A COMPARISON OF THE CLASSIFICATION OF SURFACES

CARLOS AZPURUA

ABSTRACT. In this expository paper, we discuss the classification of Euclidean
surfaces to introduce the Killing-Hopf theorem. We then introduce hyperbolic
geometry and its isometries, so that we may consider a difference in the clas-
sification of Fuclidean and hyperbolic surfaces. We end with a discussion on
Riemann surfaces and briefly introduce the Uniformization theorem.
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1. SURFACES OF LOCAL GEOMETRIES AND KILLING-HOPF

The goal of this section is to answer the question of which surfaces locally look
like one of the ”three basic two-dimensional geometries-” Euclidean, spherical, and
hyperbolic space. By euclidean space, we of course just mean R2. We will not go
into detail about spherical space, but for our purposes we can think of it as just the
2-sphere, with an inherited metric from R3. We will formally introduce hyperbolic
space in section 2.

Definition 1.1. A euclidean surface is a set S with a function dg: S x S — R
that is locally euclidean. That is for all € S, there exists an ¢ > 0 where the
neighborhood N, (z) = {2/ € A | ds(z,2") < €} is isometric to a euclidean disk,
i.e. there exists a bijection f between N (z) and a disk D C R? where for all
Y,z € Ne(z), we have that dg(y, z) = d(f(y), f(2)).

The above definition can be generalized to spherical and hyperbolic space by
instead requiring an isometry to a disk of the respective space at each point. When
we refer to a surface, we mean a set that is locally like either euclidean, spherical or
hyperbolic space in the sense of definition 1.1, unless we specifically mention which
kind of surface it is. For sections 1 and 2 this kind of surface will be the main object
of interest. The following closely related definition will seem very abstract at first,
but we will see how it arises naturally using an example from Euclidean space.

Definition 1.2. Let I be a group acting on a metric space T'. Define the quotient
of T by T', T/T, to be the set of all sets of the form I'p = {g(p) | g € T'} wherep € T.
1



2 CARLOS AZPURUA

FIGURE 1. The I' Orbit of the point (2,1)

That is, T/T = {T'p | p € T}. We call I'p the I'—orbit of p. Define n: T — T/T by
7(p) =Tp.

It can easily be seen that by the properties of a group that this procedure par-
titions T into equivalence classes, namely the sets I'p. However, this is not enough
to guarantee that T'/T is a surface, or that it inherits the geometrical properties of
whatever T is, so we will need to impose more conditions, so of course it will be
better to work with an example at this point.

Example 1.3. The Cylinder, C, as a euclidean surface

What motivates us to check that the cylinder is euclidean is that it can be made
by joining a pair of opposite sides of a sheet of paper (which can be thought of as
a piece of the plane). More formally, this would be like taking two parallel lines,
say x = 0 and « = 1, and identifying every point in the region bounded by these
lines with a point in C'. Yet this would mean we would have to identify points on
x = 0 and = = 1 with the same collection of points in the cylinder, because it would
otherwise not geometrically ”look” like a cylinder. Points on x = 0 and z = 1 would
then be distinguished from the ones in the interior of the region. This conflicts with
the rotational symmetry of the cylinder, so it would be best to adjust our model
to treat all points of the cylinder equally, which we can do by instead using all the
points of R?. Seeing that C has a this nice "rectangular” representation, we will use
this representation to tile the plane. We will identify a point on C' with a collection
of points of R2. If a point (z,y) is in the collection of points P which corresponds
to a point in C, then points of the form (z 4+ n,y) where n € Z should also be in
P. So a point of C'is a set of the form {(z 4+ n,y) | n € Z}.

This is exactly a partition of R? into equivalence classes by the group of integer
translations in the x-direction. Using the language from definition 1.2, if I is this
group of translations, a point of R?/I" (that is, a point of C) is a set of the form
{9(p) | g € T'} for some p € R2. The I orbit of (%,1) is given above in figure 1. To
give C' a notion of distance, recall that points in C' are collections of points in R?
and that for two points @), R € C, we let

(1.0.1) de(Q, R) = min{d(q,7) | ¢ € Q,r € R}
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where d is the euclidean distance in R2. If we fix some ¢’ € Q, the right hand side
above is equal to

(1.0.2) min{d(¢’,r) | r € R}

because each ¢ € @ has the same set of distances to the points in R. This can
be seen as follows: if some ¢; € @ is some distance from some r; € R, then for
some ¢go € @ there exists g € I" with g(¢1) = g2, and because ¢ is an isometry,
d(q1,m1) =d(g(q1), g(r1)) = d(g2, g(r1)). Yet g(r1) € R by definition, so expression
(1.0.2) is the same regardless of the choice of ¢’ € @ and is equal to (1.0.1). It is
easy to see from (1.0.2) that the minimum does exist, because there is a nearest
r € R to ¢’. Thus the metric d¢ is well defined. It can be seen that for any point in
C, there exists a neighborhood (neighborhoods of radius less than 1/2) where d¢
is equal to the Euclidean metric. The metric d¢ being defined and euclidean isn’t
the case for every isometry group, but we can generalize by seeing that this in part
due to some nice properties of the translation group, which we will now introduce.

Definition 1.4. A group I' acting on a metric space T is discontinuous if no
S € T/T has a limit point in 7. That is, there is no point p in T and S € T/T" such
that for any neighborhood U around T', we have that (U/{p}) NS is non empty.
Moreover, T' is fized point free if for all g € T with g # id., for all p € T, g(p) # p.

These two properties will be sufficient to guarantee that when an isometry group
of euclidean, spherical, or hyperbolic space has them, its quotient of its respective
space will have the local geometry of that space. Discontinuity helps guarantee that
the metric in (1.0.1) is well defined by ensuring that a minimum exists. If some T
orbit R had a limit point, ¢ then if for example ¢ ¢ R, the set {d(q,r) | » € R}
would not contain its infimum, and we would have two different I" orbits with dis-
tance 0 from each other. There are also isometry groups whose quotients have a
defined notion of distance, i.e. that of eq. (1.0.1), but are not everywhere locally
euclidean, which is why we include the fixed-point free condition. For example, if "
is the group generated by the rotation 7,5 about the origin of R2?, then any neigh-
borhood around the origin contains multiple representatives from each I'—orbit.
This is problematic because then a circle of radius € centered on the origin has
circumference err/2 in R? /T, as opposed to the euclidean value of 2me.

Theorem 1.5. Let T be a metric space and I' be a group of isometries of T which
are discontinuous and fived point free. Then each point p € T has a neighborhood U
in which each point belongs to a different I' — orbit, or in other words, ® as defined
in definition 1.2 is injective on U.

Proof. Suppose that I' is fixed point free and discontinuous. Let p € T and let
m(p) = S. For the sake of contradiction, suppose that for every neighborhood U
around p, there distinct points, ¢ and r, in U, with 7(¢) = w(r). We will show that
p is a limit point of S, a contradiction. Let U be a neighborhood of p of radius
6. Let the neighborhood around U with radius g be called V. Then there exist
distinct points ¢, in V' with 7(¢) = m(r). Then there exists some g € I" with
g(q) = r and g # id.. By the triangle inequality, we have that

d(p,g(p)) < d(p,r) +d(r,g(p)).
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FIGURE 2. Quotient of R? by r, /2 (image from Stillwell Section 2.4)

Because g is an isometry, d(p,q) = d(g(p), g(q)) = d(g(p),r), so by this and the fact
that r,q € U, we have that

dp,g(p) < d(pyr) + d(p,) < 5+ 5 =

so g(p) € U. Since T is fixed point free, p # g(p), so p is a limit point of S, a
contradiction, so 7 is injective on some neighborhood of p.
O

From here on we restrict 7' to be one of our three spaces of interest (euclidean,
spherical, and hyperbolic). Before we discuss the converse of theorem 1.5, we discuss
a fact that we will use without rigorous proof. Specifically, that for any isometry
of the three spaces, if the isometry is the identity on the neighborhood of a point,
then it is the identity on the whole space. This can be seen by observing that for
any of theses spaces, circles (sets which are a set of points with fixed distance from
a chosen point), behave nicely in that 3 or more circles who all intersect, can only
do so at exactly one point. Then, if an isometry is an identity on a neighborhood
of a point, any point outside the neighborhood must map to itself, because if we
consider any circle through this point with center in the neighborhood (which there
are infinitely many of), these circles must map to themselves, and thus the point
outside the neighborhood must be fixed because it is the only point in common
with all these circles.

Theorem 1.6. Let T be either euclidean, hyperbolic, or spherical space, and " be a
group of isometries of T' such that each point p € T' has a neighborhood U in which
each point belongs to a different T'—orbit. Then I' is discontinuous and fixed-point
free.

Proof. Suppose for the sake of contradiction that I' is not discontinuous. Then
there is some p € T that is a limit point of its I'—orbit, w(p) = S. Then every
neighborhood around p contains a point ¢ # p in S, a contradiction that there exists
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a neighborhood around p in which each point belongs to a different I'—orbit. For the
sake of contradiction, suppose that I' is not fixed point free. Let p be a fixed point
of some g € T that is not the identity. We know that g is not the identity on any
neighborhood of p, because otherwise it would be the identity on the whole space.
So for any neighborhood U of size § around p, there exists some r € U that does not
map to itself under g. Thus we have that d(p, g(r)) = d(g(p), g(r)) = d(p,r) < 4,
meaning that g(r) € U, a contradiction that there exists a neighborhood around p
where each point maps to a different I'—orbit, so I is fixed point free. |

Theorem 1.7. The quotient of R? by a fized point free, discontinuous group I' is
a euclidean surface

Proof. We equip R?/T with the distance metric (1.0.1), which again for some P, Q €
T/T is equivalent to min{d(q,r) | » € R} where g € Q. The set {d(q,7) | r € R} is
bounded below, so it has an infimum, d. Suppose it doesnt contain its infimum, then
for any € > 0, there are infinitely many = € R with d < d(q,x) < d 4+ €. However,
the set of such z is bounded and infinite, so it must have a limit point by Bolzano-
Weierstrass. This contradicts the continuity of T, so d must be in {d(q,r) | r € R},
and d is of course the minimum, so this metric is well defined on R?/T.

Now let I'p € R?/T". Then by theorem 1.5 there exists a neighborhood U around
p with radius € where every point belongs to a different I' — orbit. We claim
that on the neighborhood V around p of radius §, that 7: R*> — R?/T" is an
isometry. Let ¢, € V. By definition, d(q,r) > d(I'q,T'r). Suppose for the sake of
contradiction that d(g,r) > d(I'¢,I'r). Then there is some r’ € I'r with 7’ # r such
that d(q,7’") < d(gq,r). By two applications of the triangle inequality,

d(p.r') < d(p.q) +d(q.r') < 5 +d(.r) < 5 +d(g.p) +d(p.r) <.

So we have that d(p,r’) < €, so v’ € U contradicting that r is the only member of
its quotient group in U. So d(q,r) = d(I'q,T'r), so 7 is an isometry, and R?/T" is a
euclidean surface. O

This characterization of fixed-point free, discontinuous isometry groups of our
three spaces of interest is nice because we now know that a quotient of one of
theses spaces by an isometry group not satisfying these conditions cannot be a
surface with the local properties we desire. That is, if an isometry group isn’t fixed
point free and discontinuous, then the quotient by this group of its respective space
will fail to have the locally geometry of that space, meaning there will be a point in
the quotient space where no neighborhood is isometric to the respective space (the
quotiented space). One can use the classifications of isometries of euclidean space
in fact, to simply list all possible objects that result from quotienting R? by a fixed
point free, discontinuous group. Because rotations always have fixed point, the only
possible generators for I' are glide-reflections and translations. In fact, it can be
shown that fixed-point free discontinuous isometry groups of R? are generated by
only one or two elements. The previous fact allows us to work case by case on the
possible generators, resulting in the following theorem.

Theorem 1.8. The quotient of R? by a fized point free, discontinuous group G is
either a cylinder, twisted cylinder, torus, or Klein bottle.
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Surface R?/T Generators of T
Cylinder Single translation
Twisted Cylinder Single Glide reflection
Torus Two translations (that are not parallel)
Klein bottle One translation and glide reflection

Another advantage of the use of quotient groups is that we have a model for
objects like the Klein bottle, which cannot be embedded in 3-D euclidean space
without self-intersection. Now we will discuss some theorems about surfaces them-
selves. It should be noted that not all surfaces with the local geometric structure
of definition 1.1 are a quotient of a discontinuous fixed point free group (like the
union of two disjoint parallel planes), but sufficiently "nice” surfaces are.

Definition 1.9. A surface S is connected if for any two A, B € S, there exists a
finite sequence of points starting with A and ending in B such that consecutive
points lie together in a euclidean disk of S. We refer to this sequence of points
as a polygonal path from A to B. S is complete if any line segment in S can be
continued indefinitely.

Remark 1.10. When we refer to a line segment on a euclidean surface, we mean
a polygonal path whose sides are entirely contained in euclidean disks where suc-
cessive sides meet at an angle of 7.

Connectedness excludes the parallel plane example, and completeness excludes
for example, the plane minus a point, which is a euclidean surface, but is geometri-
cally inconvenient because every line segment cannot be continued indefinitely. We
now introduce a more general definition for the notion of a surface, so that we can
discuss an important classification theorem.

Definition 1.11. A Riemannian Manifold is a real smooth manifold M with a
smooth inner product structure g, that is, a family of functions defined at each
point p from the Cartesian product of the tangent space T),M at p with itself to R.
That is, g, takes in two tangent vectors at p and returns a scalar (just like a dot
product). By the inner product being smooth, we mean that if X and Y are vector
fields on M, then the function defined by p — ¢,(X|,, Y|,) is smooth. We call this
family of functions g a Riemannian metric tensor on M.

Note that having a metric tensor induces an ordinary metric on the space, as
we can use the metric tensor to integrate along a curve and get a length. A metric
tensor in fact provides more structure than a regular distance metric because it
allows us to measure tangent vectors, angles between them, and thus define an inner
product, structure which will give rise to the geometry of the space. For example
curvature, a quantity that will appear in the following theorem, is something we
can define based off of this structure.

Theorem 1.12. (General Killing-Hopf) Any complete, connected Riemannian
Manifold of constant curvature is the quotient of either euclidean, hyperbolic, or
spherical space by a discontinuous, fized point free group of isometries.

In the case of euclidean surfaces, this translates to the fact that any complete,
connected euclidean surface is of the form R? /T for some fixed point free, discontin-
uous group I'. Moreover, we have that these surfaces are exactly those described in
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theorem 1.8, if the surface is not R? itself. We shall see that the classification of hy-
perbolic surfaces however, is not as straight forward. Though we have Killing-Hopf
for hyperbolic surfaces, i.e. that those surfaces are all the quotient of hyperbolic
space by some fixed point free discontinuous group of isometries I', the classification
of all such T" is more difficult because there is another type of hyperbolic isometry
that can be included in I', limit rotations.

2. HYPERBOLIC SPACE AND ITS ISOMETRIES

The purpose of this section is to in brief, introduce hyperbolic geometry, and ex-

plain how its difference in isometries lead to a different in the approach of the clas-
sification of hyperbolic surfaces. Hyperbolic geometry can be introduced through a
discussion on curvature, and its distinction from spherical and euclidean geometry
in that it is a surface of constant negative curvature (where as the other two have
positive, and 0 curvature, respectively). However, this is outside of scope of this
paper so we begin with some models of hyperbolic space and a discussion of its
metric metric.
From here on, we denote the open unit disk by D? = {(z,y) € R? | 22 + 3% < 1},
and the open upper half plane by H? = {(x,y) € R? | y > 0}. We refer to D? as
the conformal disk model and to H? as the half-plane model. Both of these serve
as models of hyperbolic space, and there is no ”difference” between each space
equipped with the proper metric. The difference arises in working with the models,
where things that might seem obvious in one model, might not seem obvious in the
other model. They can be equipped with a metric tensor, as in definition 1.11. In
the case of H?, we have the following:

Definition 2.1. The Poincaré metric is a metric tensor on H? is given by

Vdz? + dy?
ds = F———.
Y

A consequence of this metric is that as we approach the x-axis, points which
are near each other vertically in the euclidean sense, become further and further
apart, while the x-axis is at a distance of infinity. One thing that still ”looks”
euclidean, however, is angle. We can use the ratios of the sides of infinitesimal
right triangles to define angle, and observe that the Poincaré metric is equal to the
euclidean distance metric divided by what is in the case of an infinitesimal triangle,
a constant, y, so the ratios in hyperbolic space are equal to the those in euclidean
space. It will be much easier to express hyperbolic isometries in terms of complex

functions, in which case the above metric is simply

|dz|

9= 100y

To see that H? and D? are models of the same thing, we define a bijection J: H? —
D? by inverting the complex plane in the circle centered at —i with radius v/2, and
then reflecting over the x-axis. We can express J as a complex function like so:
J(z) = iz + 1
zZ+1
The description of J as a composition of an inversion and reflection is convenient
because we then know that angles are also preserved in D?, hence the name con-
formal disk model. While we could build up to a metric "from scratch” on D2,
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FIGURE 3. Our two models and some lines (figure from Stillwell
section 4.2)

=1 ] 1

since we already know it is a model of hyperbolic space we can use the bijection
we already have to define a distance metric on D? by taking the distance between
w1, wy € D? to be the distance of their preimages J~!(wy), J %(w2) in H2. For
w = J(z), this results in that
_dz 2dw
CIm(z) 11— |w|?
Note that as |w| approaches 1, the distance of |w| from the origin approaches
infinity. We should then verify that .J does send H?, i.e. points on the x-axis to
the boundary of the unit circle. Let a € R, then we have that

_ ai+1 (@i +1)(a — i) 2a + (a® — 1)i

[J(a+0i)| = | ——] = | 5 | =l—
a+i a*+1 a*+1

So the boundary of D? plays the role of the x-axis plays in the half-plane model in
that it is both a boundary, and a collection of points (that aren’t actually in D?)

that are ”off at infinity”. It will soon be relevant to understand what lines look like
in hyperbolic space, but we should first establish what we mean by a line.

ds

|=1.

Definition 2.2. A line is a set of points equidistant from two other points.

In the H? model there are two possibilities, euclidean circles which are orthogonal
to OH?, and vertical lines. In the D? model there are also two cases, arcs of euclidean
circles orthogonal to dD?, and diameters of the disk.

‘We now have the foundation necessary to discuss and classify the isometries of hy-
perbolic space. It is obvious that rotating around the origin in the ID? model leaves
its metric invariant, because |w| is unchanged, this gives the so-called D?—rotations.
An obvious type of isometry on H? is of the form t,(2) = a+2z where a € R. This is
strictly a horizontal translation of the plane. This kind of isometry is called a limit
rotation because in H? it permutes vertical lines, though it sends horizontal lines
(which are not actually lines in H?) to themselves. Though this kind of isometry
does not fix any points in hyperbolic space, when considered in D?, it fixes i, a
point on D?. Note that although J~1(i) is empty, in some sense it fixes a point of
OH?, the point at ”infinity” of this line, which would map to i if we extended .J to
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(@, the complex projective plane.

Another obvious type of isometry on H? is called a translation, and is of the form
dp(z) = pz for p > 0. It is a translation more-so than the previous kind of isometry
in the sense that it sends the y-axis to itself, so it has an axis of translation which
is actually an H? line.

Now we consider reflections. There is an obvious candidate in H?, reflection over
vertical lines. However, there is another kind of reflection, corresponding to another
kind of H? line, euclidean inversions in circles perpendicular to OH?. To see that
this is indeed an isometry, we will need to first work in D?. Consider reflection over
the real line, 7(w) = w, which is an isometry of D? because it leaves |w| unchanged.
Yet the real line in the D? model corresponds to the unit circle in in H?. Moreover,
one can verify that the conjugate by J~! of r(w) is inversion in the unit circle.
That is,

1
L J(z) = =
J7rd(z) =

but not only do we now have that inversion in the unit circle is an isometry of
HZ2, by the previous two types of isometries, inversion in any circle with center on
the x-axis and any radius is an isometry. This makes up all the H? reflections,
so we can discuss the final type of isometry then the glide reflection. This is the
product of a reflection with a translation whose axis is the line of reflection. This
is either the composition of the reflection of a vertical line with a H? translation,
that is, dilation, or it is simply an inversion in a semi-circle in HZ2, the other type
of reflection we have discussed. This kind of isometry has one invariant line and
fixes two points, but its fixed points are not actually in hyperbolic space, i.e. they
are in OH? or OD?, depending on the model you are working with.

Theorem 2.3. Fvery hyperbolic isometry is either a rotation, a limit rotation, a
translation, or a glide-reflection. Moreover, the only isometries that are not fized
point free are rotations.

Thus the only kind of hyperbolic isometry which fixes a point in hyperbolic
space itself are rotations. This complicates things for the classification of all possi-
ble complete, connected hyperbolic surfaces, because the resulting possibilities for
fixed point free discontinuous groups are quite vast.

3. HYPERBOLIC SURFACES

At this point, we give up the approach of theorem 1.8, where we were able to
list all possible fixed-point free discontinuous groups I' because of the properties
of Euclidean space, and then use Killing-Hopf to establish that the quotient of
the plane by these groups are indeed the only possible Euclidean surfaces. For
hyperbolic space, it will simply be easier to find the surfaces directly, so we introduce
a new object called a hyperbolic polygon, in order to construct hyperbolic surfaces.

Definition 3.1. A set IT C H? is called a hyperbolic polygon if there exists a finite
consecutive sequence of H? line segments and segments of H? that bound IT and
are in II. We call the line segments in H? proper edges and the segments of OH?
improper. We similarly call vertices of these line segments proper if they lie in H?,
while those in OH? are called improper.
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The idea is to paste edges of the polygon together, in a similar way to how in
the representation of a cylinder as a quotient of R?, we pasted together the lines
=0 and x =1 as in the paper analogy.

Definition 3.2. An edge pairing of a hyperbolic polygon II is a partition of the
proper edges into pairs {e, e’} of equal length (where length may be infinite), with
an H? isometry g . : e — ¢’ for each pair. Points p € e and p’ € €’ are said to be
identified if ge o (p) = p'.

In the case that p is a vertex, it is possible that p is identified with some p’,
which is identified with some p” # p. We say that p and p” are also identified, and
we call a set of vertices containing an entire such chain {vy,...,vx} a vertex cycle.
Note that this partitions the vertices of II into equivalence classes, which are the
vertex cycles.

Definition 3.3. The identification space S of an edge pairing of a polygon II is
a set whose points are

(1) the interior points z of II
(2) pairs {p,p’'} of interior points of proper edges that are identified
(3) the vertex cycles of the proper vertices of II.

With the following definition, we finish make the idea of pasting the edges of the
hyperbolic polygon rigorous.

Definition 3.4. If Sy is the identification space of some hyperbolic polygon II,
and A, B € Sy we define a polygonal path P from A to B in the identification
space as a finite sequence of k paths {P,} in IT with the following properties
(1) P starts at A and pg ends at b
(2) For all 1 <4 <k, if P, ends at u, and P,11 starts at v, then v and u are
identified.

Moreover, we define the length of P to be |P| = Zﬁzl(\PnD, that is, the sum of
the lengths of the individual paths.

Theorem 3.5. For a hyperbolic polygon 11, if the angles of each vertex cycle sum
to 27, its identification space St is a hyperbolic surface. In particular we equip the
identification space with the metric

ds(A, B) = inf{|P| | P is a polygonal path from A to B}

At this point, for some identification space Sy we cannot yet use Killing-Hopf
to guarantee a corresponding group I' such that H?/T" is isometric to Sp. This is
because Killing-Hopf requires that our surface be complete, which we do not yet
know. The following theorem provides a criteria that will guarantee us this; so long
as the sides of II are finite, then Sy is complete.

Theorem 3.6. IfI1 is compact, then S is complete.

Thus by Killing-Hopf we have that any compact polygon II has a corresponding
group I' where H? /T is isometric to Spp. A natural question that arises is whether
the converse is true, whether for every quotient group, (and thus every complete,
connected, hyperbolic surface), there exists a corresponding Syy. It turns out that
this is the case for any compact hyperbolic surface.

Theorem 3.7. For any compact hyperbolic surface H? /T, there exists a hyperbolic
polygon T1 whose identification space is H?/T.
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Proof. For some p € H2, define the Dirichlet region D(p) with center p to be
D(p) = {q € B | du=(q, p) < du=(g, 9(p)) for all g € '},

That is, D(p) is the collection of points that are closer to p than any other member
of p’s T orbit, I'p = {g(p) | g € T'}. Note that D(p) contains at least one element
of every I orbit, and its interior contains at most one element from H?/T, hinting
that this is indeed the hyperbolic polygon we are looking for.

We can express D(p) as the intersection of the collection of closed half planes of
the form

Hgy(p) = {q € H? | dy2(q,p) < du2(q,9(p))},

that is, D(p) = (,er Hy(p), so D(p) is also closed and convex (because half-planes
are convex), and has some boundary 9D(c). This boundary contains at most one
segment from each of the lines bounding the above half planes. That is, the lines

Lg(p) = {q € B? | du2(q,p) = du=(q,9(p))}-

Recall that from definition 2.2, Ly(p) is indeed a line, as it is the set of points
equidistant from p and g(p). We wish to show that for only finitely many g, Lq(p) N
0D(p) # O, because then we will have a hyperbolic polygon.

Because H?/T" is compact, D(p) is compact. So there exists a hyperbolic disk U of
radius r with D(p) C U. If a line L,(p) passes within a distance r of p, i.e., there
exists a point z € Ly(p) such that dyz2(z,p) = dg=2(z, g(p)) and d(z,p) < r, then by
the triangle inequality, dg2(p, g(p)) < 2r. Then infinitely many lines Ly(c) cannot
intersect with D(p), because otherwise there will be infinitely many points of the
I'p within 2r of p, meaning that I'p will have a limit point, a contradiction that I"
is discontinuous. (]

Notice that the above proof doesn’t actually depend on any properties of hyper-
bolic geometry. In fact, it is the case that for any compact surface R?/T", S?/T" (the
sphere), or of course H? /T, there is a corresponding polygon, with the exception of
S? itself.

4. UNIFORMIZATION THEOREM, RIEMANN SURFACES

In this section we introduce another type surface, the Riemann surface (which is
different from the Riemannian Manifold!). We will introduce another classification
theorem, and see how the language of quotient spaces is useful for this new object.

Definition 4.1. A Riemann surface is a connected complex manifold of complex
dimension 1. In particular, the transition maps between two overlapping charts are
required to be holomorphic.

Definition 4.2. A conformal transformation is a map that preserves angles lo-
cally. We say that two sets are conformally equivalent if there exists a conformal
transformation from one to the other (and thus vice versa).

Theorem 4.3. (Uniformization Theorem) A simply connected Riemann sur-
face is conformally equivalent to one of the following
(1) C, the complex plane
(2) C, the complex projective line (i.e. complex plane plus a point at infinity)
(3) D? C C, the open unit disk in the complex plane
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The three above objects are of course familiar to us. The the first corresponds
with euclidean space, the second with spherical space, and the last with hyperbolic
space. It turns out that for Riemann surfaces, these three objects are the only
possible universal covers, meaning that in some sense, these are the objects we
should use to construct Riemann surfaces. In the following theorem, we apply the
methodology of section 1, where we attempt to construct surfaces from the quotient
of a group of automorphism of our spaces of interest.

Theorem 4.4. Let T’ be a group of conformal transformations on one of C, P!,
or D2. If T acts discontinuously and is fized point free, then the quotient of the
respective space by I' is a Riemann surface.

Proof. Let T be on of C, P! or D? and I be a conformal group action on 7. Let
s € T/T. Choose some p € 7~ !(s) = s. By theorem 1.5 there exists a neighborhood
U around p such that every point of U belongs to a different I'—orbit. We claim that
7w: (U) — 7(U) is a homeomorphism. It is of course a bijection. But we can also
equip T'/T" with the same metric discussed in (1.0.1) without issue, so 7 is in fact
and isometry and so is continuous. These will be the charts for our manifold, so we
now wish to show that the transition maps are holomorphic. Let (U, 1), (Us, p2)
be two charts of T/T with U; N Uy nonempty (where Uy,Us C T/T'). Because
m(p2(Ur NU2)) = 7w(p1(Ur NUy)), for any p € Uy N Uy, there is a conformal map
g € I such that g(p1(p)) = ¢2(p)). In fact, g(p1 (U1 NUsz) = ¢1(U; N Us), that
is, g is independent of the choice of p, so @1 © apglz w2 (U1 NU2) — p1(Up NUy) is
holomorphic.

(I

Though the above statement is weaker than Killing-Hopf, in that we only have
that quotients are surfaces (and not vice versa), it still motivates us to ask a certain
question: what are the automorpohisms of our spaces of interest? And specifically,
which subgroups of the conformal group are the fixed point-free discontinuous ones?
The answer to the first question is well known, and is presented in the theorem that
follows.

Theorem 4.5. .
(1) Every automorphism of C is of the form f(z) = az + b where a,b € C and
a#0.
(2) Every automorphism of C is of the form f(z) = % where a,b,c,d € C
and ad — bc # 0

(3) Every automorphism of D? is of the form f(z) = gj_tg where a,b € C and
la]?> —[b* =1

Remark 4.6. Every automorphism of C has at least one fixed point, so it is not
possible construct a surface in this way from C. This corresponds with the fact
that the only compact Riemann surface with universal cover C are those of genus
0, so the sphere itself.
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