $a^{*}=-a$). We say that u is unitary if $u^{*} u=u u^{*}=1$. Clearly a is hermitian $\Longleftrightarrow \sqrt{-1} a$ is skew-hermitian. Let $H(A)$ be the set of hermitian elements of A (which is a sub- \mathbb{R}-vector space of A), and let $U(A)$ be the set of unitary elements (which is a subgroup of A^{\times}). It is easy to see that $u \in U(A)$ implies $|u|=1$. Observe that

$$
A=H(A) \oplus \sqrt{-1} H(A),
$$

and specifically, for $a \in A$, we have $a=x+i y$ where $x=\frac{a+a^{*}}{2}, y=\frac{a-a^{*}}{2 i} \in H(A)$.
We claim that $a \in H(A) \Longleftrightarrow \exp (i t a) \in U(A)$ for any $t \in \mathbb{R}$. This holds because

$$
\left(e^{i t a}\right)^{*}=1^{*}+(i t a)^{*}+\left(i^{2} t^{2} a^{2} / 2\right)^{*}+\cdots=e^{-i t a},
$$

proving the \Longrightarrow direction, and the \Longleftarrow direction follows from considering the derivative

$$
a=\left.\frac{1}{i}\left(\frac{d}{d t} e^{i t a}\right)\right|_{t=0}
$$

For any $u \in U(A)$, we have $|u|=1$ since $1=|1|=\left|u \cdot u^{*}\right|=|u|^{2}$. It follows that for any $\lambda \in \operatorname{spec}(u)$ we have $|\lambda| \leq|u|=1$. But $u^{*}=u^{-1}$ is also unitary, so for any $\lambda^{-1} \in \operatorname{spec}\left(u^{-1}\right)$, we have $\left|\lambda^{-1}\right| \leq\left|u^{-1}\right|=1$. Therefore $|\lambda|=1$, so that $\operatorname{spec}(u) \subseteq \mathbb{S}^{1} \subset \mathbb{C}$ for any unitary u.

Now, we observe that for any $a \in H(A)$, we have $\operatorname{spec}(a) \subseteq \mathbb{R}$. We can see this as follows. For any $t \in \mathbb{R}$, we know that $e^{i t a} \in U(A)$, and therefore for any $\mu \in \operatorname{spec}\left(e^{i t a}\right)$, we must have $|\mu|=1$. But $\lambda \in \operatorname{spec}(a)$ implies that $e^{i t \lambda} \in \operatorname{spec}\left(e^{i t a}\right)$, so that $\left|e^{i t \lambda}\right|=1$, and therefore $\lambda \in \mathbb{R}$.
We claim that for any $\chi: A \rightarrow \mathbb{C}$ in \widehat{A}, we have $\chi\left(a^{*}\right)=\overline{\chi(a)}$ for any $a \in A$. We write $a=x+i y$ where $x, y \in H(A)$, and recall that we proved last time $\operatorname{spec}(b)=\{\chi(b) \mid \chi \in \widehat{A}\}$ (this is where we need commutativity of A). Then $\chi(x) \in \operatorname{spec}(x) \subset \mathbb{R}, \chi(y) \in \operatorname{spec}(y) \subset \mathbb{R}$, and

$$
\chi(a)=\chi(x+i y)=\chi(x)+i \chi(y)
$$

implies that

$$
\chi\left(a^{*}\right)=\chi(x-i y)=\chi(x)-i \chi(y)=\overline{\chi(x)+i \chi(y)} .
$$

Thus, we have proven statement 1 in our theorem.
Note that if $a \in H(A)$, then $|\operatorname{ev}(a)|=\limsup \left|a^{n}\right|^{\frac{1}{n}}=|a|$ since $\left|a^{2}\right|=|a|^{2}$. For general $a \in A$, we have using part (1) of the Theorem that $|\operatorname{ev}(a)|^{2}=\left|\operatorname{ev}\left(a^{*} a\right)\right|=\left|a^{*} a\right|=|a|^{2}$. It follows that ev is an isometry.

Lecture 24

Today, we'll start discussing Lie theory.
First, I want to raise some philosophical questions: in what sense can \mathbb{C}^{\times}be thought of as a complexification of \mathbb{S}^{1} ? How can we complexify the symmetric group S_{n} ?

We have the map $\exp : \mathbb{C} \rightarrow \mathbb{C}^{\times}$, defined by $a \mapsto e^{a}$, and the line $i \mathbb{R}$ maps onto \mathbb{S}^{1}. We can think of \mathbb{C} as a complexification of the line $i \mathbb{R}$, and so the exponential map tells us that \mathbb{C}^{\times}should be thought of as a complexification of \mathbb{S}^{1}.

More generally, if we have a $*$-algebra and the exponential map $\exp : A \rightarrow A^{\times}$, then the skewhermitian operators $i H(A)$ are mapped to the unitary operators $U(A)$, and because $A=i H(A) \oplus$ $H(A)$ is a complexification of $i H(A)$, we ought to think of A^{\times}as a complexification of $U(A)$.

For example, if $A=\mathrm{M}_{n}(\mathbb{C})$ with $*$ being the hermitian adjoint, then $A^{\times}=\mathrm{GL}_{n}(\mathbb{C}), U(A)=U_{n}$, and $\mathrm{GL}_{n}(\mathbb{C})$ is to be thought of as a complexification of U_{n}.
Definition. A finite-dimensional representation $\rho: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}_{N}(\mathbb{C})$ is called holomorphic if $g \mapsto \rho_{i j}(g)$ is a holomorphic function on $\mathrm{GL}_{n}(\mathbb{C}) \subset \mathrm{M}_{n}(\mathbb{C})$ for all $1 \leq i, j \leq N$.
Proposition. Let $\rho: \mathrm{GL}_{n}(\mathbb{C}) \rightarrow \mathrm{GL}(V)$ be a holomorphic representation, and suppose we have a subspace $W \subset V$ that is U_{n}-stable. Then in fact W is $\mathrm{GL}_{n}(\mathbb{C})$-stable.

Corollary (The "unitary trick"). Any finite-dimensional holomorphic representation of $\mathrm{GL}_{n}(\mathbb{C})$ is completely reducible.
Proof of corollary. Let V be a holomorphic representation of $\mathrm{GL}_{n}(\mathbb{C})$. Because U_{n} is compact, we know that any unitary representation is completely reducible, so considering V now as a $U_{n^{-}}$ representation, we have a decomposition $V=V_{1} \oplus \cdots \oplus V_{k}$ into U_{n}-irreps, and the proposition implies these are also $\mathrm{GL}_{n}(\mathbb{C})$-irreps (enlarging the group can't make reducible something irreducible).
Lemma. Let $f: \mathbb{C}^{r} \rightarrow \mathbb{C}$ be a holomorphic function such that $\left.f\right|_{\mathbb{R}^{n}}=0$. Then $f=0$.
Proof of lemma. This follows from the Taylor formula.
Proof of proposition. Suppose that $W \subset V$ is a U_{n}-stable subspace that is not $\mathrm{GL}_{n}(\mathbb{C})$-stable. Thus, we can find $g \in \mathrm{GL}_{n}(\mathbb{C})$ and $v \in W$ such that $g v \notin W$. Choose $\phi \in V^{*}$ such that $\left.\phi\right|_{W}=0$ and $\phi(g v) \neq 0$.
Let $f: \mathrm{M}_{n}(\mathbb{C}) \rightarrow \mathbb{C}$ be the map defined by $a \mapsto \phi(\rho(\exp (i a)) v)$. For any $a \in H\left(\mathrm{M}_{n}(\mathbb{C})\right)$, we have $\exp (i a) \in U_{n}$, hence $\rho(\exp (i a)) v \in W$, and therefore $f(a)=0$. By the lemma, we must have that $f=0$, but this is a contradiction; for example, there is an $x \in \mathrm{M}_{n}(\mathbb{C})$ such that $g=e^{i x}$, and then we must have $f(x) \neq 0$.
This was a demonstration of a Lie theory argument. Now let's move to a more general setting.
Recall that the commutator of two elements of a ring $a, b \in R$ is $[a, b]:=a b-b a$. Below, it will be convenient to choose a norm $|\cdot|$ on $\mathrm{M}_{n}(\mathbb{R})$. We will need the following lemmas.

Lemma. In $\mathrm{M}_{n}(\mathbb{R})$, one has

$$
e^{x} e^{y}=e^{x+y+o_{1}(x, y)}, \quad e^{x} e^{y} e^{-x} e^{-y}=e^{[x, y]+o_{2}(x, y)},
$$

where o_{1} and o o are maps $\mathrm{M}_{n}(\mathbb{R}) \times \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathrm{M}_{n}(\mathbb{R})$ such that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{\left|o_{1}(x, y)\right|}{|x|+|y|}=0, \quad \text { resp. } \quad \lim _{(x, y) \rightarrow(0,0)} \frac{\left|o_{2}(x, y)\right|}{(|x|+|y|)^{2}}=0 .
$$

Proof. This follows from $e^{a}=1+a+\frac{a^{2}}{2}+o\left(|a|^{2}\right)$, applied to $a=x$, resp. $a=y$, and the corresponding approximation for the logarithm function.
Lemma. Let $\left\{x_{n}\right\}$ be a sequence of nonzero elements of $\mathrm{M}_{n}(\mathbb{R})$ such that

$$
e^{x_{n}} \in G, \quad\left|x_{n}\right| \rightarrow 0, \quad \text { and } \quad x_{n} /\left|x_{n}\right| \rightarrow x \in \mathrm{M}_{n}(\mathbb{R})
$$

Then, we have $e^{t x} \in G$ for all $t \in \mathbb{R}$.
Proof. Let $t \in \mathbb{R}$. Since $\left|x_{n}\right| \rightarrow 0$, we may find integers m_{i} such that $m_{i}\left|x_{i}\right| \rightarrow t$. It is clear that $t \cdot \frac{x_{n}}{\left|x_{n}\right|} \rightarrow t \cdot x$. Hence, $\left(e^{x_{i}}\right)^{m_{i}}=e^{m_{i} x_{i}} \rightarrow e^{t x}$. Therefore, since $\left(e^{x_{i}}\right)^{m_{i}} \in G$ and G is closed, we deduce that $e^{t x} \in G$.

Definition. Let $G \subset \mathrm{GL}_{n}(\mathbb{R})$ be a closed subgroup, and denote the unit element by e. The Lie algebra of G is defined to be $\operatorname{Lie}(G)=\left\{a \in \mathrm{M}_{n}(\mathbb{R}) \mid e^{t a} \in G\right.$ for all $\left.t \in \mathbb{R}\right\}$.

Proposition.

1. Lie (G) is a vector subspace of $\mathrm{M}_{n}(\mathbb{R})$.
2. $[x, y] \in \operatorname{Lie}(G)$ for any $x, y \in \operatorname{Lie}(G)$.
3. G is a submanifold in $\mathrm{M}_{n}(\mathbb{R})$ with tangent space $\operatorname{Lie}(G)$.

Proof of 1. For any $a \in \operatorname{Lie}(G)$ and $t \in \mathbb{R}$ it is clear from the definition that $t a \in \operatorname{Lie}(G)$. For any $a, b \in \operatorname{Lie}(G)$ such that $b \neq-a$, we have by the first lemma above

$$
e^{\frac{1}{n} a} e^{\frac{1}{n} b}=e^{\left.\frac{1}{n}\left(a+b+\alpha_{n}\right)\right)},
$$

where $\lim _{n \rightarrow \infty} n \cdot\left|\alpha_{n}\right|=0$. The result now follows from the second lemma above applied to the sequence $x_{n}:=\frac{1}{n}\left(a+b+\alpha_{n}\right)$. (Note that $a+b+\alpha_{n} \neq 0$ for $\left.n \gg 0\right)$.
Proof of 2. Similarly, we have by the first lemma above

$$
e^{\frac{1}{n} a} e^{\frac{1}{n} b} e^{-\frac{1}{n}(a+b)}=e^{\left.\frac{1}{n^{2}}\left([a, b]+\beta_{n}\right)\right)}
$$

where $\lim _{n \rightarrow \infty} n^{2} \cdot\left|\beta_{n}\right|=0$. Now, we put $x_{n}:=\frac{1}{n^{2}}\left([a, b]+o\left(\frac{1}{n}\right)\right)$ and apply the second lemma.
Proof of 3. It suffices to show that there exists an open naighborhood U of the identity $1 \in \mathrm{M}_{n}(\mathbb{R})$ such that $U \cap G=U \cap e^{\operatorname{Lie}(G)}$. To this end, pick a vector space decomposition $\mathrm{M}_{n}(\mathbb{R})=\operatorname{Lie}(G) \oplus W$. The map $\operatorname{Lie}(G) \oplus W \rightarrow \mathrm{GL}_{n}, x \oplus w \mapsto e^{x} e^{w}$ is a diffeomorphism of a neighborhood of $0 \in \mathrm{M}_{n}(\mathbb{R})$ and a neighborhood of $1 \in \mathrm{GL}_{n}$. If the statement of the lemma doesn't hold, then there are sequences $x_{n} \in \operatorname{Lie}(G)$ and $w_{n} \in W, w_{n} \neq 0$, such that $e^{x_{n}} e^{w_{n}} \in G$ and $e^{x_{n}} e^{w_{n}} \rightarrow 1$. Since $e^{x_{n}} \in G$ we deduce that $e^{w_{n}} \in G$. We may choose a subsequence $w_{n_{i}}$ such that $\frac{1}{\frac{w_{n_{i}}}{}} w_{n_{i}} \rightarrow w \in W$. Then, the second lemma implies $w \in \operatorname{Lie}(G)$, a contradiction.

Examples.

- $\operatorname{Lie}\left(\mathrm{GL}_{n}(\mathbb{R})\right)=\mathrm{M}_{n}(\mathbb{R})$
- $\operatorname{Lie}\left(\mathbb{S}^{1}\right)=i \mathbb{R}$
- $\operatorname{Lie}\left(U_{n}\right)=i H\left(\mathrm{M}_{n}(\mathbb{C})\right)$
- $\operatorname{Lie}\left(\mathrm{SL}_{n}(\mathbb{C})\right)=\left\{a \in \mathrm{M}_{n}(\mathbb{C}) \mid \operatorname{tr}(a)=0\right\}$ (you showed on a homework that $e^{t \operatorname{tr}(a)}=\operatorname{det}\left(e^{t a}\right)$)
- Let $G=\mathrm{O}_{n}(\mathbb{R})=\left\{g \in \mathrm{M}_{n}(\mathbb{R}) \mid\left(g^{T}\right)^{-1}=g\right\}$. Then

$$
\begin{aligned}
\operatorname{Lie}\left(\mathrm{O}_{n}\right) & =\left\{a \mid\left(\left(e^{t a}\right)^{T}\right)^{-1}=e^{t a} \text { for all } t\right\} \\
& =\left\{a \mid e^{-t a^{T}}=e^{t a} \text { for all } t\right\} \\
& =\left\{a \mid-a^{T}=a\right\} \\
& =\{\text { skew-symmetric matrices }\}
\end{aligned}
$$

Remark. Let N be the orthogonal complement of $\operatorname{Lie}(G)$ in $\mathrm{M}_{n}(\mathbb{R})$.

$$
\exp : \underbrace{\mathrm{M}_{n}(\mathbb{R})}_{\operatorname{Lie}(G) \oplus N} \longrightarrow \mathrm{GL}_{n}(\mathbb{R}) .
$$

Then exp restricts to a homeomorphism of a neighborhood of the origin in $\operatorname{Lie}(G)$ to a neighborhood of the identity in G.

Lecture 25

Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a continuous representation, where $G \subset \mathrm{GL}_{n}(\mathbb{C})$ is a closed subgroup. For any $a \in \operatorname{Lie}(G)$, we can form the composition

$$
\begin{aligned}
& \mathbb{R} \xrightarrow{\exp } G \xrightarrow{\rho} \mathrm{GL}(V) \\
& t \longmapsto e^{t a} \longmapsto \rho\left(e^{t a}\right)
\end{aligned}
$$

which is a continuous map from \mathbb{R} to $\mathrm{GL}(V)$. By a previous homework assignment, we know that this implies there is a unique $d \rho(a) \in \operatorname{End}(V)$ such that

$$
\rho\left(e^{t a}\right)=e^{t d \rho(a)}
$$

We get a map $d \rho: \operatorname{Lie}(G) \rightarrow \operatorname{End}(V)$ that fits into the following commutative diagram

Recall that the commutator of two elements of a ring $a, b \in R$ is $[a, b]:=a b-b a$.
Proposition. Let $\rho: G \rightarrow \mathrm{GL}(V)$ be a continuous representation.

1. $d \rho$ is a linear map.
2. If $a, b \in \operatorname{Lie}(G)$, then $[a, b] \in \operatorname{Lie}(G)$ where the commutator is defined just by consdiering a and b as matrices, and moreover, $d \rho$ respects the commutator, i.e.

$$
d \rho([a, b])=[d \rho(a), d \rho(b)] .
$$

3. ρ is a C^{∞}-map.
4. Suppose G is connected. If $W \subseteq V$ is a vector subspace stable under $d \rho(a)$ for all $a \in \operatorname{Lie}(G)$, then W is also stable under $\rho(g)$ for all $g \in G$.
5. If $\rho^{\prime}: G \rightarrow \mathrm{GL}(V)$ is another continuous representation on the same vector space V, if $d \rho=d \rho^{\prime}$, then $\rho=\rho^{\prime}$.

Proof of 1. It is immediate from the construction of $d \rho$ that for any $a \in \operatorname{Lie}(G)$ and $t \in \mathbb{R}$ one has $d \rho(t \cdot a)=t \cdot d \rho(a)$.
Next, let $a, b \in \operatorname{Lie}(G)$. To prove that $d \rho(a+b)=d \rho(a)+d \rho(b)$ we consider the function

$$
f: \mathbb{R} \rightarrow G, \quad t \mapsto e^{t \cdot a} e^{t \cdot b}
$$

We compute

$$
\rho(f(t))=\rho\left(e^{t a} e^{t b}\right)=\rho\left(e^{t(a+b)+o_{1}(t)}\right)=\rho\left(e^{t\left(a+b+\frac{o_{1}(t)}{t}\right)}\right)=e^{d \rho\left(t\left(a+b+\frac{o_{1}(t)}{t}\right)\right)}=e^{t \cdot d \rho\left(a+b+\frac{o_{1}(t)}{t}\right)} .
$$

We know that exp is smooth and an open neighborhood of 0 in $\operatorname{Lie}(G)$ is mapped diffeomorphically to an open neighborhood of $e \in G$. Hence, since ρ is a continuous map, the commutative diagram at
the begining of the Lecture implies that the map $d \rho$ is continuous at $0 \in \operatorname{Lie}(G)$. Hence, we have that $d \rho\left(a+b+\frac{o_{1}(t)}{t}\right) \rightarrow d \rho(a+b)$ as $t \rightarrow 0$. Therefore, using that \log is continuous at $1 \in \mathrm{GL}(V)$, we find

$$
\lim _{t \rightarrow 0} \frac{1}{t} \log \left(\rho(f(t))=\lim _{t \rightarrow 0} d \rho\left(a+b+\frac{o_{1}(t)}{t}\right)=d \rho(a+b)\right.
$$

On the other hand, one has

$$
\rho(f(t))=\rho\left(e^{t a} e^{t b}\right)=\rho\left(e^{t a}\right) \rho\left(e^{t b}\right)=e^{t d \rho(a)} e^{t d \rho(b)}=e^{t d \rho(a))+t d \rho(b)+o(t)}=e^{t\left(d \rho(a)+d \rho(b)+\frac{o(t)}{t}\right)},
$$

where in the second equality we've used that ρ is a group homomorphism, and in the 4th equality we have applied the same lemma as above, but now for the linear maps $t d \rho(a)$ and $t d \rho(b)$, and $o(t)$ stands for some other function such that $\lim _{t \rightarrow 0} \frac{o(t)}{t}=0$. Then, an argument similar to the one above yields

$$
\lim _{t \rightarrow 0} \frac{1}{t} \log (\rho(f(t)))=\lim _{t \rightarrow 0}\left[d \rho(a)+d \rho(b)+\frac{o(t)}{t}\right]=d \rho(a)+d \rho(b) .
$$

We conclude that

$$
d \rho(a+b)=\lim _{t \rightarrow 0} \frac{1}{t} \log (\rho(f(t))=d \rho(a)+d \rho(b)
$$

Proof of 2. The argument is similar to the one in the proof of (1) where the function f is replaced by the function $\mathbb{R} \rightarrow G, t \mapsto e^{t a} e^{t b} e^{-t a} e^{-t b}$.

Proof of 3. Since $d \rho$ is linear, it is smooth, so ρ is smooth near identity. For any $g_{0} \in G$, the map $g \mapsto \rho\left(g_{0} \cdot g\right)=\rho\left(g_{0}\right) \rho(g)$ is smooth, so we can translate to get ρ smooth everywhere.

Proof of 4 . We will need the following lemma:
Lemma. Let G be a connected topological group, and let U be an open neighborhood of $e \in G$. Then the subgroup generated by U is G.

Proof of lemma. We improve our open neighborhood a bit by defining $\mathcal{U}=U \cap U^{-1}$, where $U^{-1}=\left\{g^{-1} \mid g \in U\right\}$. Because U^{-1} is open and contains e, \mathcal{U} is an open neighborhood of e. Thus, it suffices to show that the subgroup generated by \mathcal{U}, in other words, that the set $G^{\prime}:=\bigcup_{k \geq 1} \mathcal{U}^{k}$ is equal to G.
The set G^{\prime} is open, as a union of open sets. We show that G^{\prime} is also closed. To see this, let $g^{\prime} \in \overline{G^{\prime}}$. This means, since \mathcal{U} is an open neighborhood of e, that there exists $g \in G^{\prime}$ such that $g^{\prime} \cdot g^{-1} \in \mathcal{U}$, equivalently, $g^{\prime} \in \mathcal{U} \cdot g$. By the definition of G^{\prime} we have that $g \in \mathcal{U}^{k}$, for some k, We deduce

$$
g^{\prime} \in \mathcal{U} \cdot g \subset \mathcal{U} \cdot \mathcal{U}^{k}=\mathcal{U}^{k+1} \subset G^{\prime}
$$

Thus we've proved that G^{\prime} is both open and closed in G, hence $G^{\prime}=G$ since G is connected.
Now, recall that we showed that the exponential map exp : $\operatorname{Lie}(G) \rightarrow G$ is a local isomorphism. Then the image of exp contains an open neighborhood U of $e \in G$. Let $W \subset V$ be stable under $d \rho(a)$ for all $a \in \operatorname{Lie}(G)$. Then W is stable under $e^{d \rho(a)}=\rho\left(e^{a}\right)$ because $e^{d \rho(a)}$ is just a sum of powers of $d \rho(a)$, and therefore W is stable under $\rho(g)$ for any $g \in \operatorname{im}(\exp)$. Thus, W is stable under $\rho(g)$ for any $g \in \mathcal{U}$, hence stable under $\rho(g)$ for any $g \in \mathcal{U}^{k}$, hence stable under $\rho(g)$ for any $g \in G$.
Proof of 5. By assumption, $d \rho=d \rho^{\prime}$. Exponentiate both sides. Then the same argument as in proof of 4 shows $\rho=\rho^{\prime}$ everywhere.

Let $G \subset \mathrm{GL}_{2}(\mathbb{C})$. There is a natural action $G \curvearrowright \mathbb{C}^{m}[u, v]$ for each $m=0,1, \ldots$

Theorem. For each $m \geq 0, \mathrm{SL}_{2}\left(\mathbb{C}\right.$) has a unique (up to isomorphism) holomorphic irrep L_{m} of $\operatorname{dim}\left(L_{m}\right)=m+1$ and $L_{m}=\mathbb{C}^{m}[u, v]$.
Proof. First, we need to compute $\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$. As we showed last time,

$$
\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)=\left\{A \in \mathrm{M}_{2}(\mathbb{C}) \mid \operatorname{tr}(A)=0\right\}=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{C}\right\}
$$

Thus, $\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$ has as a basis

$$
e=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad h=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad f=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) .
$$

As you've shown on a homework,

$$
[e, f]=h, \quad[h, e]=2 e, \quad[h, f]=2 f .
$$

Let $\rho: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}(V)$ be a holomorphic representation. Consider the map $d \rho: \operatorname{Lie}(G) \rightarrow \operatorname{End}(V)$, and let $E=d \rho(e), H=d \rho(h), F=d \rho(f)$. Then E, H, F satisfy the same commutation relations.
This gives V the structure of a \mathcal{U}-module, where \mathcal{U} is the algebra defined on the same homework assignment.

We claim that if V is irreducible as an $\mathrm{SL}_{2}(\mathbb{C})$-representation, then V is simple as a \mathcal{U}-module. Suppose otherwise; then let $W \subset V$ be a non-trivial \mathcal{U}-submodule. Then part 4 of our proposition implies that, since W is stable under $d \rho(a)$ for any $a \in \operatorname{Lie}(G)$, we must have that W is a subrepresentation of V, but this is a contradiction with the assumption that V is irreducible.

As you showed on your homework, this means that $V \cong \mathbb{C}^{m}[u, v]$ as a \mathcal{U}-module for some m.
Thus, we get some representation $\rho: \mathrm{SL}_{2}(\mathbb{C}) \rightarrow \mathrm{GL}\left(\mathbb{C}^{m}[u, v]\right)$, which we can compare with the natural representation. But by construction, their differentials are equal since the \mathcal{U}-action on $\mathbb{C}^{m}[u, v]$ is the natural one. Because $\mathrm{SL}_{2}(\mathbb{C})$ is connected, we are done by part 5 of the proposition.

Lecture 26

Today we will consider the action of $\mathrm{SL}_{2}(\mathbb{C}) \curvearrowright \mathbb{C}^{m}[u, v]$, and the action of SU_{2} obtained by the inclusion $\mathrm{SU}_{2} \hookrightarrow \mathrm{SL}_{2}(\mathbb{C})$.
Theorem. For each $m \geq 0$, restricting the $\mathrm{SL}_{2}(\mathbb{C})$-action on $\mathbb{C}^{m}[u, v]$ to SU_{2} yields an irrep of SU_{2}, and these are all irreps of SU_{2} up to isomorphism.

Proof. Because $\mathrm{SU}_{2}=\mathrm{SL}_{2}(\mathbb{C}) \cap \mathrm{U}_{2}$, we have

$$
\operatorname{Lie}\left(\mathrm{SU}_{2}\right)=\left\{A \in \mathrm{M}_{2}(\mathbb{C}) \mid A^{*}=-A, \operatorname{tr}(A)=0\right\}=\left\{\left.\left(\begin{array}{cc}
i a & b+i c \\
-b+i c & -i a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}
$$

We can decompose $\mathrm{M}_{2}(\mathbb{C})$ as a direct sum of the hermitian and skew-hermitian matrices:

$$
\mathrm{M}_{2}(\mathbb{C})=H\left(\mathrm{M}_{2}(\mathbb{C})\right) \oplus i H\left(\mathrm{M}_{2}(\mathbb{C})\right)
$$

and therefore

$$
\underbrace{\left\{A \in \mathrm{M}_{2}(\mathbb{C}) \mid \operatorname{tr}(A)=0\right\}}_{\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)}=\left\{A \in H\left(\mathrm{M}_{2}(\mathbb{C})\right) \mid \operatorname{tr}(A)=0\right\} \oplus \underbrace{i\left\{A \in H\left(\mathrm{M}_{2}(\mathbb{C})\right) \mid \operatorname{tr}(A)=0\right\}}_{\operatorname{Lie}\left(\mathrm{SU}_{2}\right)} .
$$

We can express this as

$$
\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)=i \operatorname{Lie}\left(\mathrm{SU}_{2}\right) \oplus \operatorname{Lie}\left(\mathrm{SU}_{2}\right)=\mathbb{C} \otimes_{\mathbb{R}} \operatorname{Lie}\left(\mathrm{SU}_{2}\right)
$$

so that $\operatorname{Lie}\left(\mathrm{SU}_{2}\right)$ is like the "real part" of the vector space $\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$, and $\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)$ is like the complexification of $\operatorname{Lie}\left(\mathrm{SU}_{2}\right)$.
Let $\rho: \mathrm{SU}_{2} \rightarrow \mathrm{GL}(V)$ be a irrep. The differential map is $d \rho: \operatorname{Lie}\left(\mathrm{SU}_{2}\right) \rightarrow \operatorname{End}_{\mathbb{C}}(V)$. Because ρ is a irrep, there is no proper subspace $W \subset V$ that is stable under $\operatorname{im}(d \rho)$. Because $\operatorname{Lie}\left(\mathrm{SU}_{2}\right)$ is a real vector space and $\operatorname{End}_{\mathbb{C}}(V)$ is a complex vector space, we can always extend an \mathbb{R}-linear map from $\operatorname{Lie}\left(\mathrm{SU}_{2}\right)$ to $\operatorname{End}_{\mathbb{C}}(V)$ to a \mathbb{C}-linear map from the complexification of $\operatorname{Lie}\left(\mathrm{SU}_{2}\right)$ to the same vector space $\operatorname{End}_{\mathbb{C}}(V)$,

$$
\left(\mathbb{C} \otimes_{\mathbb{R}} d \rho\right): \underbrace{\mathbb{C} \otimes_{\mathbb{R}} \operatorname{Lie}\left(\mathrm{SU}_{2}\right)}_{\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)} \rightarrow \operatorname{End}_{\mathbb{C}}(V) .
$$

Because $\operatorname{Lie}\left(\mathrm{SL}_{2}(\mathbb{C})\right)=\langle e, h, f\rangle$, we see that V acquires the structure of a simple \mathcal{U}-module.
Now let's discuss $\operatorname{SO}\left(\mathbb{R}^{3}\right)$. There is a natural action $\operatorname{SO}\left(\mathbb{R}^{3}\right) \curvearrowright \mathbb{C}^{n}[x, y, z]$.
Theorem. For each positive odd integer $2 n+1, n=0,1, \ldots$, there is a unique irrep of $\mathrm{SO}\left(\mathbb{R}^{3}\right)$ of dimension $2 n+1$ (up to isomorphism). Specifically, this irrep is $\operatorname{Harm}^{m}\left(\mathbb{C}^{3}, \mathrm{SO}\left(\mathbb{R}^{3}\right)\right.$). These are all of the irreps of $\mathrm{SO}\left(\mathbb{R}^{3}\right)$.

Proof. Recall from the first homework assignment that there is a double cover map $\pi: \mathrm{SU}_{2} \rightarrow$ $\mathrm{SO}\left(\mathbb{R}^{3}\right)$, which you obtained by thinking of SU_{2} as $\mathrm{U}(\mathbb{H})$. The kernel of π is just $\{ \pm 1\}$.
Given an irrep $\phi: \mathrm{SO}\left(\mathbb{R}^{3}\right) \rightarrow \mathrm{GL}(V)$, the composition $\phi \circ \pi$ is an irrep of SU_{2} since ϕ is surjective, and the map $\phi \mapsto \phi \circ \pi$ clearly gives a bijection

$$
\widehat{\mathrm{SO}\left(\mathbb{R}^{3}\right)} \stackrel{\pi^{*}}{\cong}\left\{\rho \in \widehat{\mathrm{SU}_{2}} \mid \rho(-1)=1\right\}
$$

between irreps ϕ of $\mathrm{SO}\left(\mathbb{R}^{3}\right)$ and irreps ρ of SU_{2} that annihilate $\operatorname{ker}(\pi)$.

Any irrep of SU_{2} is some $\mathbb{C}^{m}[u, v]$. Note that - id maps $u^{a} v^{b}$ to $(-1)^{a+b} u^{a} v^{b}$, so a representation descends to $\mathrm{SO}\left(\mathbb{R}^{3}\right)$ if and only if $m=a+b$ is even, i.e. $m=2 n$ for some m. Note that $\operatorname{dim}\left(\mathbb{C}^{m}[u, v]\right)=$ $\operatorname{dim}\left(\mathbb{C}^{2 n}[u, v]\right)=2 n+1$.
Now we need to identify this representation with the representation $\operatorname{Harm}^{m}\left(\mathbb{C}^{3}, \mathrm{SO}\left(\mathbb{R}^{3}\right)\right)$. Recall that by a homework problem,

$$
\mathbb{C}^{n}[x, y, z] \cong \mathcal{H}^{n} \oplus r^{2} \mathcal{H}^{n-2} \oplus \cdots
$$

where $r^{2}=x^{2}+y^{2}+z^{2}$, and also that $\operatorname{dim}\left(\mathcal{H}^{k}\right)=2 k+1$. Note that \mathcal{H}^{k} is an $\operatorname{SO}\left(\mathbb{R}^{3}\right)$-stable subspace of $\mathbb{C}^{k}[x, y, z]$.

There are two possibilities:

1. \mathcal{H}^{n} is an irrep of dimension $2 n+1$ (which is what we want), or
2. it isn't.

If it isn't, then each irreducible direct summand of \mathcal{H}^{n} has dimension $<2 n+1$, and observing the decomposition of $\mathbb{C}^{n}[x, y, z]$ we wrote above, we see that statement 2 is equivalent to
2^{\prime}. Each irreducible direct summand of $\mathbb{C}^{n}[x, y, z]$ has dimension $<2 n+1$.
Now, it will suffice to show that 2^{\prime} is impossible. Indeed, we claim that the $(2 n+1)$-dimensional irrep of $\mathrm{SO}\left(\mathbb{R}^{3}\right)$ does occur in $\mathbb{C}^{n}[x, y, z]$.
Consider the map $\mathbb{R} \rightarrow \mathrm{SU}_{2}$ defined by $t \mapsto\left(\begin{array}{cc}e^{i t} & 0 \\ 0 & e^{-i t} .\end{array}\right)$. Let's check what it does to monomials:

$$
\left(\begin{array}{cc}
e^{i t} & 0 \\
0 & e^{-i t}
\end{array}\right): u^{a} v^{b} \mapsto e^{i a t} e^{-i b t} u^{a} v^{b}=e^{i(a-b) t} u^{a} v^{b} .
$$

Thus, the eigenvalues of this matrix on $\mathbb{C}^{2 n}[u, v]$ are $\left\{e^{i k t} \mid-2 n \leq k \leq 2 n\right\}$, and in particular, the maximum possible k is $2 n$.
Therefore, if we can show that $\pi\left(\begin{array}{cc}e^{i t} & 0 \\ 0 & e^{-i t} .\end{array}\right)$ does have $e^{2 n i t}$ as an eigenvalue when acting on $\mathbb{C}^{n}[x, y, z]$, we will be done, because no lower dimensional irrep could have produced it.

On the homework, you classified continuous homomorphisms $\mathbb{R} \rightarrow \mathrm{SO}_{n}$. Then we know that the composition $\rho: \mathbb{R} \rightarrow \mathrm{SU}_{2} \xrightarrow{\pi} \mathrm{SO}\left(\mathbb{R}^{3}\right)$ must map t to $e^{A t}$ for some A, and moreover, we now know that we must have $A \in \operatorname{Lie}\left(\mathrm{SO}\left(\mathbb{R}^{3}\right)\right)$, or in other words, $A \in \mathrm{M}_{3}(\mathbb{R})$ satisfies $A^{t}=-A$. Therefore, there exists an orthogonal basis x, y, z in which

$$
A=\left(\begin{array}{ccc}
0 & a & 0 \\
-a & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Note that

$$
\begin{aligned}
\{t \in \mathbb{R} \mid \rho(t)=1\} & =\left\{t \in \mathbb{R} \left\lvert\,\left(\begin{array}{cc}
e^{i t} & 0 \\
0 & e^{i t}
\end{array}\right)= \pm 1\right.\right\} \\
& =\{t \in \pi \mathbb{Z}\}
\end{aligned}
$$

But on the other hand,

$$
\{t \in \mathbb{R} \mid \rho(t)=1\}=\left\{t \mid e^{A t}=1\right\}
$$

$$
\begin{aligned}
& =\left\{t \mid e^{ \pm i a t}=1\right\} \\
& =\{a t \in 2 \pi \mathbb{Z}\}
\end{aligned}
$$

Therefore, $a=2$, and the matrix $e^{A t}$ has eigenvalues $e^{2 i t}, e^{-2 i t}$, and 1 . Acting on $\mathbb{C}^{n}[x, y, z]$, we can see that it has as $e^{2 n i t}$ as an eigenvalue, because (for example) x^{n} is mapped to $\left(e^{2 i t} x\right)^{n}=e^{2 n i t} x^{n}$. Thus, we are done.

[^0]: ${ }^{1}$ In fact we see later that there is an even cleaner definition $T_{\mathbb{C}} V \# G=T_{\mathbb{C} G} M$.

[^1]: ${ }^{2}$ The universal property says that if $\bar{A} \rightarrow A$ is an algebra homomorphism, M an \bar{A}-bimodule, and $f: M \rightarrow A$ an \bar{A}-bimodule map, then there exists a unique algebra map $T_{\bar{A}} M \rightarrow A$ extending f.

